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Problem motivation and definition

We consider
@ Laplace operators —A in Ly(R3) and Lx(R2);
@ the restriction —A° of —A onto the Sobolev subspaces
H5 (R; \ {0});
e self-adjoint extensions —A,, a € R of —~A%in Ly(R;),
i=3,2.

Vadim Adamyan Non-negative perturbations . . .



Problem motivation and definition

Domains of —A,:

Vadim Adamyan Non-negative perturbations . . .



Problem motivation and definition

Domains of —A,:

d
mi

DB ::{f: fe Hz (R3), i
o 2 (Re), fim) dJx|

(xIf(x) - aixif(a| o}
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Problem motivation and definition

Domains of —

2 ::{f: fe Hs(Rs), I|m [dx| (x| f(x ))—a|x|f(x)] :o},

D) ::{f: e HE(Ry), lim, [(ZMH) (x) — lim AMXL g )} :o.}

In|x| | oln x|
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Problem motivation and definition

Resolvent kernels (Green functions):
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Problem motivation and definition

Resolvent kernels (Green functions):

GO (%, X) + i dea G (x,0)GE(0, X)),

G((ff) (x,x') =
GEO)(x,x’) _ eXpivz|x—X/| )

47|x—x|
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Problem motivation and definition

Resolvent kernels (Green functions):

(GP(x,X) + - G9(x,00G¥(0,x),

- f yp
6. x) - -
GEO)(X x) = exp iv/Z|x—x'|

47|x—x|

(@) oy & 0e e ),
Ggf;(x,x’) =

G (x,X) = ()Hg(ivZIx — ).
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Problem motivation and definition

All singular perturbations — A, of the Laplace operator in two
dimensions have one negative eigenvalue or the standardly
defined Laplace operator — A is the unique non-negative
self-adjoint extension in Ly(R2) of the symmetric operator —A°.
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Problem motivation and definition: Question
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Problem motivation and definition: Question

Why in some cases the Friedrichs extension is the unique
non-negative extension of given non-negative symmetric
operator?
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@ A > 0 - self-adjoint operator in the Hilbert space H
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o A be a densely defined closed restriction of A onto
D(A©) © D(A) of A.
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Let us consider Ky : M — H :

f=(1+AO)x,
Kof = AQx, x € D(AD),
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Let us consider Ky : M — H :

f=(1+AO)x,
Kof = AQx, x € D(AD),

Ay is a non-negative self-adjoint extension of Ag in H iff
Ki = Ay (A1 + I)_1 is a non-negative contractive extension of
Ko from M onto H, Kif = Kof, f € M,1€0(Ky).
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Let us consider Ky : M — H :

f=(1+AO)x,
Kof = AQx, x € D(AD),

Aq is a non-negative self-adjoint extension of Ay in H iff
Ki = Ay (A1 + I)_1 is a non-negative contractive extension of
Ko from M onto H, Kif = Kof, f € M,1€0(Ky).

Ao has unique non-negative self-adjoint extension in H if and
only if Ko admits only one non-negative contractive extension
onto the whole 'H, no eigenvalue of which = 1, that is
K:=A(+ A",
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Let us consider Ky : M — H :

f=(1+AO)x,
Kof = AQx, x € D(AD),

Aq is a non-negative self-adjoint extension of Ay in H iff
Ki = Ay (A1 + I)_1 is a non-negative contractive extension of
Ko from M onto H, Kif = Kof, f € M,1€0(Ky).

Ao has unique non-negative self-adjoint extension in H if and
only if Ko admits only one non-negative contractive extension
onto the whole 'H, no eigenvalue of which = 1, that is
K:=A(+ A",

The uniqueness of A as non-negative extension of Ay is
equivalent to uniqueness of K as non-negative contractive
extension of Kp.
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Notation

@ G - the set consisting of A and all its non-negative singular
perturbations;

@ C denote the set of non-negative contractions obtained
from G by transformation A; — A (A1 +)~', A, € G;

@ Py, the orthogonal projector onto M in H
@ Py =1—Ppn.
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With respect to the representation H = M & N each Ky € C
can be represented as

T r*
s=(r %)
Here
T = PyKolum,

X is a non-negative contraction in A/ distinguishing elements
from C.
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Since each Kx € C is non-negative and contractive then
T>0; I>T?4+T1°T
Kx € C is equivalent to

Kx +¢el > 0;
(1+e)l—Kx >0e>0.
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By the Schur -Frobenius factorization formula:
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(r(T +/ e)~! ?) .
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By the Schur -Frobenius factorization formula:

(r(T +/ e)~! ?) .

