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Problem motivation and definition

We consider
Laplace operators −∆ in L2(R3) and L2(R2);
the restriction −∆0 of −∆ onto the Sobolev subspaces
H2

2 (Ri \ {0});
self-adjoint extensions −∆α, α ∈ R of −∆0 in L2(Ri),
i = 3, 2.
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Problem motivation and definition

Domains of −∆α:

D(3)
α :=

{
f : f ∈ H2

2 (R3) , lim
|x|↓0

[
d

d |x|
(|x|f (x))− α|x|f (x)

]
= 0

}
,

D(2)
α :=

{
f : f ∈ H2

2 (R2) , lim
|x|↓0

[(
2πα

ln |x|
+ 1

)
f (x)− lim

|x′|↓0

ln |x|
ln |x′|

f (x′)
]

= 0.

}
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Problem motivation and definition

Resolvent kernels (Green functions):

G(3)
α,z(x, x′) =


G(0)

z (x, x′) + 1
α−i

√
z/4π G(0)

z (x, 0)G(0)
z (0, x′) ,

G(0)
z (x, x′) = exp i

√
z|x−x′|

4π|x−x′| .

G(2)
α,z(x, x′) =


G(0)

z (x, x′) + 2π
2πα−ψ(1)+ln

� √
z

2i

� G(0)
z (x, 0)G(0)

z (0, x′) ,

G(0)
z (x, x′) = ( i

4)H(1)
0 (i

√
z|x− x′|) .
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Problem motivation and definition

All singular perturbations −∆α of the Laplace operator in two
dimensions have one negative eigenvalue or the standardly
defined Laplace operator −∆ is the unique non-negative
self-adjoint extension in L2(R2) of the symmetric operator −∆0.
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Problem motivation and definition: Question

Question
Why in some cases the Friedrichs extension is the unique
non-negative extension of given non-negative symmetric
operator?

Vadim Adamyan Non-negative perturbations . . .



Problem motivation and definition: Question

Question
Why in some cases the Friedrichs extension is the unique
non-negative extension of given non-negative symmetric
operator?

Vadim Adamyan Non-negative perturbations . . .



A ≥ 0 - self-adjoint operator in the Hilbert space H
A(0) be a densely defined closed restriction of A onto
D(A(0)) ⊂ D(A) of A.

Put
M := (I + A(0))D(A(0)) 6= H,

N := H	M.

We call all self-adjoiont extensions of A(0) in H other than A
singular perturbations of A (associated with A0).
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Let us consider K0 : M→H :{
f =

(
I + A(0)

)
x ,

K0f = A(0)x , x ∈ D(A(0)).

A1 is a non-negative self-adjoint extension of A0 in H iff
K1 := A1 (A1 + I)−1 is a non-negative contractive extension of
K0 from M onto H, K1f = K0f , f ∈M, 1∈σ(K1).

A0 has unique non-negative self-adjoint extension in H if and
only if K0 admits only one non-negative contractive extension
onto the whole H, no eigenvalue of which = 1, that is
K := A(I + A)−1.

The uniqueness of A as non-negative extension of A0 is
equivalent to uniqueness of K as non-negative contractive
extension of K0.
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Notation

Notation
G - the set consisting of A and all its non-negative singular
perturbations;
C denote the set of non-negative contractions obtained
from G by transformation A1 → A1 (A1 + I)−1 , A1 ∈ G;
PM the orthogonal projector onto M in H
PN = I − PM.
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With respect to the representation H = M⊕N each KX ∈ C
can be represented as

KX =

(
T Γ∗

Γ X

)
Here

T = PMK0|M,
Γ = PMK0|M.

X is a non-negative contraction in N distinguishing elements
from C.
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Since each KX ∈ C is non-negative and contractive then

T ≥ 0; I ≥ T 2 + Γ∗Γ

KX ∈ C is equivalent to

KX + εI ≥ 0;
(1 + ε)I − KX ≥ 0 ε > 0.
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By the Schur -Frobenius factorization formula:(
I 0

Γ(T + ε)−1 I

)
×(

T + ε 0
0 X + ε− Γ(T + ε)−1Γ∗

)
×(

I (T + ε)−1Γ∗

0 I

)
≥ 0
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By the Schur -Frobenius factorization formula:(
I 0

−Γ(I + ε− T )−1 I

)
×(

1 + ε− T 0
0 1 + ε− X − Γ(1 + ε− T )−1Γ∗

)
×(

I −(1 + ε− T )−1Γ∗

0 I

)
≥ 0
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Since T ≥ 0 and I − T ≥ 0 the above inequalities are reduced
to {

X + εI − Γ(T + εI)−1Γ∗ ≥ 0,

(1 + ε)I − X − Γ[(1 + ε)I − T ]−1Γ∗ ≥ 0, ε > 0.

