Non-negative perturbations of non-negative selfadjoint operators

Vadim Adamyan

Department of Theoretical Physics Odessa National University

Berlin, December 14 -17, 2006

We consider

- Laplace operators −∆ in L₂(R₃) and L₂(R₂);
- the restriction Δ⁰ of Δ onto the Sobolev subspaces
 H²₂ (B₁ \ {0});
- self-adjoint extensions Δ_α, α ∈ R of Δ⁰ in L₂(R_i), i = 3, 2.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ク < ? >

We consider

Laplace operators —Δ in L₂(R₃) and L₂(R₂);
 the restriction —Δ⁰ of —Δ onto the Sobolev subspaces H²₂ (R_i \ {0});
 self-adjoint extensions —Δ_α, α ∈ R of —Δ⁰ in L₂(R_i), i = 3, 2.

We consider

- Laplace operators $-\Delta$ in $L_2(\mathbf{R}_3)$ and $L_2(\mathbf{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H_2^2(\mathbf{R}_i \setminus \{0\});$
- self-adjoint extensions $-\Delta_{\alpha}$, $\alpha \in \mathbf{R}$ of $-\Delta^{0}$ in $L_{2}(\mathbf{R}_{i})$, i = 3, 2.

We consider

- Laplace operators $-\Delta$ in $L_2(\mathbf{R}_3)$ and $L_2(\mathbf{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H_2^2(\mathbf{R}_i \setminus \{0\});$
- self-adjoint extensions $-\Delta_{\alpha}$, $\alpha \in \mathbf{R}$ of $-\Delta^{0}$ in $L_{2}(\mathbf{R}_{i})$, i = 3, 2.

(日)

We consider

- Laplace operators $-\Delta$ in $L_2(\mathbf{R}_3)$ and $L_2(\mathbf{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H_2^2(\mathbf{R}_i \setminus \{0\});$
- self-adjoint extensions $-\Delta_{\alpha}$, $\alpha \in \mathbf{R}$ of $-\Delta^{0}$ in $L_{2}(\mathbf{R}_{i})$, i = 3, 2.

We consider

- Laplace operators $-\Delta$ in $L_2(\mathbf{R}_3)$ and $L_2(\mathbf{R}_2)$;
- the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H_2^2(\mathbf{R}_i \setminus \{0\});$
- self-adjoint extensions $-\Delta_{\alpha}$, $\alpha \in \mathbf{R}$ of $-\Delta^{0}$ in $L_{2}(\mathbf{R}_{i})$, i = 3, 2.

Domains of $-\Delta_{\alpha}$:

$$\mathcal{D}_{\alpha}^{(3)} := \left\{ f : f \in H_2^2(\mathbf{R}_3), \lim_{|\mathbf{x}|\downarrow 0} \left[\frac{d}{d|\mathbf{x}|} \left(|\mathbf{x}| f(\mathbf{x}) \right) - \alpha |\mathbf{x}| f(\mathbf{x}) \right] = 0 \right\},$$
$$\mathcal{D}_{\alpha}^{(2)} := \left\{ f : f \in H_2^2(\mathbf{R}_2), \lim_{|\mathbf{x}|\downarrow 0} \left[\left(\frac{2\pi\alpha}{\ln |\mathbf{x}|} + 1 \right) f(\mathbf{x}) - \lim_{|\mathbf{x}'|\downarrow 0} \frac{\ln |\mathbf{x}|}{\ln |\mathbf{x}'|} f(\mathbf{x}') \right] = 0. \right\}$$

Vadim Adamyan Non-negative perturbations . . .

Domains of $-\Delta_{\alpha}$:

$$\mathcal{D}_{\alpha}^{(3)} := \left\{ f: f \in H_2^2(\mathbf{R}_3), \lim_{|\mathbf{x}|\downarrow 0} \left[\frac{d}{d|\mathbf{x}|} \left(|\mathbf{x}| f(\mathbf{x}) \right) - \alpha |\mathbf{x}| f(\mathbf{x}) \right] = 0 \right\},$$
$$\mathcal{D}_{\alpha}^{(2)} := \left\{ f: f \in H_2^2(\mathbf{R}_2), \lim_{|\mathbf{x}|\downarrow 0} \left[\left(\frac{2\pi\alpha}{\ln|\mathbf{x}|} + 1 \right) f(\mathbf{x}) - \lim_{|\mathbf{x}'|\downarrow 0} \frac{\ln|\mathbf{x}|}{\ln|\mathbf{x}'|} f(\mathbf{x}') \right] = 0. \right\}$$

Vadim Adamyan Non-negative perturbations . . .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Domains of $-\Delta_{\alpha}$:

$$\mathcal{D}_{\alpha}^{(3)} := \left\{ f: f \in \mathcal{H}_{2}^{2}\left(\mathbf{R}_{3}\right), \lim_{|\mathbf{x}|\downarrow 0} \left[\frac{d}{d|\mathbf{x}|}\left(|\mathbf{x}|f(\mathbf{x})\right) - \alpha|\mathbf{x}|f(\mathbf{x})\right] = 0 \right\},$$
$$\mathcal{D}_{\alpha}^{(2)} := \left\{ f: f \in \mathcal{H}_{2}^{2}\left(\mathbf{R}_{2}\right), \lim_{|\mathbf{x}|\downarrow 0} \left[\left(\frac{2\pi\alpha}{\ln|\mathbf{x}|} + 1\right)f(\mathbf{x}) - \lim_{|\mathbf{x}'|\downarrow 0} \frac{\ln|\mathbf{x}|}{\ln|\mathbf{x}'|}f(\mathbf{x}')\right] = 0. \right\}$$

Vadim Adamyan Non-negative perturbations . . .

Resolvent kernels (Green functions):

$$G_{\alpha,z}^{(2)}(\mathbf{x},\mathbf{x}') = \begin{cases} G_{z}^{(0)}(\mathbf{x},\mathbf{x}') + \frac{2\pi}{2\pi\alpha - \psi(1) + \ln\left(\frac{\sqrt{z}}{2i}\right)} G_{z}^{(0)}(\mathbf{x},0) G_{z}^{(0)}(0,\mathbf{x}'), \\ \\ G_{z}^{(0)}(\mathbf{x},\mathbf{x}') = (\frac{i}{4}) H_{0}^{(1)}(i\sqrt{z}|\mathbf{x}-\mathbf{x}'|). \end{cases}$$

Resolvent kernels (Green functions):

$$G_{\alpha,z}^{(3)}(\mathbf{x},\mathbf{x}') = egin{cases} G_Z^{(0)}(\mathbf{x},\mathbf{x}') + rac{1}{lpha - i\sqrt{z}/4\pi} \, G_Z^{(0)}(\mathbf{x},0) G_Z^{(0)}(0,\mathbf{x}')\,, \ G_Z^{(0)}(\mathbf{x},\mathbf{x}') = rac{\exp i\sqrt{z}|\mathbf{x}-\mathbf{x}'|}{4\pi|\mathbf{x}-\mathbf{x}'|}\,. \end{cases}$$

$$G_{\alpha,z}^{(2)}(\mathbf{x},\mathbf{x}') = \begin{cases} G_{z}^{(0)}(\mathbf{x},\mathbf{x}') + \frac{2\pi}{2\pi\alpha - \psi(1) + \ln\left(\frac{\sqrt{z}}{2i}\right)} G_{z}^{(0)}(\mathbf{x},0) G_{z}^{(0)}(0,\mathbf{x}'), \\ \\ G_{z}^{(0)}(\mathbf{x},\mathbf{x}') = (\frac{i}{4}) H_{0}^{(1)}(i\sqrt{z}|\mathbf{x}-\mathbf{x}'|). \end{cases}$$

