Non-negative perturbations of non-negative selfadjoint operators

Vadim Adamyan

Department of Theoretical Physics
Odessa National University
Berlin, December 14-17, 2006

Problem motivation and definition

Problem motivation and definition

We consider

Problem motivation and definition

We consider

- Laplace operators $-\Delta$ in $L_{2}\left(\mathbf{R}_{3}\right)$ and $L_{2}\left(\mathbf{R}_{2}\right)$;

We consider

- the restriction $-\Delta^{0}$ of $-\Delta$ onto the Sobolev subspaces $H_{2}^{2}\left(\mathbf{R}_{i} \backslash\{0\}\right)$;

We consider

- Laplace operators $-\Delta$ in $L_{2}\left(\mathbf{R}_{3}\right)$ and $L_{2}\left(\mathbf{R}_{2}\right)$;
- the restriction $-\Delta^{0}$ of $-\Delta$ onto the Sobolev subspaces
- self-adjoint extensions $-\Delta_{\alpha}, \alpha \in \mathbf{R}$ of $-\Delta^{0}$ in $L_{2}\left(\mathbf{R}_{i}\right)$, $i=3$, 2 .

We consider

- Laplace operators $-\Delta$ in $L_{2}\left(\mathbf{R}_{3}\right)$ and $L_{2}\left(\mathbf{R}_{2}\right)$;
- the restriction $-\Delta^{0}$ of $-\Delta$ onto the Sobolev subspaces $H_{2}^{2}\left(\mathbf{R}_{i} \backslash\{0\}\right)$;
- self-adjoint extensions $-\Delta_{\alpha}, \alpha \in \mathbf{R}$ of $-\Delta^{0}$ in $L_{2}\left(\mathbf{R}_{i}\right)$, $i=3$, 2 .

Problem motivation and definition

Domains of $-\Delta_{\alpha}$:

Problem motivation and definition

Domains of $-\Delta_{\alpha}$:

$$
\mathcal{D}_{\alpha}^{(3)}:=\left\{f: f \in H_{2}^{2}\left(\mathbf{R}_{3}\right), \lim _{|\mathbf{x}| \downarrow 0}\left[\frac{d}{d|\mathbf{x}|}(|\mathbf{x}| f(\mathbf{x}))-\alpha|\mathbf{x}| f(\mathbf{x})\right]=0\right\},
$$

Domains of $-\Delta_{\alpha}$:

$$
\begin{aligned}
& \mathcal{D}_{\alpha}^{(3)}:=\left\{f: f \in H_{2}^{2}\left(\mathbf{R}_{3}\right), \lim _{|\mathbf{x}| \downarrow 0}\left[\frac{d}{d|\mathbf{x}|}(|\mathbf{x}| f(\mathbf{x}))-\alpha|\mathbf{x}| f(\mathbf{x})\right]=0\right\} \\
& \mathcal{D}_{\alpha}^{(2)}:=\left\{f: f \in H_{2}^{2}\left(\mathbf{R}_{2}\right), \lim _{|\mathbf{x}| \downarrow 0}\left[\left(\frac{2 \pi \alpha}{\ln |\mathbf{x}|}+1\right) f(\mathbf{x})-\lim _{\left|\mathbf{x}^{\prime}\right| \downarrow 0} \frac{\ln |\mathbf{x}|}{\ln \left|\mathbf{x}^{\prime}\right|} f\left(\mathbf{x}^{\prime}\right)\right]=0\right\}
\end{aligned}
$$

Resolvent kernels (Green functions):

Resolvent kernels (Green functions):

$$
G_{\alpha, z}^{(3)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\{\begin{array}{l}
G_{z}^{(0)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\frac{1}{\alpha-i \sqrt{z} / 4 \pi} G_{z}^{(0)}(\mathbf{x}, 0) G_{z}^{(0)}\left(0, \mathbf{x}^{\prime}\right) \\
G_{z}^{(0)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\exp i \sqrt{z}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
\end{array}\right.
$$

Resolvent kernels (Green functions):

$$
\begin{aligned}
& G_{\alpha, Z}^{(3)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\{\begin{array}{l}
G_{z}^{(0)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\frac{1}{\alpha-i \sqrt{z} / 4 \pi} G_{z}^{(0)}(\mathbf{x}, 0) G_{z}^{(0)}\left(0, \mathbf{x}^{\prime}\right) \\
G_{z}^{(0)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\exp i \sqrt{z}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
\end{array}\right. \\
& G_{\alpha, Z}^{(2)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\{\begin{array}{l}
G_{z}^{(0)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\frac{2 \pi}{2 \pi \alpha-\psi(1)+\ln \left(\frac{\sqrt{z}}{2 i}\right)} G_{z}^{(0)}(\mathbf{x}, 0) G_{z}^{(0)}\left(0, \mathbf{x}^{\prime}\right), \\
G_{z}^{(0)}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\frac{i}{4}\right) H_{0}^{(1)}\left(i \sqrt{z}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)
\end{array}\right.
\end{aligned}
$$

Problem motivation and definition

All singular perturbations $-\Delta_{\alpha}$ of the Laplace operator in two dimensions have one negative eigenvalue or the standardly defined Laplace operator $-\Delta$ is the unique non-negative self-adjoint extension in $L_{2}\left(\mathbf{R}_{2}\right)$ of the symmetric operator $-\Delta^{0}$.

Problem motivation and definition: Question

Question

Why in some cases the Friedrichs extension is the unique non-negative extension of given non-negative symmetric operator?