Setting
Y := X − lim

ε↓0
Γ(T + εI)−1Γ∗

we conclude that KX ∈ C if and only if

0 ≤ Y ≤ I − lim
ε↓0

(
Γ(T + εI)−1Γ∗ + Γ[(1 + ε)I − T ]−1Γ∗

)
.
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Hence

I − lim
ε↓0

(
Γ(T + εI)−1Γ∗ + Γ[(1 + ε)I − T ]−1Γ∗

)
= 0

is the criterium that there are no contractive non-negative
extension of K0 in H other than K .

To express this criterium in terms of given K and A we use the
following proposition.
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Proposition

Proposition.
Let L be a bounded invertible operator in the Hilbert space
H = M⊕N given as 2× 2 block operator matrix,

L =

(
R U
V S

)
,

where R and S are invertible operators in M and N ,
respectively, and U, V act between M and N .
If R is invertible operator in M,then(

R−1 0
0 0

)
= L−1 − L−1PNΛ−1PNL−1 ,

Λ = PNL−1|N .
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Set

Λ1,ε =PN (K + εI)−1|N
Λ2,ε =PN [(1 + ε)I − K ]−1|N .

Applying the above Proposition with L = K + εI and

R =T + εI ,

U =Γ∗ = PMK |N = PM[K + εI]|N ,

V =Γ = PNK |M = PN [K + εI]|M ,

S =PNK |N + εI

yields
Γ(T + εI)−1Γ∗ = PNK |N + εI − Λ−1

1,ε.
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In the same fashion we get

Γ[(1 + ε)I − T ]−1Γ∗ = PN [I − K ]|N + εI − Λ−1
2,ε.

Hence

I−lim
ε↓0

(
Γ(T + εI)−1Γ∗ + Γ[(1 + ε)I − T ]−1Γ∗

)
= lim

ε↓0
Λ−1

1,ε+lim
ε↓0

Λ−1
2,ε.
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Theorem.
Let K be a non-negative contraction in the Hilbert space H = M⊕N ,
K0 is the restriction of K onto the subspace M(= M⊕{0}) and

G1 =lim
ε↓0

(PN [K + εI]|N )−1

G2 =lim
ε↓0

(PN [I − K + εI]|N )−1

Then the set C of all non-negative contractive extensions KX of K0 in
H is described by expression

KX =

(
PMK |M PMK |N
PMK |N X

)
, (1)

where X runs the set of all non-negative contractions in N satisfying
inequalities

PNK |N −G1 ≤ X ≤ PNK |N + G2. (2)

In particular, K is the unique non-negative contractive extension of K0
if and only if G1 = G2 = 0.
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Remark.
The set of all non-negative singular perturbations of A contains
the minimal perturbation Aµ with and the maximal perturbation
AM such that any non-negative perturbation A1 satisfies
inequalities Aµ ≤ A1 ≤ AM . The corresponding values of
parameters X in the above theorem are

Xµ = I|N + PN [I + A]−1|N −G1
XM = I|N + PN [I + A]−1|N + G2

If G1 = 0 (G2 = 0), then the minimal (maximal) perturbation
coincides with A.
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Proposition.
The set of resolvents of all non-negative singular perturbations
AY of A is described by the M.G. Krein formula

(AY − zI)−1 = (A− zI)−1 − (A + I)(A− zI)−1PNY×[
I + (1 + z)PN (A + I)(A− zI)−1Y

]−1
×PN (A + I)(A− zI)−1 ,

where Y runs contractions in N satisfying inequalities
−G1 ≤ Y ≤ G2.
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Applications

Let A denote the multiplication operator in L2(Rn) by the
continuous function ϕ(k), k2 = k2

1 + ... + k2
n , such that ϕ(k) > 0

almost everywhere and

∞∫
0

kn−1

(1 + ϕ(k))2 dk < ∞.