Resolvent kernels (Green functions):

$$G_{\alpha,z}^{(3)}(\mathbf{x},\mathbf{x}') = egin{cases} G_{z}^{(0)}(\mathbf{x},\mathbf{x}') + rac{1}{lpha - i\sqrt{z}/4\pi} \ G_{z}^{(0)}(\mathbf{x},0) G_{z}^{(0)}(0,\mathbf{x}') \,, \ G_{z}^{(0)}(\mathbf{x},\mathbf{x}') = rac{\exp{i\sqrt{z}|\mathbf{x}-\mathbf{x}'|}}{4\pi|\mathbf{x}-\mathbf{x}'|} \,. \end{cases}$$

$$G_{\alpha,z}^{(2)}(\mathbf{x},\mathbf{x}') = \begin{cases} G_{z}^{(0)}(\mathbf{x},\mathbf{x}') + \frac{2\pi}{2\pi\alpha - \psi(1) + \ln\left(\frac{\sqrt{z}}{2i}\right)} G_{z}^{(0)}(\mathbf{x},0) G_{z}^{(0)}(0,\mathbf{x}'), \\ \\ G_{z}^{(0)}(\mathbf{x},\mathbf{x}') = (\frac{i}{4}) H_{0}^{(1)}(i\sqrt{z}|\mathbf{x}-\mathbf{x}'|). \end{cases}$$

All singular perturbations $-\Delta_{\alpha}$ of the Laplace operator in two dimensions have one negative eigenvalue or the standardly defined Laplace operator $-\Delta$ is the unique non-negative self-adjoint extension in $L_2(\mathbf{R}_2)$ of the symmetric operator $-\Delta^0$.

(日)

Problem motivation and definition: Question

Question

Why in some cases the Friedrichs extension is the unique non-negative extension of given non-negative symmetric operator?

Vadim Adamyan Non-negative perturbations . . .

-2

Problem motivation and definition: Question

Question

Why in some cases the Friedrichs extension is the unique non-negative extension of given non-negative symmetric operator?

Vadim Adamyan Non-negative perturbations . . .

A ≥ 0 - self-adjoint operator in the Hilbert space H
 A⁽⁰⁾ be a densely defined closed restriction of A onto D(A⁽⁰⁾) ⊂ D(A) of A.

Put

$$\mathcal{M} := (I + A^{(0))} \mathcal{D}(A^{(0)}) \neq \mathcal{H},$$
$$\mathcal{N} := \mathcal{H} \ominus \mathcal{M}.$$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).

-31

• $A \ge 0$ - self-adjoint operator in the Hilbert space \mathcal{H}

• $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

Put

$$\mathcal{M} := (I + A^{(0))} \mathcal{D}(A^{(0)}) \neq \mathcal{H},$$
$$\mathcal{N} := \mathcal{H} \ominus \mathcal{M}.$$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).

(ロ) (四) (日) (日) (日) (日)

A ≥ 0 - self-adjoint operator in the Hilbert space *H* A⁽⁰⁾ be a densely defined closed restriction of A onto D(A⁽⁰⁾) ⊂ D(A) of A.

Put

$$\begin{aligned} \mathcal{M} &:= (I + A^{(0))} \mathcal{D}(A^{(0)}) \neq \mathcal{H}, \\ \mathcal{N} &:= \mathcal{H} \ominus \mathcal{M}. \end{aligned}$$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).

・ロ・ ・ 四・ ・ 回・ ・ 日・

-2

- $A \ge 0$ self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

$$\begin{aligned} \mathcal{M} &:= (I + A^{(0))} \mathcal{D}(A^{(0)}) \neq \mathcal{H}, \\ \mathcal{N} &:= \mathcal{H} \ominus \mathcal{M}. \end{aligned}$$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).

- $A \ge 0$ self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

$$\mathcal{M} := (I + A^{(0))} \mathcal{D}(A^{(0)}) \neq \mathcal{H},$$

 $\mathcal{N} := \mathcal{H} \ominus \mathcal{M}.$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).

- $A \ge 0$ self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

$$\mathcal{M} := (I + A^{(0))} \mathcal{D}(A^{(0)}) \neq \mathcal{H}, \ \mathcal{N} := \mathcal{H} \ominus \mathcal{M}.$$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A singular perturbations of A (associated with A_0).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $A \ge 0$ self-adjoint operator in the Hilbert space \mathcal{H}
- $A^{(0)}$ be a densely defined closed restriction of A onto $\mathcal{D}(A^{(0)}) \subset \mathcal{D}(A)$ of A.

$$\mathcal{M} := (I + \mathcal{A}^{(0))} \mathcal{D}(\mathcal{A}^{(0)})
eq \mathcal{H}, \ \mathcal{N} := \mathcal{H} \ominus \mathcal{M}.$$

We call all self-adjoiont extensions of $A^{(0)}$ in \mathcal{H} other than A *singular perturbations* of A (associated with A_0).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{cases} f = (I + A^{(0)}) x, \\ K_0 f = \mathcal{A}^{(0)} x, x \in \mathcal{D}(A^{(0)}). \end{cases}$$

 A_1 is a non-negative self-adjoint extension of A_0 in \mathcal{H} iff $K_1 := A_1 (A_1 + I)^{-1}$ is a non-negative contractive extension of K_0 from \mathcal{M} onto \mathcal{H} , $K_1 f = K_0 f$, $f \in \mathcal{M}$, $1 \subseteq \sigma(K_1)$.

 A_0 has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_0 admits only one non-negative contractive extension onto the whole \mathcal{H} , no eigenvalue of which = 1, that is $K := A(I + A)^{-1}$.

The uniqueness of A as non-negative extension of A_0 is equivalent to uniqueness of K as non-negative contractive extension of K_0 .

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

$$\begin{cases} f = (I + A^{(0)}) x, \\ K_0 f = \mathcal{A}^{(0)} x, x \in \mathcal{D}(A^{(0)}). \end{cases}$$

 A_1 is a non-negative self-adjoint extension of A_0 in \mathcal{H} iff $K_1 := A_1 (A_1 + I)^{-1}$ is a non-negative contractive extension of K_0 from \mathcal{M} onto \mathcal{H} , $K_1 f = K_0 f$, $f \in \mathcal{M}$, $1 \subseteq \sigma(K_1)$.

 A_0 has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_0 admits only one non-negative contractive extension onto the whole \mathcal{H} , no eigenvalue of which = 1, that is $K := A(I + A)^{-1}$.

The uniqueness of A as non-negative extension of A_0 is equivalent to uniqueness of K as non-negative contractive extension of K_0 .