A ≥ 0 - self-adjoint operator in the Hilbert space \mathcal{H} be a densely defined closed restriction of A onto $\mathcal{D}\left(A^{(0)}\right) \subset \mathcal{D}(A)$ of A.

- $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}\left(A^{(0)}\right) \subset \mathcal{D}(A)$ of A.
- $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}\left(A^{(0)}\right) \subset \mathcal{D}(A)$ of A.
- $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}\left(A^{(0)}\right) \subset \mathcal{D}(A)$ of A.

Put

$$
\begin{aligned}
& \mathcal{M}:=\left(I+A^{(0)}\right) \mathcal{D}\left(A^{(0)}\right) \neq \mathcal{H} \\
& \mathcal{N}:=\mathcal{H} \ominus \mathcal{M}
\end{aligned}
$$

- $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}\left(A^{(0)}\right) \subset \mathcal{D}(A)$ of A.

Put

$$
\begin{aligned}
& \mathcal{M}:=\left(I+A^{(0)}\right) \mathcal{D}\left(A^{(0)}\right) \neq \mathcal{H} \\
& \mathcal{N}:=\mathcal{H} \ominus \mathcal{M}
\end{aligned}
$$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_{0}).

- $A \geq 0$ - self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}\left(A^{(0)}\right) \subset \mathcal{D}(A)$ of A.

Put

$$
\begin{aligned}
& \mathcal{M}:=\left(I+A^{(0)}\right) \mathcal{D}\left(A^{(0)}\right) \neq \mathcal{H} \\
& \mathcal{N}:=\mathcal{H} \ominus \mathcal{M}
\end{aligned}
$$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_{0}).

Let us consider $K_{0}: \mathcal{M} \rightarrow \mathcal{H}$:

$$
\left\{\begin{array}{c}
f=\left(I+A^{(0)}\right) x \\
K_{0} f=\mathcal{A}^{(0)} x, x \in \mathcal{D}\left(A^{(0)}\right)
\end{array}\right.
$$

Let us consider $K_{0}: \mathcal{M} \rightarrow \mathcal{H}$:

$$
\left\{\begin{array}{c}
f=\left(I+A^{(0)}\right) x \\
K_{0} f=\mathcal{A}^{(0)} x, x \in \mathcal{D}\left(A^{(0)}\right)
\end{array}\right.
$$

A_{1} is a non-negative self-adjoint extension of A_{0} in \mathcal{H} iff $K_{1}:=A_{1}\left(A_{1}+I\right)^{-1}$ is a non-negative contractive extension of K_{0} from \mathcal{M} onto $\mathcal{H}, K_{1} f=K_{0} f, f \in \mathcal{M}, 1 \in \sigma\left(K_{1}\right)$.

Let us consider $K_{0}: \mathcal{M} \rightarrow \mathcal{H}:$

$$
\left\{\begin{array}{c}
f=\left(I+A^{(0)}\right) x \\
K_{0} f=\mathcal{A}^{(0)} x, x \in \mathcal{D}\left(A^{(0)}\right)
\end{array}\right.
$$

A_{1} is a non-negative self-adjoint extension of A_{0} in \mathcal{H} iff $K_{1}:=A_{1}\left(A_{1}+I\right)^{-1}$ is a non-negative contractive extension of K_{0} from \mathcal{M} onto $\mathcal{H}, K_{1} f=K_{0} f, f \in \mathcal{M}, 1 \in \sigma\left(K_{1}\right)$.
A_{0} has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_{0} admits only one non-negative contractive extension onto the whole \mathcal{H}, no eigenvalue of which $=1$, that is $K:=A(I+A)^{-1}$.

Let us consider $K_{0}: \mathcal{M} \rightarrow \mathcal{H}:$

$$
\left\{\begin{array}{c}
f=\left(I+A^{(0)}\right) x \\
K_{0} f=\mathcal{A}^{(0)} x, x \in \mathcal{D}\left(A^{(0)}\right)
\end{array}\right.
$$

A_{1} is a non-negative self-adjoint extension of A_{0} in \mathcal{H} iff $K_{1}:=A_{1}\left(A_{1}+I\right)^{-1}$ is a non-negative contractive extension of K_{0} from \mathcal{M} onto $\mathcal{H}, K_{1} f=K_{0} f, f \in \mathcal{M}, 1 \in \sigma\left(K_{1}\right)$.
A_{0} has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_{0} admits only one non-negative contractive extension onto the whole \mathcal{H}, no eigenvalue of which $=1$, that is $K:=A(I+A)^{-1}$.

The uniqueness of A as non-negative extension of A_{0} is equivalent to uniqueness of K as non-negative contractive extension of K_{0}.

Notation

Notation

- G - the set consisting of A and all its non-negative singular perturbations;
 - C. dennte the set of non-negative contractions obtained from G by transformation $A_{1} \rightarrow A_{1}\left(A_{1}+I\right)^{-1}, A_{1} \in G$;

Notation

Notation

- \mathbf{G} - the set consisting of A and all its non-negative singular perturbations;
- C denote the set of non-negative contractions obtained from G by transformation $A_{1} \rightarrow A_{1}\left(A_{1}+I\right)^{-1}, A_{1} \in \mathbf{G}$;

Notation

Notation

- \mathbf{G} - the set consisting of A and all its non-negative singular perturbations;
- C denote the set of non-negative contractions obtained from \mathbf{G} by transformation $A_{1} \rightarrow A_{1}\left(A_{1}+I\right)^{-1}, A_{1} \in \mathbf{G}$;

Notation

Notation

- \mathbf{G} - the set consisting of A and all its non-negative singular perturbations;
- C denote the set of non-negative contractions obtained from \mathbf{G} by transformation $A_{1} \rightarrow A_{1}\left(A_{1}+I\right)^{-1}, A_{1} \in \mathbf{G}$;
- $P_{\mathcal{M}}$ the orthogonal projector onto \mathcal{M} in \mathcal{H}

Notation

Notation

- \mathbf{G} - the set consisting of A and all its non-negative singular perturbations;
- \mathbf{C} denote the set of non-negative contractions obtained from \mathbf{G} by transformation $A_{1} \rightarrow A_{1}\left(A_{1}+I\right)^{-1}, A_{1} \in \mathbf{G}$;
- $P_{\mathcal{M}}$ the orthogonal projector onto \mathcal{M} in \mathcal{H}
- $P_{\mathcal{N}}=I-P_{\mathcal{M}}$.