A is a non-negative self-adjoint operator,

D(A) =

{
f :

∫
Rn

|1 + ϕ(k)|2|f (k|2dk < ∞, f ∈ L2(Rn)

}
.
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Applications

Let δ̂ denote the unbounded linear functional in L2(Rn):

δ̂(f ) =

∫
Rn

f (k)dk.

Note that D(δ̂) ⊂ D(A).

Let us denote by A0 the restriction of A onto linear set

D(A0) :=
{

f : f ∈ D(A), δ̂(f ) = 0
}

.

The closure of A0 6= A and

N = (L2(Rn)	 (I + A)D0(A)) =

{
ξ · 1

1 + ϕ(k)
, ξ ∈ C

}
.
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Proposition.
A is the unique non-negative self-adjoint extension of A0 that is
A has no non-negative singular perturbations if and only if

∞∫
0

kn−1

ϕ(k)(1 + ϕ(k))
dk = ∞

and
∞∫

0

kn−1

(1 + ϕ(k))
dk = ∞.
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Put ϕ(k) = k2 and let n = 2.

Corollary.

The self-adjoint Laplace operator in L2 (R2) has no
non-negative singular perturbations with support at one point of
R2.
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The non-negative singular perturbations of −∆ in L2 ( R2 ) with
support at two or more points do exist. Let us consider the
restriction A0 of the multiplication operator operator by k2, for
which the defect subspace N consists of functions collinear to

e0(k) =
1− exp(−i(k · x0))

1 + k2 , x0 ∈ R2.

In this case
‖e0‖2 =

∫
R2

4 sin2 1
2 (k · x0)

(1 + k2)2 dk < ∞,

(
(I + A)A−1e0, e0

)
=

∫
R2

4 sin2 1
2 (k · x0)

k2(1 + k2)
dk < ∞,

((I + A)e0, e0) =

∫
R2

4 sin2 1
2 (k · x0)

1 + k2 dk = ∞ .

Hence G1 = ‖e0‖2 · ((I + A)e0, e0)
−1

> 0, but G2 = 0.
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As follows, the concerned restriction A0 of the multiplication
operator A by k2 has non-negative self-adjoint extensions in
L2 ( R2 ) others then A and A is the maximal element in the set
of these extensions.
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It remains to note that A is isomorphic to the self-adjoint
Laplace operator −∆ in L2 ( R2 ) and A0 is isomorphic to the
restriction of this −∆ on the subset of function f (x) from D(−∆)
satisfying conditions:

lim
|x|→0

(ln |x|)−1f (x)− lim
|x−x0|→0

(ln |x− x0|)−1f (x) = 0,

lim
|x|→0

[
f (x)− ln |x| lim

|x′|→0
(ln |x′|)−1f (x′)

]
−

lim
|x−x0|→0

[
f (x)− ln |x− x0| lim

|x′−x0|→0
(ln |x′ − x0|)−1f (x′)

]
= 0.
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The self-adjoint Laplace operator in L2 ( R3 ) has infinitely many
non-negative singular perturbations with support at one point of
R3 and the standardly defined Laplace the maximal element in
the set of this perturbation.
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Consider the multiplication operator A by k2l in L2 ( Rn )
assuming that 4l ≤ n + 1. A is isomorphic to the polyharmonic
operator (−∆)l in L2 ( Rn ).

Let us consider the restriction A0 of A with the domain

D(A0) :=
{

f : f ∈ D(A), δ̂(f ) = 0
}

.

that is non-negative symmetric operator which is isomorphic to
the restriction of the polyharmonic operator (−∆)l onto the
Sobolev subspace H2

2l (Rn \ {0}).
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Propositions

Proposition.
If n < 2l then there are infinitely many non-negative singular
perturbations of (−∆)l associated with the one-point symmetric
restriction A0 and (−∆)l is the minimal element in the set of the
non-negative extensions of A0 in H2

2l (Rn \ {0}).

Proposition.

If n = 2l then (−∆)l has no such perturbations in
H2

2l (Rn \ {0}) .

Proposition.
If n > 2l then there is the infinite set of non-negative singular
perturbations of (−∆)l associated with A0 and for those as
non-negative extensions of A0 in the set of the in H2

2l (Rn \ {0})
the operator (−∆)l is the maximal element.
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