・ロ・ ・ 四・ ・ 回・ ・ 回・

$$\left(\begin{array}{c}f=\left(I+\mathcal{A}^{(0)}\right)x,\\ K_0f=\mathcal{A}^{(0)}x,\ x\in\mathcal{D}(\mathcal{A}^{(0)}).\end{array}\right)$$

 A_1 is a non-negative self-adjoint extension of A_0 in \mathcal{H} iff $K_1 := A_1 (A_1 + I)^{-1}$ is a non-negative contractive extension of K_0 from \mathcal{M} onto \mathcal{H} , $K_1 f = K_0 f$, $f \in \mathcal{M}$, $1 \subseteq \sigma(K_1)$.

 A_0 has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_0 admits only one non-negative contractive extension onto the whole \mathcal{H} , no eigenvalue of which = 1, that is $K := A(I + A)^{-1}$.

The uniqueness of A as non-negative extension of A_0 is equivalent to uniqueness of K as non-negative contractive extension of K_0 .

$$\left(\begin{array}{c}f=\left(I+\mathcal{A}^{(0)}\right)x,\\ K_0f=\mathcal{A}^{(0)}x,\ x\in\mathcal{D}(\mathcal{A}^{(0)}).\end{array}\right)$$

 A_1 is a non-negative self-adjoint extension of A_0 in \mathcal{H} iff $K_1 := A_1 (A_1 + I)^{-1}$ is a non-negative contractive extension of K_0 from \mathcal{M} onto \mathcal{H} , $K_1 f = K_0 f$, $f \in \mathcal{M}$, $1 \subseteq \sigma(K_1)$.

 A_0 has unique non-negative self-adjoint extension in \mathcal{H} if and only if K_0 admits only one non-negative contractive extension onto the whole \mathcal{H} , no eigenvalue of which = 1, that is $K := A(I + A)^{-1}$.

The uniqueness of *A* as non-negative extension of A_0 is equivalent to uniqueness of *K* as non-negative contractive extension of K_0 .

- **G** the set consisting of *A* and all its non-negative singular perturbations;
- **C** denote the set of non-negative contractions obtained from **G** by transformation $A_1 \rightarrow A_1 (A_1 + I)^{-1}$, $A_1 \in \mathbf{G}$;
- $P_{\mathcal{M}}$ the orthogonal projector onto \mathcal{M} in \mathcal{H}
- $P_{\mathcal{N}} = I P_{\mathcal{M}}$.

(日)

- **G** the set consisting of *A* and all its non-negative singular perturbations;
- C denote the set of non-negative contractions obtained from G by transformation A₁ → A₁ (A₁ + I)⁻¹, A₁ ∈ G;
- $P_{\mathcal{M}}$ the orthogonal projector onto \mathcal{M} in \mathcal{H}
- $P_{\mathcal{N}} = I P_{\mathcal{M}}$.

- **G** the set consisting of *A* and all its non-negative singular perturbations;
- C denote the set of non-negative contractions obtained from G by transformation A₁ → A₁ (A₁ + I)⁻¹, A₁ ∈ G;
- $P_{\mathcal{M}}$ the orthogonal projector onto \mathcal{M} in \mathcal{H}
- $P_{\mathcal{N}} = I P_{\mathcal{M}}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- **G** the set consisting of *A* and all its non-negative singular perturbations;
- C denote the set of non-negative contractions obtained from G by transformation A₁ → A₁ (A₁ + I)⁻¹, A₁ ∈ G;
- $P_{\mathcal{M}}$ the orthogonal projector onto \mathcal{M} in \mathcal{H}

Vadim Adamyan Non-negative perturbations . . .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- **G** the set consisting of *A* and all its non-negative singular perturbations;
- C denote the set of non-negative contractions obtained from G by transformation A₁ → A₁ (A₁ + I)⁻¹, A₁ ∈ G;
- $P_{\mathcal{M}}$ the orthogonal projector onto \mathcal{M} in \mathcal{H}

•
$$P_{\mathcal{N}} = I - P_{\mathcal{M}}$$
.

With respect to the representation $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ each $K_X \in \mathbf{C}$ can be represented as

$$\mathcal{K}_{\mathcal{X}} = \left(egin{array}{cc} \mathcal{T} & \Gamma^* \ \Gamma & \mathcal{X} \end{array}
ight)$$

Here

$$T = P_{\mathcal{M}}K_0|_{\mathcal{M}},$$

$$\Gamma = P_{\mathcal{M}}K_0|_{\mathcal{M}}.$$

X is a non-negative contraction in \mathcal{N} distinguishing elements from **C**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Since each $K_X \in \mathbf{C}$ is non-negative and contractive then

$$T \ge 0; \quad I \ge T^2 + \Gamma^* \Gamma$$

 $K_X \in \mathbf{C}$ is equivalent to

$$K_X + \varepsilon I \ge 0;$$

 $(1 + \varepsilon)I - K_X \ge 0 \ \varepsilon > 0.$

Vadim Adamyan Non-negative perturbations . . .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

By the Schur -Frobenius factorization formula:

$\begin{pmatrix} I & 0 \\ \Gamma(T+\varepsilon)^{-1} & I \end{pmatrix} \times \\ \begin{pmatrix} T+\varepsilon & 0 \\ 0 & X+\varepsilon - \Gamma(T+\varepsilon)^{-1}\Gamma^* \end{pmatrix} \times \\ \begin{pmatrix} I & (T+\varepsilon)^{-1}\Gamma^* \\ 0 & I \end{pmatrix} \ge 0$

Vadim Adamyan Non-negative perturbations . . .

(日)

By the Schur -Frobenius factorization formula:

$$\begin{pmatrix} I & 0\\ \Gamma(T+\varepsilon)^{-1} & I \end{pmatrix} \times \begin{pmatrix} T+\varepsilon & 0\\ 0 & X+\varepsilon - \Gamma(T+\varepsilon)^{-1}\Gamma^* \end{pmatrix} \times \begin{pmatrix} I & (T+\varepsilon)^{-1}\Gamma^*\\ 0 & I \end{pmatrix} \ge 0$$

Vadim Adamyan Non-negative perturbations . . .

$$\begin{pmatrix} I & 0 \\ \Gamma(T+\varepsilon)^{-1} & I \end{pmatrix} \times \\ \begin{pmatrix} T+\varepsilon & 0 \\ 0 & X+\varepsilon - \Gamma(T+\varepsilon)^{-1}\Gamma^* \end{pmatrix} \times \\ \begin{pmatrix} I & (T+\varepsilon)^{-1}\Gamma^* \\ 0 & I \end{pmatrix} \ge 0$$

Vadim Adamyan Non-negative perturbations . . .

$$\begin{pmatrix} I & 0 \\ \Gamma(T+\varepsilon)^{-1} & I \end{pmatrix} \times \\ \begin{pmatrix} T+\varepsilon & 0 \\ 0 & X+\varepsilon - \Gamma(T+\varepsilon)^{-1}\Gamma^* \end{pmatrix} \times \\ \begin{pmatrix} I & (T+\varepsilon)^{-1}\Gamma^* \\ 0 & I \end{pmatrix} \ge 0$$

Vadim Adamyan Non-negative perturbations . . .