With respect to the representation $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$ each $K_{X} \in \mathbf{C}$ can be represented as

$$
K_{X}=\left(\begin{array}{cc}
T & \Gamma^{*} \\
\Gamma & X
\end{array}\right)
$$

Here

$$
\begin{aligned}
& T=\left.P_{\mathcal{M}} K_{0}\right|_{\mathcal{M}} \\
& \Gamma=\left.P_{\mathcal{M}} K_{0}\right|_{\mathcal{M}}
\end{aligned}
$$

X is a non-negative contraction in \mathcal{N} distinguishing elements from \mathbf{C}.

Since each $K_{X} \in \mathbf{C}$ is non-negative and contractive then

$$
T \geq 0 ; \quad I \geq T^{2}+\Gamma^{*} \Gamma
$$

$K_{X} \in \mathbf{C}$ is equivalent to

$$
\begin{aligned}
K_{X}+\varepsilon I & \geq 0 \\
(1+\varepsilon) I-K_{X} & \geq 0 \varepsilon>0
\end{aligned}
$$

By the Schur -Frobenius factorization formula:

By the Schur -Frobenius factorization formula:

$$
\left(\begin{array}{cc}
I & 0 \\
\Gamma(T+\varepsilon)^{-1} & I
\end{array}\right) \times
$$

By the Schur -Frobenius factorization formula:

$$
\begin{array}{r}
\left(\begin{array}{cc}
l & 0 \\
\Gamma(T+\varepsilon)^{-1} & l
\end{array}\right) \times \\
\left(\begin{array}{cc}
T+\varepsilon & 0 \\
0 & X+\varepsilon-\Gamma(T+\varepsilon)^{-1} \Gamma^{*}
\end{array}\right) \times
\end{array}
$$

By the Schur -Frobenius factorization formula:

$$
\begin{array}{r}
\left(\begin{array}{cc}
l & 0 \\
\Gamma(T+\varepsilon)^{-1} & I
\end{array}\right) \times \\
\left(\begin{array}{cc}
T+\varepsilon & 0 \\
0 & X+\varepsilon-\Gamma(T+\varepsilon)^{-1} \Gamma^{*}
\end{array}\right) \times \\
\\
\end{array}
$$

By the Schur -Frobenius factorization formula:

By the Schur -Frobenius factorization formula:

$$
\left(\begin{array}{cc}
I & 0 \\
-\Gamma(I+\varepsilon-T)^{-1} & I
\end{array}\right) \times
$$

By the Schur -Frobenius factorization formula:

$$
\begin{aligned}
& \left(\begin{array}{cc}
I & 0 \\
-\Gamma(I+\varepsilon-T)^{-1} & I
\end{array}\right) \times \\
& \quad\left(\begin{array}{cc}
1+\varepsilon-T & 0 \\
0 & 1+\varepsilon-X-\Gamma(1+\varepsilon-T)^{-1} \Gamma^{*}
\end{array}\right) \times
\end{aligned}
$$

By the Schur -Frobenius factorization formula:

$$
\begin{aligned}
&\left(\begin{array}{cc}
I & 0 \\
-\Gamma(I+\varepsilon-T)^{-1} & I
\end{array}\right) \times \\
&\left(\begin{array}{cc}
1+\varepsilon-T & 0 \\
0 & 1+\varepsilon-X-\Gamma(1+\varepsilon-T)^{-1} \Gamma^{*}
\end{array}\right) \times \\
&\left(\begin{array}{cc}
I & -(1+\varepsilon-T)^{-1} \Gamma^{*} \\
0 & I
\end{array}\right) \geq 0
\end{aligned}
$$

Since $T \geq 0$ and $I-T \geq 0$ the above inequalities are reduced to

$$
\left\{\begin{array}{c}
X+\varepsilon I-\Gamma(T+\varepsilon I)^{-1} \Gamma^{*} \geq 0, \\
(1+\varepsilon) I-X-\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*} \geq 0, \varepsilon>0 .
\end{array}\right.
$$

Since $T \geq 0$ and $I-T \geq 0$ the above inequalities are reduced to

$$
\left\{\begin{array}{c}
X+\varepsilon I-\Gamma(T+\varepsilon I)^{-1} \Gamma^{*} \geq 0, \\
(1+\varepsilon) I-X-\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*} \geq 0, \varepsilon>0 .
\end{array}\right.
$$

Setting

$$
Y:=X-\lim _{\varepsilon \backslash 0} \Gamma(T+\varepsilon I)^{-1} \Gamma^{*}
$$

Since $T \geq 0$ and $I-T \geq 0$ the above inequalities are reduced to

$$
\left\{\begin{array}{c}
X+\varepsilon I-\Gamma(T+\varepsilon I)^{-1} \Gamma^{*} \geq 0, \\
(1+\varepsilon) I-X-\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*} \geq 0, \varepsilon>0 .
\end{array}\right.
$$

Setting

$$
Y:=X-\lim _{\varepsilon \not 0} \Gamma(T+\varepsilon I)^{-1} \Gamma^{*}
$$

we conclude that $K_{X} \in \mathbf{C}$ if and only if

$$
0 \leq Y \leq I-\lim _{\varepsilon \downarrow 0}\left(\Gamma(T+\varepsilon I)^{-1} \Gamma^{*}+\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*}\right) .
$$

Hence

$$
I-\lim _{\varepsilon \downarrow 0}\left(\Gamma(T+\varepsilon I)^{-1} \Gamma^{*}+\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*}\right)=0
$$

is the criterium that there are no contractive non-negative extension of K_{0} in \mathcal{H} other than K.