T+e 0 y
0 X+e-T(T+e) '
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By the Schur -Frobenius factorization formula:
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By the Schur -Frobenius factorization formula:

<—F(/—|—&{— )~ ?) %
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By the Schur -Frobenius factorization formula:

<—F(/—|—&{— )~ ?) %

14+e—T 0 "
0 T+e—X-T(1+e—-T)'r*
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By the Schur -Frobenius factorization formula:

(—HL+;—U—1?>X

14+e—T 0 "
0 T+e—X-T(1+e—-T)'r*

| —(14e—T)'r*
(0 / )20
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Since T > 0and / — T > 0 the above inequalities are reduced
to

X+el—T(T+eh™'r* >0,
(A4+e)l—X-T[(1+e)l— T]*1r* >0, e>0.
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Since T > 0and / — T > 0 the above inequalities are reduced
to

X+el—T(T+eh™'r* >0,
(A4+e)l—X-T[(1+e)l— T]*1r* >0, e>0.

Setting
Y:=X- n?g F(T+eh)'r*
&
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Since T > 0and / — T > 0 the above inequalities are reduced
to

X+el—T(T+eh™'r* >0,
(1+e)l—X-T[A14+&)/-T]"'r*>0,e>0.
Setting
Y =X —limr(T+el)'r*
el0
we conclude that Kx € C if and only if

0<Y</—Ilm (F(T+gl)—1r*+r[(1 +e)l— T]—1r*),
€l0
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Hence

I lim (T +en™'r + (1 + )/ = T]7'T) =0
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Hence

I lim <F(T+5l)*‘r* FT[(1 + &)l — T]*1r*> =0

is the criterium that there are no contractive non-negative
extension of Ky in H other than K.
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Hence

I lim (T +en™'r + (1 + )/ = T]7'T) =0

is the criterium that there are no contractive non-negative
extension of Ky in H other than K.

To express this criterium in terms of given K and A we use the
following proposition.
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Proposition

Proposiion.

Let L be a bounded invertible operator in the Hilbert space
H=M®N given as 2 x 2 block operator matrix,

R U
=(Vs)
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Proposition

Proposition.

Let L be a bounded invertible operator in the Hilbert space
H=M®N given as 2 x 2 block operator matrix,

R U
(0 5),
where R and S are invertible operators in M and N,
respectively, and U, V act between M and N
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Proposition

Proposition.

Let L be a bounded invertible operator in the Hilbert space
H=M®N given as 2 x 2 block operator matrix,

R U
(0 s),
where R and S are invertible operators in M and N,

respectively, and U, V act between M and N
If R is invertible operator in M,
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Proposition

Proposition.

Let L be a bounded invertible operator in the Hilbert space
H=M®N given as 2 x 2 block operator matrix,

R U
(0 s),
where R and S are invertible operators in M and N,

respectively, and U, V act between M and N
If R is invertible operator in M,then

—1
(RO 8) =L — L' PyATT P LT,

A= PNL71’/\/-
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Set

Me=Pn(K+el) |y
Moo =Pu[(1+ ) — K] |n-
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Set

Me=Pn(K+el) |y
Moo =Pu[(1+ ) — K] |n-

Applying the above Proposition with L = K + ¢/ and

R=T+¢l,

U=r* = PuK|x = PalK + 2l
V =T = PyK|pm = PvIK +ell|m,
S —PyK|x +¢l
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Set

Me=Pn(K+el) |y
Moo =Pu[(1+ ) — K] |n-

Applying the above Proposition with L = K + ¢/ and

R=T+¢l,

U=r* = PuK|x = PalK + 2l
V =T = PyK|pm = PvIK +ell|m,
S —PyK|x +¢l

yields
M(T+e) ' = PuK|w +el — A7 L
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In the same fashion we get

M1 +e) = T17'M* = Pyl — Kllw + el — AL
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In the same fashion we get
(1 +e)— T = Pyl — K]|v + el — /\5,2-
Hence

: 1 =) — i A= i A=
I~lim (F(T+5/) M+ T[(1+¢)/ - T] r) im A lim A
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Let K be a non-negative contraction in the Hilbert space H = M @& N,
Ko is the restriction of K onto the subspace M(= M & {0}) and

Gy =lim (Px[K +elllx)

Go :"[9 Pyl — K +ell|ln) "

V.
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Theorem.

Let K be a non-negative contraction in the Hilbert space H = M @& N,
Ko is the restriction of K onto the subspace M(= M & {0}) and

Gy =lim (Px[K +elllx)

Go :"[9 Pyl — K +ell|ln) "

Then the set C of all non-negative contractive extensions Kx of Ky in
‘H is described by expression

Ky — ( PuKim  PuKlnv )
X — )

PuKly X )
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Theorem.