Vadim Adamyan Non-negative perturbations . . .

$$\begin{pmatrix} I & 0 \\ -\Gamma(I+\varepsilon-T)^{-1} & I \end{pmatrix} \times \begin{pmatrix} 1+\varepsilon-T & 0 \\ 0 & 1+\varepsilon-X-\Gamma(1+\varepsilon-T)^{-1}\Gamma^* \end{pmatrix} \times \begin{pmatrix} I & -(1+\varepsilon-T)^{-1}\Gamma^* \\ 0 & I \end{pmatrix} \ge 0$$

Vadim Adamyan Non-negative perturbations . . .

$$\begin{pmatrix} I & 0 \\ -\Gamma(I+\varepsilon-T)^{-1} & I \end{pmatrix} \times \\ \begin{pmatrix} 1+\varepsilon-T & 0 \\ 0 & 1+\varepsilon-X-\Gamma(1+\varepsilon-T)^{-1}\Gamma^* \end{pmatrix} \times \\ \begin{pmatrix} I & -(1+\varepsilon-T)^{-1}\Gamma^* \\ 0 & I \end{pmatrix} \ge 0$$

Vadim Adamyan Non-negative perturbations . . .

$$\begin{pmatrix} I & 0 \\ -\Gamma(I+\varepsilon-T)^{-1} & I \end{pmatrix} \times \\ \begin{pmatrix} 1+\varepsilon-T & 0 \\ 0 & 1+\varepsilon-X-\Gamma(1+\varepsilon-T)^{-1}\Gamma^* \end{pmatrix} \times \\ \begin{pmatrix} I & -(1+\varepsilon-T)^{-1}\Gamma^* \\ 0 & I \end{pmatrix} \ge 0$$

Vadim Adamyan Non-negative perturbations . . .

Since $T \ge 0$ and $I - T \ge 0$ the above inequalities are reduced to

$$\begin{cases} X + \varepsilon I - \Gamma(T + \varepsilon I)^{-1} \Gamma^* \ge 0, \\ (1 + \varepsilon)I - X - \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \ge 0, \ \varepsilon > 0. \end{cases}$$

Setting

$$Y := X - \lim_{\varepsilon \downarrow 0} \Gamma(T + \varepsilon I)^{-1} \Gamma^*$$

we conclude that $K_X \in \mathbf{C}$ if and only if

$$0 \leq Y \leq I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Since $T \ge 0$ and $I - T \ge 0$ the above inequalities are reduced to

$$\begin{cases} X + \varepsilon I - \Gamma(T + \varepsilon I)^{-1} \Gamma^* \ge 0, \\ (1 + \varepsilon)I - X - \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \ge 0, \ \varepsilon > 0. \end{cases}$$

Setting

$$Y := X - \lim_{\varepsilon \downarrow 0} \Gamma(T + \varepsilon I)^{-1} \Gamma^*$$

we conclude that $K_X \in \mathbf{C}$ if and only if

 $0 \leq Y \leq I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right).$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Since $T \ge 0$ and $I - T \ge 0$ the above inequalities are reduced to

$$\begin{cases} X + \varepsilon I - \Gamma(T + \varepsilon I)^{-1} \Gamma^* \ge 0, \\ (1 + \varepsilon)I - X - \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \ge 0, \ \varepsilon > 0. \end{cases}$$

Setting

$$Y := X - \lim_{\varepsilon \downarrow 0} \Gamma(T + \varepsilon I)^{-1} \Gamma^*$$

we conclude that $K_X \in \mathbf{C}$ if and only if

$$0 \leq Y \leq I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Hence

$$I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right) = 0$$

is the criterium that there are no contractive non-negative extension of K_0 in \mathcal{H} other than K.

To express this criterium in terms of given K and A we use the following proposition.

Vadim Adamyan Non-negative perturbations . . .

・ロ・ ・ 四・ ・ 回・ ・ 日・

-12

Hence

$$I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right) = 0$$

is the criterium that there are no contractive non-negative extension of K_0 in \mathcal{H} other than K.

To express this criterium in terms of given K and A we use the following proposition.

Vadim Adamyan Non-negative perturbations . . .

Hence

$$I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right) = 0$$

is the criterium that there are no contractive non-negative extension of K_0 in \mathcal{H} other than K.

To express this criterium in terms of given K and A we use the following proposition.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2 × 2 block operator matrix,

$$L = \left(\begin{array}{cc} R & U \\ V & S \end{array}\right),$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N} , respectively, and U, V act between \mathcal{M} and \mathcal{N} . If R is invertible operator in \mathcal{M} ,then

$$\begin{pmatrix} R^{-1} & 0\\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1} P_{\mathcal{N}} \Lambda^{-1} P_{\mathcal{N}} L^{-1} ,$$

$$\Lambda = P_{\mathcal{N}}L^{-1}|_{\mathcal{N}}$$

Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2 × 2 block operator matrix,

$$L = \left(\begin{array}{cc} R & U \\ V & S \end{array}\right),$$

where R and S are invertible operators in M and N, respectively, and U, V act between M and N.

If R is invertible operator in M, then

$$\begin{pmatrix} R^{-1} & 0 \\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1} P_{\mathcal{N}} \Lambda^{-1} P_{\mathcal{N}} L^{-1} ,$$

$$\Lambda = P_{\mathcal{N}}L^{-1}|_{\mathcal{N}}.$$

Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2 × 2 block operator matrix,

$$L = \left(\begin{array}{cc} R & U \\ V & S \end{array}\right),$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N} , respectively, and U, V act between \mathcal{M} and \mathcal{N} . If R is invertible operator in \mathcal{M} , then

$$\begin{pmatrix} R^{-1} & 0\\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1} P_{\mathcal{N}} \Lambda^{-1} P_{\mathcal{N}} L^{-1} ,$$
$$\Lambda = P_{\mathcal{N}} L^{-1} |_{\mathcal{N}} .$$

Proposition.

Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2 × 2 block operator matrix,

$$L = \left(\begin{array}{cc} R & U \\ V & S \end{array}\right),$$

where R and S are invertible operators in \mathcal{M} and \mathcal{N} , respectively, and U, V act between \mathcal{M} and \mathcal{N} . If R is invertible operator in \mathcal{M} ,then

$$\begin{pmatrix} R^{-1} & 0\\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1} P_{\mathcal{N}} \Lambda^{-1} P_{\mathcal{N}} L^{-1} ,$$
$$\Lambda = P_{\mathcal{N}} L^{-1} |_{\mathcal{N}} .$$

$$\Lambda_{1,\varepsilon} = P_{\mathcal{N}}(K + \varepsilon I)^{-1}|_{\mathcal{N}}$$
$$\Lambda_{2,\varepsilon} = P_{\mathcal{N}}[(1 + \varepsilon)I - K]^{-1}|_{\mathcal{N}}.$$