Hence

$$
I-\lim _{\varepsilon \downarrow 0}\left(\Gamma(T+\varepsilon I)^{-1} \Gamma^{*}+\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*}\right)=0
$$

is the criterium that there are no contractive non-negative extension of K_{0} in \mathcal{H} other than K.

To express this criterium in terms of given K and A we use the following proposition.

Hence

$$
I-\lim _{\varepsilon \downarrow 0}\left(\Gamma(T+\varepsilon I)^{-1} \Gamma^{*}+\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*}\right)=0
$$

is the criterium that there are no contractive non-negative extension of K_{0} in \mathcal{H} other than K.

To express this criterium in terms of given K and A we use the following proposition.

Proposition

Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

$$
L=\left(\begin{array}{ll}
R & U \\
V & S
\end{array}\right)
$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N}

Proposition

Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

$$
L=\left(\begin{array}{ll}
R & U \\
V & S
\end{array}\right),
$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N}, respectively, and U, V act between \mathcal{M} and \mathcal{N}.

Proposition

Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

$$
L=\left(\begin{array}{ll}
R & U \\
V & S
\end{array}\right),
$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N}, respectively, and U, V act between \mathcal{M} and \mathcal{N}. If R is invertible operator in \mathcal{M},

Proposition

Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

$$
L=\left(\begin{array}{ll}
R & U \\
V & S
\end{array}\right)
$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N}, respectively, and U, V act between \mathcal{M} and \mathcal{N}. If R is invertible operator in \mathcal{M}, then

$$
\left(\begin{array}{cc}
R^{-1} & 0 \\
0 & 0
\end{array}\right)=L^{-1}-L^{-1} P_{\mathcal{N}} \Lambda^{-1} P_{\mathcal{N}} L^{-1}
$$

$$
\Lambda=\left.P_{\mathcal{N}} L^{-1}\right|_{\mathcal{N}}
$$

Set

$$
\begin{aligned}
& \Lambda_{1, \varepsilon}=\left.P_{\mathcal{N}}(K+\varepsilon /)^{-1}\right|_{\mathcal{N}} \\
& \Lambda_{2, \varepsilon}=\left.P_{\mathcal{N}}[(1+\varepsilon) I-K]^{-1}\right|_{\mathcal{N}} .
\end{aligned}
$$

Set

$$
\begin{aligned}
& \Lambda_{1, \varepsilon}=\left.P_{\mathcal{N}}(K+\varepsilon /)^{-1}\right|_{\mathcal{N}} \\
& \Lambda_{2, \varepsilon}=\left.P_{\mathcal{N}}[(1+\varepsilon) I-K]^{-1}\right|_{\mathcal{N}} .
\end{aligned}
$$

Applying the above Proposition with $L=K+\varepsilon l$ and

$$
\begin{aligned}
& R=T+\varepsilon I, \\
& U=\Gamma^{*}=\left.P_{\mathcal{M}} K\right|_{\mathcal{N}}=\left.P_{\mathcal{M}}[K+\varepsilon I]\right|_{\mathcal{N}}, \\
& V=\Gamma=\left.P_{\mathcal{N}} K\right|_{\mathcal{M}}=\left.P_{\mathcal{N}}[K+\varepsilon I]\right|_{\mathcal{M}}, \\
& S=\left.P_{\mathcal{N}} K\right|_{\mathcal{N}}+\varepsilon l
\end{aligned}
$$

Set

$$
\begin{aligned}
& \Lambda_{1, \varepsilon}=\left.P_{\mathcal{N}}(K+\varepsilon I)^{-1}\right|_{\mathcal{N}} \\
& \Lambda_{2, \varepsilon}=\left.P_{\mathcal{N}}[(1+\varepsilon) I-K]^{-1}\right|_{\mathcal{N}} .
\end{aligned}
$$

Applying the above Proposition with $L=K+\varepsilon l$ and

$$
\begin{aligned}
& R=T+\varepsilon I, \\
& U=\Gamma^{*}=\left.P_{\mathcal{M}} K\right|_{\mathcal{N}}=\left.P_{\mathcal{M}}[K+\varepsilon I]\right|_{\mathcal{N}}, \\
& V=\Gamma=\left.P_{\mathcal{N}} K\right|_{\mathcal{M}}=\left.P_{\mathcal{N}}[K+\varepsilon I]\right|_{\mathcal{M}}, \\
& S=\left.P_{\mathcal{N}} K\right|_{\mathcal{N}}+\varepsilon l
\end{aligned}
$$

yields

$$
\Gamma(T+\varepsilon I)^{-1} \Gamma^{*}=\left.P_{\mathcal{N}} K\right|_{\mathcal{N}}+\varepsilon I-\Lambda_{1, \varepsilon}^{-1} .
$$

In the same fashion we get

$$
\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*}=\left.P_{\mathcal{N}}[I-K]\right|_{\mathcal{N}}+\varepsilon I-\Lambda_{2, \varepsilon}^{-1} .
$$

In the same fashion we get

$$
\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*}=\left.P_{\mathcal{N}}[I-K]\right|_{\mathcal{N}}+\varepsilon I-\Lambda_{2, \varepsilon}^{-1} .
$$

Hence

$I-\lim _{\varepsilon \downarrow 0}\left(\Gamma(T+\varepsilon I)^{-1} \Gamma^{*}+\Gamma[(1+\varepsilon) I-T]^{-1} \Gamma^{*}\right)=\lim _{\varepsilon \downarrow 0} \Lambda_{1, \varepsilon}^{-1}+\lim _{\varepsilon \downarrow 0} \Lambda_{2, \varepsilon}^{-1}$.