Let K be a non-negative contraction in the Hilbert space H = M @& N,
Ko is the restriction of K onto the subspace M(= M & {0}) and

G G, ellln)™
G :"[9 Pyl — K +ell|ln) "

Then the set C of all non-negative contractive extensions Kx of Ky in
‘H is described by expression

_ [ PuKlm PuKlnv
KX(PMKN X ) )

where X runs the set of all non-negative contractions in N satisfying
inequalities
PvKlxy — Gi < X < PyK|n + Ga. ()
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Theorem.

Let K be a non-negative contraction in the Hilbert space H = M @& N,
Ko is the restriction of K onto the subspace M(= M & {0}) and

Gy =lim (Px[K +elllx)

Go :"[9 Pyl — K +ell|ln) "

Then the set C of all non-negative contractive extensions Kx of Ky in
‘H is described by expression

_( PmKlm PuK|v
where X runs the set of all non-negative contractions in N satisfying
inequalities

PvKlnv — Gi < X < PyK|x + Go. (2)

In particular, K is the unique non-negative contractive extension of Ky
if and only if G; = G, = 0.
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Remark.

The set of all non-negative singular perturbations of A contains
the minimal perturbation A,, with and the maximal perturbation
Awum such that any non-negative perturbation A, satisfies
inequalities A,, < A1 < Ay. The corresponding values of
parameters X in the above theorem are

2y = /|N+PN[/+A]_1|N'— G4
Xy = l|x + Pyl + A Yy + Go

If Gi = 0(Gz = 0), then the minimal (maximal) perturbation
coincides with A.
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Proposition.

The set of resolvents of all non-negative singular perturbations
Ay of A is described by the M.G. Krein formula

(Ay —z) "= (A=zl)" —(A+ )(A—zl) Py Yx
I+ (1 4+ 2)P(A+ (A2 Y] T x Py(A+ (A- )"

where Y runs contractions in N satisfying inequalities
—-G1 <Y <G
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Applications

Let A denote the multiplication operator in Lo(R,) by the
continuous function ¢ (k), k2 = kZ + ... + k2, such that (k) > 0
almost everywhere and

i Kkn—1
0/(1 k<

Vadim Adamyan Non-negative perturbations . . .



Applications

Let A denote the multiplication operator in Lo(R,) by the
continuous function ¢ (k), k2 = kZ + ... + k2, such that (k) > 0
almost everywhere and

3 kn—1
————— dk < 0.
0/ (1+ (k)
A is a non-negative self-adjoint operator,

D(A) = {f: /R 11+ o(k)[2|f(k|?dk < oo, f e Lg(Rn)} :
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Applications

Let 6 denote the unbounded linear functional in Ly(R):

5(f) = ] (k)dk.
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Let 6 denote the unbounded linear functional in Ly(R):
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Applications

Let 6 denote the unbounded linear functional in Ly(R):

5(f) = ] (k)dk.

Note that D(5) c D(A). ]

Let us denote by Ag the restriction of A onto linear set

D(Ao) = {f . f € D(A), §(f) = o} .
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Applications

Let 6 denote the unbounded linear functional in Ly(R):

5(f) = ] (k)dk.

Note that D(5) c D(A). ]

Let us denote by Ap the restriction of A onto linear set
D(Ao) = {f . f € D(A), §(f) = o} .
The closure of Ay # A and

N = (L2(Rn) S} (/+ A)Do(A)) = {f y f S C} o

.
1+ (k)
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A is the unique non-negative self-adjoint extension of Ay that is
A has no non-negative singular perturbations if and only if
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A is the unique non-negative self-adjoint extension of Ay that is
A has no non-negative singular perturbations if and only if

o0

kn—1 .
0/ SR 1 (k) =
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Proposition
A is the unique non-negative self-adjoint extension of Ay that is
A has no non-negative singular perturbations if and only if

o0

kn—1 .
0/ SR 1 (k) =

and

/ 1—|—<p(k dk = 0.
0
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Proposition
A is the unique non-negative self-adjoint extension of Ay that is
A has no non-negative singular perturbations if and only if

o0

kn—1 .
0/ SR 1 (k) =

and

/ 1—|—<p(k dk = 0.
0
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Put ¢(k) = k? and let n = 2.

The self-adjoint Laplace operator in L, (R2) has no
non-negative singular perturbations with support at one point of
R,.
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The non-negative singular perturbations of —A in L, ( Rz ) with
support at two or more points do exist. Let us consider the
restriction Ay of the multiplication operator operator by k2, for
which the defect subspace N consists of functions collinear to

WPRRELLCES

, Xo € Ro.
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The non-negative singular perturbations of —A in L, ( Rz ) with
support at two or more points do exist. Let us consider the
restriction Ay of the multiplication operator operator by k2, for
which the defect subspace N consists of functions collinear to

WPRRELLCES

, Xo € Ro.