Applying the above Proposition with $L = K + \varepsilon I$ and

$$R = T + \varepsilon I,$$

$$U = \Gamma^* = P_{\mathcal{M}}K|_{\mathcal{N}} = P_{\mathcal{M}}[K + \varepsilon I]|_{\mathcal{N}},$$

$$V = \Gamma = P_{\mathcal{N}}K|_{\mathcal{M}} = P_{\mathcal{N}}[K + \varepsilon I]|_{\mathcal{M}},$$

$$S = P_{\mathcal{N}}K|_{\mathcal{N}} + \varepsilon I$$

yields

$$\Gamma(T+\varepsilon I)^{-1}\Gamma^* = P_{\mathcal{N}}K|_{\mathcal{N}} + \varepsilon I - \Lambda_{1,\varepsilon}^{-1}.$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$\begin{split} \Lambda_{1,\varepsilon} = & P_{\mathcal{N}}(K + \varepsilon I)^{-1}|_{\mathcal{N}} \\ \Lambda_{2,\varepsilon} = & P_{\mathcal{N}}[(1 + \varepsilon)I - K]^{-1}|_{\mathcal{N}}. \end{split}$$

Applying the above Proposition with $L = K + \varepsilon I$ and

$$\begin{aligned} R &= T + \varepsilon I, \\ U &= \Gamma^* = P_{\mathcal{M}} K|_{\mathcal{N}} = P_{\mathcal{M}} [K + \varepsilon I]|_{\mathcal{N}}, \\ V &= \Gamma = P_{\mathcal{N}} K|_{\mathcal{M}} = P_{\mathcal{N}} [K + \varepsilon I]|_{\mathcal{M}}, \\ S &= P_{\mathcal{N}} K|_{\mathcal{N}} + \varepsilon I \end{aligned}$$

yields

$$\Gamma(T+\varepsilon I)^{-1}\Gamma^* = P_{\mathcal{N}}K|_{\mathcal{N}} + \varepsilon I - \Lambda_{1,\varepsilon}^{-1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

$$\begin{split} \Lambda_{1,\varepsilon} = & P_{\mathcal{N}}(K + \varepsilon I)^{-1}|_{\mathcal{N}} \\ \Lambda_{2,\varepsilon} = & P_{\mathcal{N}}[(1 + \varepsilon)I - K]^{-1}|_{\mathcal{N}}. \end{split}$$

Applying the above Proposition with $L = K + \varepsilon I$ and

$$\begin{split} & \boldsymbol{R} = \boldsymbol{T} + \varepsilon \boldsymbol{I}, \\ & \boldsymbol{U} = \boldsymbol{\Gamma}^* = \boldsymbol{P}_{\mathcal{M}} \boldsymbol{K}|_{\mathcal{N}} = \boldsymbol{P}_{\mathcal{M}} [\boldsymbol{K} + \varepsilon \boldsymbol{I}]|_{\mathcal{N}}, \\ & \boldsymbol{V} = \boldsymbol{\Gamma} = \boldsymbol{P}_{\mathcal{N}} \boldsymbol{K}|_{\mathcal{M}} = \boldsymbol{P}_{\mathcal{N}} [\boldsymbol{K} + \varepsilon \boldsymbol{I}]|_{\mathcal{M}}, \\ & \boldsymbol{S} = \boldsymbol{P}_{\mathcal{N}} \boldsymbol{K}|_{\mathcal{N}} + \varepsilon \boldsymbol{I} \end{split}$$

yields

$$\Gamma(T + \varepsilon I)^{-1}\Gamma^* = P_{\mathcal{N}}K|_{\mathcal{N}} + \varepsilon I - \Lambda_{1,\varepsilon}^{-1}.$$

In the same fashion we get

$$\Gamma[(1+\varepsilon)I-T]^{-1}\Gamma^* = P_{\mathcal{N}}[I-K]|_{\mathcal{N}} + \varepsilon I - \Lambda_{2,\varepsilon}^{-1}.$$

Hence

$$I - \lim_{\varepsilon \downarrow 0} \left(\Gamma(T + \varepsilon I)^{-1} \Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1} \Gamma^* \right) = \lim_{\varepsilon \downarrow 0} \Lambda_{1,\varepsilon}^{-1} + \lim_{\varepsilon \downarrow 0} \Lambda_{2,\varepsilon}^{-1}.$$

Vadim Adamyan Non-negative perturbations . . .

In the same fashion we get

$$\Gamma[(1+\varepsilon)I-T]^{-1}\Gamma^* = P_{\mathcal{N}}[I-K]|_{\mathcal{N}} + \varepsilon I - \Lambda_{2,\varepsilon}^{-1}.$$

Hence

$$I-\lim_{\varepsilon\downarrow 0} \left(\Gamma(T+\varepsilon I)^{-1}\Gamma^* + \Gamma[(1+\varepsilon)I-T]^{-1}\Gamma^* \right) = \lim_{\varepsilon\downarrow 0} \Lambda_{1,\varepsilon}^{-1} + \lim_{\varepsilon\downarrow 0} \Lambda_{2,\varepsilon}^{-1}.$$

Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$, K_0 is the restriction of K onto the subspace $\mathcal{M}(= \mathcal{M} \oplus \{0\})$ and

$$G_{1} = \lim_{\varepsilon \downarrow 0} \left(P_{\mathcal{N}} [K + \varepsilon I]|_{\mathcal{N}} \right)^{-1}$$
$$G_{2} = \lim_{\varepsilon \downarrow 0} \left(P_{\mathcal{N}} [I - K + \varepsilon I]|_{\mathcal{N}} \right)^{-1}$$

Then the set **C** of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$K_X = \begin{pmatrix} P_{\mathcal{M}} K|_{\mathcal{M}} & P_{\mathcal{M}} K|_{\mathcal{N}} \\ P_{\mathcal{M}} K|_{\mathcal{N}} & X \end{pmatrix}, \tag{1}$$

where X runs the set of all non-negative contractions in ${\cal N}$ satisfying inequalities

$$P_{\mathcal{N}}K|_{\mathcal{N}} - G_1 \le X \le P_{\mathcal{N}}K|_{\mathcal{N}} + G_2.$$
(2)

-2

Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$, K_0 is the restriction of K onto the subspace $\mathcal{M}(= \mathcal{M} \oplus \{0\})$ and

$$G_{1} = \lim_{\varepsilon \downarrow 0} \left(P_{\mathcal{N}} [K + \varepsilon I]|_{\mathcal{N}} \right)^{-1}$$
$$G_{2} = \lim_{\varepsilon \downarrow 0} \left(P_{\mathcal{N}} [I - K + \varepsilon I]|_{\mathcal{N}} \right)^{-1}$$

Then the set **C** of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$\mathcal{K}_{X} = \begin{pmatrix} P_{\mathcal{M}} \mathcal{K}|_{\mathcal{M}} & P_{\mathcal{M}} \mathcal{K}|_{\mathcal{N}} \\ P_{\mathcal{M}} \mathcal{K}|_{\mathcal{N}} & X \end{pmatrix}, \tag{1}$$

where X runs the set of all non-negative contractions in ${\cal N}$ satisfying inequalities

$$P_{\mathcal{N}}K|_{\mathcal{N}} - G_1 \le X \le P_{\mathcal{N}}K|_{\mathcal{N}} + G_2.$$