Theorem.

Let K be a non-negative contraction in the Hilbert space $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$, K_{0} is the restriction of K onto the subspace $\mathcal{M}(=\mathcal{M} \oplus\{0\})$ and

$$
\begin{aligned}
& G_{1}=\lim _{\varepsilon \downarrow 0}\left(\left.P_{\mathcal{N}}[K+\varepsilon I]\right|_{\mathcal{N}}\right)^{-1} \\
& G_{2}=\lim _{\varepsilon \downarrow 0}\left(P_{\mathcal{N}}\left[I-K+\left.\varepsilon I\right|_{\mathcal{N}}\right)^{-1}\right.
\end{aligned}
$$

Then the set C of all non-negative contractive exte
\mathcal{H} is described by expression

$$
K_{X}=\left(\begin{array}{cc}\left.P_{\mathcal{M} K}\right|_{\mathcal{M}} & \left.P_{\mathcal{M}} K\right|_{\mathcal{N}} \\ P_{\mathcal{M} K} & X\end{array}\right)
$$

where X runs the set of all non-negative contractions in \mathcal{N} satisfying inequalities

Theorem.

Let K be a non-negative contraction in the Hilbert space $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$, K_{0} is the restriction of K onto the subspace $\mathcal{M}(=\mathcal{M} \oplus\{0\})$ and

$$
\begin{aligned}
& G_{1}=\lim _{\varepsilon \downarrow 0}\left(\left.P_{\mathcal{N}}[K+\varepsilon I]\right|_{\mathcal{N}}\right)^{-1} \\
& G_{2}=\lim _{\varepsilon \downarrow 0}\left(P_{\mathcal{N}}\left[I-K+\left.\varepsilon I\right|_{\mathcal{N}}\right)^{-1}\right.
\end{aligned}
$$

Then the set \mathbf{C} of all non-negative contractive extensions K_{X} of K_{0} in \mathcal{H} is described by expression

$$
K_{X}=\left(\begin{array}{cc}
\left.P_{\mathcal{M}} K\right|_{\mathcal{M}} & \left.P_{\mathcal{M}} K\right|_{\mathcal{N}} \tag{1}\\
\left.P_{\mathcal{M}} K\right|_{\mathcal{N}} & X
\end{array}\right)
$$

Theorem.

Let K be a non-negative contraction in the Hilbert space $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$, K_{0} is the restriction of K onto the subspace $\mathcal{M}(=\mathcal{M} \oplus\{0\})$ and

$$
\begin{aligned}
& G_{1}=\lim _{\varepsilon \downarrow 0}\left(\left.P_{\mathcal{N}}[K+\varepsilon I]\right|_{\mathcal{N}}\right)^{-1} \\
& G_{2}=\lim _{\varepsilon \downarrow 0}\left(P_{\mathcal{N}}[I-K+\varepsilon I]_{\mathcal{N}}\right)^{-1}
\end{aligned}
$$

Then the set \mathbf{C} of all non-negative contractive extensions K_{X} of K_{0} in \mathcal{H} is described by expression

$$
K_{X}=\left(\begin{array}{cc}
\left.P_{\mathcal{M}} K\right|_{\mathcal{M}} & \left.P_{\mathcal{M}} K\right|_{\mathcal{N}} \tag{1}\\
\left.P_{\mathcal{M}} K\right|_{\mathcal{N}} & X
\end{array}\right)
$$

where X runs the set of all non-negative contractions in \mathcal{N} satisfying inequalities

$$
\begin{equation*}
\left.P_{\mathcal{N}} K\right|_{\mathcal{N}}-G_{1} \leq X \leq\left. P_{\mathcal{N}} K\right|_{\mathcal{N}}+G_{2} \tag{2}
\end{equation*}
$$

Theorem.

Let K be a non-negative contraction in the Hilbert space $\mathcal{H}=\mathcal{M} \oplus \mathcal{N}$, K_{0} is the restriction of K onto the subspace $\mathcal{M}(=\mathcal{M} \oplus\{0\})$ and

$$
\begin{aligned}
& G_{1}=\lim _{\varepsilon \downarrow 0}\left(\left.P_{\mathcal{N}}[K+\varepsilon I]\right|_{\mathcal{N}}\right)^{-1} \\
& G_{2}=\lim _{\varepsilon \downarrow 0}\left(P_{\mathcal{N}}\left[I-K+\left.\varepsilon I\right|_{\mathcal{N}}\right)^{-1}\right.
\end{aligned}
$$

Then the set \mathbf{C} of all non-negative contractive extensions K_{X} of K_{0} in \mathcal{H} is described by expression

$$
K_{X}=\left(\begin{array}{cc}
\left.P_{\mathcal{M}} K\right|_{\mathcal{M}} & \left.P_{\mathcal{M}} K\right|_{\mathcal{N}} \tag{1}\\
\left.P_{\mathcal{M}} K\right|_{\mathcal{N}} & X
\end{array}\right)
$$

where X runs the set of all non-negative contractions in \mathcal{N} satisfying inequalities

$$
\begin{equation*}
\left.P_{\mathcal{N}} K\right|_{\mathcal{N}}-G_{1} \leq X \leq\left. P_{\mathcal{N}} K\right|_{\mathcal{N}}+G_{2} \tag{2}
\end{equation*}
$$

In particular, K is the unique non-negative contractive extension of K_{0} if and only if $G_{1}=G_{2}=0$.