In this case

4sin? 1(k -
leol? = [ 222 k< .
2

(1+ k2)?
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The non-negative singular perturbations of —A in L, ( Rz ) with
support at two or more points do exist. Let us consider the
restriction Ay of the multiplication operator operator by k2, for
which the defect subspace N consists of functions collinear to

WPRRELLCES

, Xo € Ro.

In this case

4sin® 1(k -
((I+A)A*1eo,eo):/ sin” 5(K - Xo) dk < oo,

R, K2(1+k2)
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The non-negative singular perturbations of —A in L, ( Rz ) with
support at two or more points do exist. Let us consider the
restriction Ay of the multiplication operator operator by k2, for
which the defect subspace N consists of functions collinear to

WPRRELLCES

, Xo € Ro.

In this case

.2
((/+A)eo,eo)=/ Mdk:m.

R, 1+ k2
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The non-negative singular perturbations of —A in L, ( Rz ) with
support at two or more points do exist. Let us consider the
restriction Ay of the multiplication operator operator by k2, for
which the defect subspace N consists of functions collinear to

eo(K) = 1 —exp(—i(k - xp))

11 K2 , Xo € Ra.
In this case e :/ w e
, (14 Kk3)?
((1+ A)A~" &0, &) —/Rz ‘W dk < oo,
((/‘*‘A)eo,eo):/RzArSin:%_(:z.xo)dk:oo

Hence Gi = ||&||2 - (I + A)eo, &)~ " > 0, but Gz = 0.
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As follows, the concerned restriction Ay of the multiplication
operator A by k? has non-negative self-adjoint extensions in
Lo (R2 ) others then A and A is the maximal element in the set
of these extensions.
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It remains to note that A is isomorphic to the self-adjoint
Laplace operator —A in L, (R2 ) and Aq is isomorphic to the
restriction of this —A on the subset of function f(x) from D(—A)
satisfying conditions:
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It remains to note that A is isomorphic to the self-adjoint
Laplace operator —A in L, (R2 ) and Aq is isomorphic to the
restriction of this —A on the subset of function f(x) from D(—A)
satisfying conditions:

lim (In|x))~'f(x) = lim (In|x —xo|)~'#(x) = 0,
|x|—0 [x—Xq|—0
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It remains to note that A is isomorphic to the self-adjoint
Laplace operator —A in L, (R2 ) and Aq is isomorphic to the
restriction of this —A on the subset of function f(x) from D(—A)
satisfying conditions:

lim (In|x))~'f(x) = lim (In|x —xo|)~'#(x) = 0,
|x|—0 [x—Xq|—0

lim [f(x) —1In \x|‘xlli|r20(ln x'[)~! f(x’)] —

\X|—>O
im [f(x)—ln\x—xor im (lnrx'—xorwf(x’)}:o.
[x—Xo|—0 [x’—Xo|—0
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The self-adjoint Laplace operator in L, ( Rz ) has infinitely many
non-negative singular perturbations with support at one point of

R3 and the standardly defined Laplace the maximal element in
the set of this perturbation.
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Consider the multiplication operator A by k2 in Lo (Rp)
assuming that 4/ < n+ 1. Ais isomorphic to the polyharmonic
operator (—A)"in Lo (Rp).
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Consider the multiplication operator A by k2 in Lo (Rp)
assuming that 4/ < n+ 1. Ais isomorphic to the polyharmonic
operator (—A)"in Lo (Rp).

Let us consider the restriction Ay of A with the domain
D(A) = {f . f € D(A), §(f) = o} .

that is non-negative symmetric operator which is isomorphic to
the restriction of the polyharmonic operator (—A)’ onto the
Sobolev subspace H3, (R, \ {0}).
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Proposition.

If n < 2/ then there are infinitely many non-negative singular
perturbations of (—A)! associated with the one-point symmetric
restriction Ay and (—A)' is the minimal element in the set of the
non-negative extensions of Ay in Hz,(Rn \ {0}).
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Proposition.

If n = 21 then (—A)! has no such perturbations in
Hz (R \ {0}).
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Proposition.

If n > 2/ then there is the infinite set of non-negative singular
perturbations of (—A)' associated with Ay and for those as
non-negative extensions of Ay in the set of the in H3, (R, \ {0})
the operator (—A)' is the maximal element.
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If n < 2/ then there are infinitely many non-negative singular
perturbations of (—A)! associated with the one-point symmetric
restriction Ay and (—A)' is the minimal element in the set of the
non-negative extensions of Ay in Hz,(Rn \ {0}).

If n = 21 then (—A)! has no such perturbations in
Hz (R \ {0}).

Proposition.

If n > 2/ then there is the infinite set of non-negative singular
perturbations of (—A)' associated with Ay and for those as
non-negative extensions of Ay in the set of the in H3, (R, \ {0})
the operator (—A)' is the maximal element.
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