-2

Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$, K_0 is the restriction of K onto the subspace $\mathcal{M}(= \mathcal{M} \oplus \{0\})$ and

$$G_{1} = \lim_{\varepsilon \downarrow 0} \left(P_{\mathcal{N}} [K + \varepsilon I]|_{\mathcal{N}} \right)^{-1}$$
$$G_{2} = \lim_{\varepsilon \downarrow 0} \left(P_{\mathcal{N}} [I - K + \varepsilon I]|_{\mathcal{N}} \right)^{-1}$$

Then the set **C** of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$\mathcal{K}_{X} = \begin{pmatrix} P_{\mathcal{M}} \mathcal{K}|_{\mathcal{M}} & P_{\mathcal{M}} \mathcal{K}|_{\mathcal{N}} \\ P_{\mathcal{M}} \mathcal{K}|_{\mathcal{N}} & X \end{pmatrix}, \tag{1}$$

where X runs the set of all non-negative contractions in $\ensuremath{\mathcal{N}}$ satisfying inequalities

$$P_{\mathcal{N}}K|_{\mathcal{N}}-G_1 \leq X \leq P_{\mathcal{N}}K|_{\mathcal{N}}+G_2. \tag{2}$$

-2

Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$, K_0 is the restriction of K onto the subspace $\mathcal{M}(= \mathcal{M} \oplus \{0\})$ and

$$G_{1} = \lim_{\varepsilon \downarrow 0} (P_{\mathcal{N}}[K + \varepsilon I]|_{\mathcal{N}})^{-1}$$
$$G_{2} = \lim_{\varepsilon \downarrow 0} (P_{\mathcal{N}}[I - K + \varepsilon I]|_{\mathcal{N}})^{-1}$$

Then the set **C** of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$K_{X} = \begin{pmatrix} P_{\mathcal{M}}K|_{\mathcal{M}} & P_{\mathcal{M}}K|_{\mathcal{N}} \\ P_{\mathcal{M}}K|_{\mathcal{N}} & X \end{pmatrix},$$
(1)

where X runs the set of all non-negative contractions in $\ensuremath{\mathcal{N}}$ satisfying inequalities

$$P_{\mathcal{N}}K|_{\mathcal{N}} - G_1 \le X \le P_{\mathcal{N}}K|_{\mathcal{N}} + G_2. \tag{2}$$

-2

Remark.

The set of all non-negative singular perturbations of A contains the minimal perturbation A_{μ} with and the maximal perturbation A_M such that any non-negative perturbation A_1 satisfies inequalities $A_{\mu} \leq A_1 \leq A_M$. The corresponding values of parameters X in the above theorem are

$$\begin{aligned} X_{\mu} &= I|_{\mathcal{N}} + P_{\mathcal{N}}[I+A]^{-1}|_{\mathcal{N}} - G_1\\ X_{M} &= I|_{\mathcal{N}} + P_{\mathcal{N}}[I+A]^{-1}|_{\mathcal{N}} + G_2 \end{aligned}$$

If $G_1 = 0$ ($G_2 = 0$), then the minimal (maximal) perturbation coincides with A.

The set of resolvents of all non-negative singular perturbations A_Y of A is described by the M.G. Krein formula

$$(A_Y - zI)^{-1} = (A - zI)^{-1} - (A + I)(A - zI)^{-1}P_{\mathcal{N}}Y \times \left[I + (1 + z)P_{\mathcal{N}}(A + I)(A - zI)^{-1}Y\right]^{-1} \times P_{\mathcal{N}}(A + I)(A - zI)^{-1},$$

where Y runs contractions in \mathcal{N} satisfying inequalities $-G_1 \leq Y \leq G_2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let *A* denote the multiplication operator in $L_2(\mathbf{R}_n)$ by the continuous function $\varphi(k)$, $k^2 = k_1^2 + ... + k_n^2$, such that $\varphi(k) > 0$ almost everywhere and

$$\int\limits_{0}^{\infty}rac{k^{n-1}}{(1+arphi(k))^2}\,dk<\infty.$$

A is a non-negative self-adjoint operator,

$$\mathcal{D}(\boldsymbol{A}) = \left\{ f: \int_{\mathbf{R}_n} |1 + \varphi(\boldsymbol{k})|^2 |f(\mathbf{k})|^2 d\mathbf{k} < \infty, \ f \in L_2(\mathbf{R}_n) \right\}$$

Let *A* denote the multiplication operator in $L_2(\mathbf{R}_n)$ by the continuous function $\varphi(k)$, $k^2 = k_1^2 + ... + k_n^2$, such that $\varphi(k) > 0$ almost everywhere and

$$\int\limits_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))^2} \, dk < \infty.$$

A is a non-negative self-adjoint operator,

$$\mathcal{D}(\boldsymbol{A}) = \left\{ f: \; \int_{\mathbf{R}_n} |1 + arphi(k)|^2 |f(\mathbf{k})|^2 d\mathbf{k} < \infty, \; f \in L_2(\mathbf{R}_n)
ight\} \,.$$

Let $\hat{\delta}$ denote the unbounded linear functional in $L_2(\mathbf{R}_n)$:

$$\hat{\delta}(f) = \int_{\mathbf{R}_n} f(\mathbf{k}) d\mathbf{k}.$$

Note that
$$\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$$
.

Let us denote by A_0 the restriction of A onto linear set

$$\mathcal{D}(A_0) := \left\{ f : f \in \mathcal{D}(A), \ \hat{\delta}(f) = 0 \right\}.$$

The closure of $A_0 \neq A$ and

$\mathcal{N} = (L_2(\mathbf{R}_n) \ominus (I + A)\mathcal{D}_0(A)) = \left\{ \xi \cdot \frac{1}{1 + \omega(k)}, \ \xi \in \mathbf{C} \right\}$

Let $\hat{\delta}$ denote the unbounded linear functional in $L_2(\mathbf{R}_n)$:

$$\hat{\delta}(f) = \int_{\mathbf{R}_n} f(\mathbf{k}) d\mathbf{k}$$

Note that
$$\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$$
.

Let us denote by A_0 the restriction of A onto linear set

$$\mathcal{D}(A_0) := \left\{ f : f \in \mathcal{D}(A), \ \hat{\delta}(f) = 0 \right\}.$$

The closure of $A_0 \neq A$ and

$$\mathcal{N} = (L_2(\mathbf{R}_n) \ominus (I + A)\mathcal{D}_0(A)) = \left\{ \xi \cdot \frac{1}{1 + \varphi(k)}, \ \xi \in \mathbf{C} \right\}$$

Let $\hat{\delta}$ denote the unbounded linear functional in $L_2(\mathbf{R}_n)$:

$$\hat{\delta}(f) = \int_{\mathbf{R}_n} f(\mathbf{k}) d\mathbf{k}$$

Note that $\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$.