Remark.

The set of all non-negative singular perturbations of A contains the minimal perturbation A_{μ} with and the maximal perturbation A_{M} such that any non-negative perturbation A_{1} satisfies inequalities $A_{\mu} \leq A_{1} \leq A_{M}$. The corresponding values of parameters X in the above theorem are

$$
\begin{aligned}
& X_{\mu}=\left.I\right|_{\mathcal{N}}+\left.P_{\mathcal{N}}[I+A]^{-1}\right|_{\mathcal{N}}-G_{1} \\
& X_{M}=\left.I\right|_{\mathcal{N}}+\left.P_{\mathcal{N}}[I+A]^{-1}\right|_{\mathcal{N}}+G_{2}
\end{aligned}
$$

If $G_{1}=0\left(G_{2}=0\right)$, then the minimal (maximal) perturbation coincides with A.

Proposition.

The set of resolvents of all non-negative singular perturbations A_{Y} of A is described by the M.G. Krein formula

$$
\begin{gathered}
\left(A_{Y}-z I\right)^{-1}=(A-z I)^{-1}-(A+I)(A-z I)^{-1} P_{\mathcal{N}} Y \times \\
{\left[I+(1+z) P_{\mathcal{N}}(A+I)(A-z I)^{-1} Y\right]^{-1} \times P_{\mathcal{N}}(A+I)(A-z I)^{-1}}
\end{gathered}
$$

where Y runs contractions in \mathcal{N} satisfying inequalities
$-G_{1} \leq Y \leq G_{2}$.

Applications

Let A denote the multiplication operator in $L_{2}\left(\mathbf{R}_{n}\right)$ by the continuous function $\varphi(k), k^{2}=k_{1}^{2}+\ldots+k_{n}^{2}$, such that $\varphi(k)>0$ almost everywhere and

$$
\int_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))^{2}} d k<\infty
$$

A is a non-negative self-adjoint operator,

Applications

Let A denote the multiplication operator in $L_{2}\left(\mathbf{R}_{n}\right)$ by the continuous function $\varphi(k), k^{2}=k_{1}^{2}+\ldots+k_{n}^{2}$, such that $\varphi(k)>0$ almost everywhere and

$$
\int_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))^{2}} d k<\infty
$$

A is a non-negative self-adjoint operator,

$$
\mathcal{D}(A)=\left\{f: \int_{\mathbf{R}_{n}}|1+\varphi(k)|^{2} \mid f\left(\left.\mathbf{k}\right|^{2} d \mathbf{k}<\infty, f \in L_{2}\left(\mathbf{R}_{n}\right)\right\}\right.
$$

Applications

Let $\hat{\delta}$ denote the unbounded linear functional in $L_{2}\left(\mathbf{R}_{n}\right)$:

$$
\hat{\delta}(f)=\int_{\mathbf{R}_{n}} f(\mathbf{k}) d \mathbf{k} .
$$

Applications

Let $\hat{\delta}$ denote the unbounded linear functional in $L_{2}\left(\mathbf{R}_{n}\right)$:

$$
\hat{\delta}(f)=\int_{\mathbf{R}_{n}} f(\mathbf{k}) d \mathbf{k} .
$$

Note that $\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$.
Let us denote by A_{0} the restriction of A onto linear set

Applications

Let $\hat{\delta}$ denote the unbounded linear functional in $L_{2}\left(\mathbf{R}_{n}\right)$:

$$
\hat{\delta}(f)=\int_{\mathbf{R}_{n}} f(\mathbf{k}) d \mathbf{k} .
$$

Note that $\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$.
Let us denote by A_{0} the restriction of A onto linear set

$$
\mathcal{D}\left(A_{0}\right):=\{f: f \in \mathcal{D}(A), \hat{\delta}(f)=0\} .
$$

Applications

Let $\hat{\delta}$ denote the unbounded linear functional in $L_{2}\left(\mathbf{R}_{n}\right)$:

$$
\hat{\delta}(f)=\int_{\mathbf{R}_{n}} f(\mathbf{k}) d \mathbf{k} .
$$

Note that $\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$.
Let us denote by A_{0} the restriction of A onto linear set

$$
\mathcal{D}\left(A_{0}\right):=\{f: f \in \mathcal{D}(A), \hat{\delta}(f)=0\} .
$$

The closure of $A_{0} \neq A$ and

$$
\mathcal{N}=\left(L_{2}\left(\mathbf{R}_{n}\right) \ominus(I+A) \mathcal{D}_{0}(A)\right)=\left\{\xi \cdot \frac{1}{1+\varphi(k)}, \xi \in \mathbf{C}\right\} .
$$

Proposition.

A is the unique non-negative self-adjoint extension of A_{0} that is A has no non-negative singular perturbations if and only if

Proposition.

A is the unique non-negative self-adjoint extension of A_{0} that is A has no non-negative singular perturbations if and only if

$$
\int_{0}^{\infty} \frac{k^{n-1}}{\varphi(k)(1+\varphi(k))} d k=\infty
$$

Proposition.