Let us denote by A_0 the restriction of A onto linear set

$$\mathcal{D}(\boldsymbol{A}_0) := \left\{ f : f \in \mathcal{D}(\boldsymbol{A}), \ \hat{\delta}(f) = \boldsymbol{0} \right\}.$$

The closure of $A_0 \neq A$ and

$$\mathcal{N} = (L_2(\mathbf{R}_n) \ominus (I + A)\mathcal{D}_0(A)) = \left\{ \xi \cdot \frac{1}{1 + \omega(k)}, \ \xi \in \mathbf{C} \right\}$$

Let $\hat{\delta}$ denote the unbounded linear functional in $L_2(\mathbf{R}_n)$:

$$\hat{\delta}(f) = \int_{\mathbf{R}_n} f(\mathbf{k}) d\mathbf{k}$$

Note that $\mathcal{D}(\hat{\delta}) \subset \mathcal{D}(A)$.

Let us denote by A_0 the restriction of A onto linear set

$$\mathcal{D}(\boldsymbol{A}_0) := \left\{ f : f \in \mathcal{D}(\boldsymbol{A}), \ \hat{\delta}(f) = \boldsymbol{0} \right\}.$$

The closure of $A_0 \neq A$ and

$$\mathcal{N} = (L_2(\mathbf{R}_n) \ominus (I + A)\mathcal{D}_0(A)) = \left\{ \xi \cdot \frac{1}{1 + \varphi(k)}, \ \xi \in \mathbf{C}
ight\}.$$

A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

and

$$\int_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))} \, dk = \infty.$$

Vadim Adamyan Non-negative perturbations . . .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

$$\int\limits_{0}^{\infty} \frac{k^{n-1}}{\varphi(k)(1+\varphi(k))} \, dk = \infty$$

and

$$\int_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))} \, dk = \infty.$$

Vadim Adamyan Non-negative perturbations . . .

(日)
 (1)

A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

$$\int_{0}^{\infty} \frac{k^{n-1}}{\varphi(k)(1+\varphi(k))} \, dk = \infty$$

and

$$\int_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))} \, dk = \infty.$$

Proposition.

A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

$$\int\limits_{0}^{\infty} \frac{k^{n-1}}{\varphi(k)(1+\varphi(k))} \, dk = \infty$$

and

$$\int_{0}^{\infty} \frac{k^{n-1}}{(1+\varphi(k))} \, dk = \infty.$$

Put $\varphi(k) = k^2$ and let n = 2.

Corollary.

The self-adjoint Laplace operator in $L_2(\mathbf{R}_2)$ has no non-negative singular perturbations with support at one point of \mathbf{R}_2 .

Vadim Adamyan Non-negative perturbations . . .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$oldsymbol{e}_0(oldsymbol{k}) = rac{1 - \exp(-i(oldsymbol{k} \cdot oldsymbol{x}_0))}{1 + k^2}, \ oldsymbol{x}_0 \in oldsymbol{R}_2.$$

In this case

$$oldsymbol{e}_0(oldsymbol{k}) = rac{1 - \exp(-i(oldsymbol{k} \cdot oldsymbol{x}_0))}{1 + k^2}, \ oldsymbol{x}_0 \in oldsymbol{R}_2.$$

In this case

$$\|\boldsymbol{e}_{0}\|^{2} = \int_{\mathbf{R}_{2}} \frac{4\sin^{2}\frac{1}{2}(\mathbf{k}\cdot\mathbf{x}_{0})}{(1+k^{2})^{2}} \, d\mathbf{k} < \infty,$$

$$(I+A)A^{-1}\boldsymbol{e}_{0}, \boldsymbol{e}_{0}) = \int_{\mathbf{R}_{2}} \frac{4\sin^{2}\frac{1}{2}(\mathbf{k}\cdot\mathbf{x}_{0})}{k^{2}(1+k^{2})} \, d\mathbf{k} < \infty,$$

$$((I+A)\boldsymbol{e}_{0}, \boldsymbol{e}_{0}) = \int_{\mathbf{R}_{2}} \frac{4\sin^{2}\frac{1}{2}(\mathbf{k}\cdot\mathbf{x}_{0})}{1+k^{2}} \, d\mathbf{k} = \infty.$$

Hence $G_1 = ||e_0||^2 \cdot ((I + A)e_0, e_0)^{-1} > 0$, but $G_2 = 0$.

$$oldsymbol{e}_0(oldsymbol{k}) = rac{1 - \exp(-i(oldsymbol{k} \cdot oldsymbol{x}_0))}{1 + k^2}, \ oldsymbol{x}_0 \in oldsymbol{R}_2$$

In this case

$$\|e_0\|^2 = \int_{\mathbf{R}_2} \frac{4\sin^2 \frac{1}{2}(\mathbf{k} \cdot \mathbf{x}_0)}{(1+k^2)^2} \, d\mathbf{k} < \infty$$

$$((I+A)A^{-1}e_0, e_0) = \int_{\mathbf{R}_2} \frac{4\sin^2\frac{1}{2}(\mathbf{k}\cdot\mathbf{x}_0)}{k^2(1+k^2)} \, d\mathbf{k} < \infty,$$
$$((I+A)e_0, e_0) = \int_{\mathbf{R}_2} \frac{4\sin^2\frac{1}{2}(\mathbf{k}\cdot\mathbf{x}_0)}{1+k^2} \, d\mathbf{k} = \infty.$$

Hence $G_1 = ||e_0||^2 \cdot ((I + A)e_0, e_0)^{-1} > 0$, but $G_2 = 0$.

$$oldsymbol{e}_0(oldsymbol{k}) = rac{1 - \exp(-i(oldsymbol{k} \cdot oldsymbol{x}_0))}{1 + k^2}, \ oldsymbol{x}_0 \in oldsymbol{R}_2.$$

In this case

$$\|e_0\|^2 = \int_{\mathbf{R}_2} \frac{4\sin^2 \frac{1}{2}(\mathbf{k} \cdot \mathbf{x}_0)}{(1+k^2)^2} \, d\mathbf{k} < \infty,$$

$$((I+A)A^{-1}e_0, e_0) = \int_{\mathbf{R}_2} \frac{4\sin^2 \frac{1}{2}(\mathbf{k} \cdot \mathbf{x}_0)}{k^2(1+k^2)} \, d\mathbf{k} < \infty,$$

$$((I+A)e_0, e_0) = \int_{\mathbf{R}_2} \frac{4\sin^2 \frac{1}{2}(\mathbf{k} \cdot \mathbf{x}_0)}{1+k^2} \, d\mathbf{k} = \infty.$$

Hence $G_1 = ||e_0||^2 \cdot ((I + A)e_0, e_0)^{-1} > 0$, but $G_2 = 0$.

$$oldsymbol{e}_0(oldsymbol{k}) = rac{1 - \exp(-i(oldsymbol{k} \cdot oldsymbol{x}_0))}{1 + k^2}, \ oldsymbol{x}_0 \in oldsymbol{R}_2$$

In this case

$$\begin{split} \|e_0\|^2 &= \int_{\mathbf{R}_2} \frac{4\sin^2\frac{1}{2}(\mathbf{k}\cdot\mathbf{x}_0)}{(1+k^2)^2} \, d\mathbf{k} < \infty, \\ \left((I+A)A^{-1}e_0, e_0\right) &= \int_{\mathbf{R}_2} \frac{4\sin^2\frac{1}{2}(\mathbf{k}\cdot\mathbf{x}_0)}{k^2(1+k^2)} \, d\mathbf{k} < \infty, \\ \left((I+A)e_0, e_0\right) &= \int_{\mathbf{R}_2} \frac{4\sin^2\frac{1}{2}(\mathbf{k}\cdot\mathbf{x}_0)}{1+k^2} \, d\mathbf{k} = \infty. \end{split}$$