A is the unique non-negative self-adjoint extension of A_{0} that is A has no non-negative singular perturbations if and only if

$$
\int_{0}^{\infty} \frac{k^{n-1}}{\varphi(k)(1+\varphi(k))} d k=\infty
$$

and

$$
\int_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))} d k=\infty
$$

Proposition.

A is the unique non-negative self-adjoint extension of A_{0} that is A has no non-negative singular perturbations if and only if

$$
\int_{0}^{\infty} \frac{k^{n-1}}{\varphi(k)(1+\varphi(k))} d k=\infty
$$

and

$$
\int_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))} d k=\infty
$$

Put $\varphi(k)=k^{2}$ and let $n=2$.

Corollary.

The self-adjoint Laplace operator in $L_{2}\left(\mathbf{R}_{2}\right)$ has no non-negative singular perturbations with support at one point of R_{2}.

The non-negative singular perturbations of $-\Delta$ in $L_{2}\left(\mathbf{R}_{2}\right)$ with support at two or more points do exist. Let us consider the restriction A_{0} of the multiplication operator operator by k^{2}, for which the defect subspace \mathcal{N} consists of functions collinear to

$$
e_{0}(\mathbf{k})=\frac{1-\exp \left(-i\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)\right)}{1+k^{2}}, \mathbf{x}_{0} \in \mathbf{R}_{2} .
$$

The non-negative singular perturbations of $-\Delta$ in $L_{2}\left(\mathbf{R}_{2}\right)$ with support at two or more points do exist. Let us consider the restriction A_{0} of the multiplication operator operator by k^{2}, for which the defect subspace \mathcal{N} consists of functions collinear to

$$
e_{0}(\mathbf{k})=\frac{1-\exp \left(-i\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)\right)}{1+k^{2}}, \mathbf{x}_{0} \in \mathbf{R}_{2} .
$$

In this case

$$
\left\|e_{0}\right\|^{2}=\int_{\mathbf{R}_{2}} \frac{4 \sin ^{2} \frac{1}{2}\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)}{\left(1+k^{2}\right)^{2}} d \mathbf{k}<\infty,
$$

The non-negative singular perturbations of $-\Delta$ in $L_{2}\left(\mathbf{R}_{2}\right)$ with support at two or more points do exist. Let us consider the restriction A_{0} of the multiplication operator operator by k^{2}, for which the defect subspace \mathcal{N} consists of functions collinear to

$$
e_{0}(\mathbf{k})=\frac{1-\exp \left(-i\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)\right)}{1+k^{2}}, \mathbf{x}_{0} \in \mathbf{R}_{2} .
$$

In this case

$$
\left((I+A) A^{-1} e_{0}, e_{0}\right)=\int_{\mathbf{R}_{2}} \frac{4 \sin ^{2} \frac{1}{2}\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)}{k^{2}\left(1+k^{2}\right)} d \mathbf{k}<\infty
$$

The non-negative singular perturbations of $-\Delta$ in $L_{2}\left(\mathbf{R}_{2}\right)$ with support at two or more points do exist. Let us consider the restriction A_{0} of the multiplication operator operator by k^{2}, for which the defect subspace \mathcal{N} consists of functions collinear to

$$
e_{0}(\mathbf{k})=\frac{1-\exp \left(-i\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)\right)}{1+k^{2}}, \mathbf{x}_{0} \in \mathbf{R}_{2} .
$$

In this case

$$
\left((I+A) e_{0}, e_{0}\right)=\int_{\mathbf{R}_{2}} \frac{4 \sin ^{2} \frac{1}{2}\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)}{1+k^{2}} d \mathbf{k}=\infty .
$$

The non-negative singular perturbations of $-\Delta$ in $L_{2}\left(\mathbf{R}_{2}\right)$ with support at two or more points do exist. Let us consider the restriction A_{0} of the multiplication operator operator by k^{2}, for which the defect subspace \mathcal{N} consists of functions collinear to

$$
e_{0}(\mathbf{k})=\frac{1-\exp \left(-i\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)\right)}{1+k^{2}}, \mathbf{x}_{0} \in \mathbf{R}_{2}
$$

In this case

$$
\begin{aligned}
\left\|e_{0}\right\|^{2} & =\int_{\mathbf{R}_{2}} \frac{4 \sin ^{2} \frac{1}{2}\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)}{\left(1+k^{2}\right)^{2}} d \mathbf{k}<\infty \\
\left((I+A) A^{-1} e_{0}, e_{0}\right) & =\int_{\mathbf{R}_{2}} \frac{4 \sin ^{2} \frac{1}{2}\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)}{k^{2}\left(1+k^{2}\right)} d \mathbf{k}<\infty, \\
\left((I+A) e_{0}, e_{0}\right) & =\int_{\mathbf{R}_{2}} \frac{4 \sin ^{2} \frac{1}{2}\left(\mathbf{k} \cdot \mathbf{x}_{0}\right)}{1+k^{2}} d \mathbf{k}=\infty .
\end{aligned}
$$

Hence $G_{1}=\left\|e_{0}\right\|^{2} \cdot\left((I+A) e_{0}, e_{0}\right)^{-1}>0$, but $G_{2}=0$.

As follows, the concerned restriction A_{0} of the multiplication operator A by k^{2} has non-negative self-adjoint extensions in $L_{2}\left(\mathbf{R}_{2}\right)$ others then A and A is the maximal element in the set of these extensions.

It remains to note that A is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L_{2}\left(\mathbf{R}_{2}\right)$ and A_{0} is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(\mathbf{x})$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

It remains to note that A is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L_{2}\left(\mathbf{R}_{2}\right)$ and A_{0} is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(\mathbf{x})$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

$$
\lim _{|\mathbf{x}| \rightarrow 0}(\ln |\mathbf{x}|)^{-1} f(\mathbf{x})-\lim _{\left|\mathbf{x}-\mathbf{x}_{0}\right| \rightarrow 0}\left(\ln \left|\mathbf{x}-\mathbf{x}_{0}\right|\right)^{-1} f(\mathbf{x})=0
$$

It remains to note that A is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L_{2}\left(\mathbf{R}_{2}\right)$ and A_{0} is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(\mathbf{x})$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

$$
\begin{aligned}
& \lim _{|\mathbf{x}| \rightarrow 0}(\ln |\mathbf{x}|)^{-1} f(\mathbf{x})-\lim _{\left|\mathbf{x}-\mathbf{x}_{0}\right| \rightarrow 0}\left(\ln \left|\mathbf{x}-\mathbf{x}_{0}\right|\right)^{-1} f(\mathbf{x})=0, \\
& \lim _{|\mathbf{x}| \rightarrow 0}\left[f(\mathbf{x})-\ln |\mathbf{x}| \lim _{\left|\mathbf{x}^{\prime}\right| \rightarrow 0}\left(\ln \left|\mathbf{x}^{\prime}\right|\right)^{-1} f\left(\mathbf{x}^{\prime}\right)\right]- \\
& \lim _{\left|\mathbf{x}-\mathbf{x}_{0}\right| \rightarrow 0}\left[f(\mathbf{x})-\ln \left|\mathbf{x}-\mathbf{x}_{0}\right|_{\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right| \rightarrow 0}\left(\ln \left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|\right)^{-1} f\left(\mathbf{x}^{\prime}\right)\right]=0 .
\end{aligned}
$$

The self-adjoint Laplace operator in $L_{2}\left(\mathbf{R}_{3}\right)$ has infinitely many non-negative singular perturbations with support at one point of \mathbf{R}_{3} and the standardly defined Laplace the maximal element in the set of this perturbation.

Consider the multiplication operator A by k^{21} in $L_{2}\left(\mathbf{R}_{n}\right)$ assuming that $4 I \leq n+1$. A is isomorphic to the polyharmonic operator $(-\Delta)^{\prime}$ in $L_{2}\left(\mathbf{R}_{n}\right)$.

Consider the multiplication operator A by k^{21} in $L_{2}\left(\mathbf{R}_{n}\right)$ assuming that $4 I \leq n+1$. A is isomorphic to the polyharmonic operator $(-\Delta)^{\prime}$ in $L_{2}\left(\mathbf{R}_{n}\right)$.

Let us consider the restriction A_{0} of A with the domain

$$
\mathcal{D}\left(A_{0}\right):=\{f: f \in \mathcal{D}(A), \hat{\delta}(f)=0\} .
$$

that is non-negative symmetric operator which is isomorphic to the restriction of the polyharmonic operator $(-\Delta)^{\prime}$ onto the Sobolev subspace $H_{2 /}^{2}\left(\mathbf{R}_{n} \backslash\{0\}\right)$.

Propositions

Proposition.
21 then there are infinitelyperturbations of $(-\Delta)^{\prime}$ associated with the one-point symmetricrestriction A_{0} and $(-\Delta)^{\prime}$ is the minimal element in the set of thenon-neqative extensions of A_{n} in $H_{n,}^{2},\left(\mathbf{R}_{n}\right.$
Proposition.

Propositions

Proposition.

If $n<2$ l then there are infinitely many non-negative singular perturbations of $(-\Delta)^{\prime}$ associated with the one-point symmetric restriction A_{0} and $(-\Delta)^{\prime}$ is the minimal element in the set of the non-negative extensions of A_{0} in $H_{2 /}^{2}\left(\mathbf{R}_{n} \backslash\{0\}\right)$.

Propositions

Proposition.
If $n=2$ I then $(-\Delta)^{\prime}$ has no such perturbations in $H_{2 /}^{2}\left(\mathbf{R}_{n} \backslash\{0\}\right)$.

[^0]
Propositions

Proposition.

If $n>2$ I then there is the infinite set of non-negative singular perturbations of $(-\Delta)^{\prime}$ associated with A_{0} and for those as non-negative extensions of A_{0} in the set of the in $H_{2 /}^{2}\left(\mathbf{R}_{n} \backslash\{0\}\right)$ the operator $(-\Delta)^{\prime}$ is the maximal element.

Propositions

Proposition.

If $n<2$ I then there are infinitely many non-negative singular perturbations of $(-\Delta)^{\prime}$ associated with the one-point symmetric restriction A_{0} and $(-\Delta)^{\prime}$ is the minimal element in the set of the non-negative extensions of A_{0} in $H_{2 /}^{2}\left(\mathbf{R}_{n} \backslash\{0\}\right)$.

Proposition.

If $n=2$ I then $(-\Delta)^{\prime}$ has no such perturbations in $H_{2 /}^{2}\left(\mathbf{R}_{n} \backslash\{0\}\right)$.

Proposition.

If $n>2$ I then there is the infinite set of non-negative singular perturbations of $(-\Delta)^{\prime}$ associated with A_{0} and for those as non-negative extensions of A_{0} in the set of the in $H_{2 l}^{2}\left(\mathbf{R}_{n} \backslash\{0\}\right)$ the operator $(-\Delta)^{\prime}$ is the maximal element.

[^0]: Proposition.
 If $n>21$ then there is the infinite set of non-negative singular
 \qquad
 \qquad the operator $(-\Delta)^{\prime}$ is the maximal element.