Hence $G_1 = ||e_0||^2 \cdot ((I + A)e_0, e_0)^{-1} > 0$, but $G_2 = 0$.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

As follows, the concerned restriction A_0 of the multiplication operator A by k^2 has non-negative self-adjoint extensions in $L_2(\mathbf{R}_2)$ others then A and A is the maximal element in the set of these extensions.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

It remains to note that *A* is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L_2(\mathbf{R}_2)$ and A_0 is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(\mathbf{x})$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

$$\lim_{|\mathbf{x}|\to 0} (\ln |\mathbf{x}|)^{-1} f(\mathbf{x}) - \lim_{|\mathbf{x}-\mathbf{x}_0|\to 0} (\ln |\mathbf{x}-\mathbf{x}_0|)^{-1} f(\mathbf{x}) = 0,$$

$$\lim_{|\mathbf{x}|\to 0} \left[f(\mathbf{x}) - \ln |\mathbf{x}| \lim_{|\mathbf{x}'|\to 0} (\ln |\mathbf{x}'|)^{-1} f(\mathbf{x}') \right] - \lim_{|\mathbf{x}-\mathbf{x}_0|\to 0} \left[f(\mathbf{x}) - \ln |\mathbf{x}-\mathbf{x}_0| \lim_{|\mathbf{x}'-\mathbf{x}_0|\to 0} (\ln |\mathbf{x}'-\mathbf{x}_0|)^{-1} f(\mathbf{x}') \right] = 0.$$

Vadim Adamyan Non-negative perturbations . . .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

It remains to note that *A* is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L_2(\mathbf{R}_2)$ and A_0 is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(\mathbf{x})$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

$$\lim_{|\mathbf{x}|\to 0} (\ln |\mathbf{x}|)^{-1} f(\mathbf{x}) - \lim_{|\mathbf{x}-\mathbf{x}_0|\to 0} (\ln |\mathbf{x}-\mathbf{x}_0|)^{-1} f(\mathbf{x}) = 0,$$

$$\lim_{|\mathbf{x}|\to 0} \left[f(\mathbf{x}) - \ln |\mathbf{x}| \lim_{|\mathbf{x}'|\to 0} (\ln |\mathbf{x}'|)^{-1} f(\mathbf{x}') \right] - \lim_{|\mathbf{x}-\mathbf{x}_0|\to 0} \left[f(\mathbf{x}) - \ln |\mathbf{x}-\mathbf{x}_0| \lim_{|\mathbf{x}'-\mathbf{x}_0|\to 0} (\ln |\mathbf{x}'-\mathbf{x}_0|)^{-1} f(\mathbf{x}') \right] = 0.$$

It remains to note that *A* is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L_2(\mathbf{R}_2)$ and A_0 is isomorphic to the restriction of this $-\Delta$ on the subset of function $f(\mathbf{x})$ from $\mathcal{D}(-\Delta)$ satisfying conditions:

$$\begin{split} &\lim_{|\mathbf{x}|\to 0} (\ln|\mathbf{x}|)^{-1} f(\mathbf{x}) - \lim_{|\mathbf{x}-\mathbf{x}_0|\to 0} (\ln|\mathbf{x}-\mathbf{x}_0|)^{-1} f(\mathbf{x}) = 0, \\ & \underset{\to 0}{\text{m}} \left[f(\mathbf{x}) - \ln|\mathbf{x}| \lim_{|\mathbf{x}'|\to 0} (\ln|\mathbf{x}'|)^{-1} f(\mathbf{x}') \right] - \end{split}$$

$$\lim_{\mathbf{x}|\to 0} \left[f(\mathbf{x}) - \ln |\mathbf{x}| \lim_{|\mathbf{x}'|\to 0} (\ln |\mathbf{x}'|)^{-1} f(\mathbf{x}') \right] - \lim_{|\mathbf{x}-\mathbf{x}_0|\to 0} \left[f(\mathbf{x}) - \ln |\mathbf{x}-\mathbf{x}_0| \lim_{|\mathbf{x}'-\mathbf{x}_0|\to 0} (\ln |\mathbf{x}'-\mathbf{x}_0|)^{-1} f(\mathbf{x}') \right] = 0.$$

The self-adjoint Laplace operator in $L_2(\mathbf{R}_3)$ has infinitely many non-negative singular perturbations with support at one point of \mathbf{R}_3 and the standardly defined Laplace the maximal element in the set of this perturbation.

-2

Consider the multiplication operator *A* by k^{2l} in $L_2(\mathbf{R}_n)$ assuming that $4l \le n + 1$. *A* is isomorphic to the polyharmonic operator $(-\Delta)^l$ in $L_2(\mathbf{R}_n)$.

Let us consider the restriction A_0 of A with the domain

$$\mathcal{D}(A_0) := \left\{ f : f \in \mathcal{D}(A), \ \hat{\delta}(f) = 0 \right\}.$$

that is non-negative symmetric operator which is isomorphic to the restriction of the polyharmonic operator $(-\Delta)^{l}$ onto the Sobolev subspace $H_{2l}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

<回><三><三><三><三><三><三><三><三><

Consider the multiplication operator *A* by k^{2l} in $L_2(\mathbf{R}_n)$ assuming that $4l \le n + 1$. *A* is isomorphic to the polyharmonic operator $(-\Delta)^l$ in $L_2(\mathbf{R}_n)$.

Let us consider the restriction A_0 of A with the domain

$$\mathcal{D}(\boldsymbol{A}_0) := \left\{ f : f \in \mathcal{D}(\boldsymbol{A}), \ \hat{\delta}(f) = \boldsymbol{0} \right\}.$$

that is non-negative symmetric operator which is isomorphic to the restriction of the polyharmonic operator $(-\Delta)^{l}$ onto the Sobolev subspace $H_{2l}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Propositions

Proposition.

If n < 2I then there are infinitely many non-negative singular perturbations of $(-\Delta)^{I}$ associated with the one-point symmetric restriction A_{0} and $(-\Delta)^{I}$ is the minimal element in the set of the non-negative extensions of A_{0} in $H_{2I}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition

If n = 2I then $(-\Delta)^{l}$ has no such perturbations in $H_{2l}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition.

If n > 2I then there is the infinite set of non-negative singular perturbations of $(-\Delta)^l$ associated with A_0 and for those as non-negative extensions of A_0 in the set of the in $H_{2l}^2(\mathbf{R}_n \setminus \{0\})$ the operator $(-\Delta)^l$ is the maximal element.

Propositions

Proposition.

If n < 2I then there are infinitely many non-negative singular perturbations of $(-\Delta)^{I}$ associated with the one-point symmetric restriction A_{0} and $(-\Delta)^{I}$ is the minimal element in the set of the non-negative extensions of A_{0} in $H_{2I}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition

If n = 2I then $(-\Delta)^{I}$ has no such perturbations in $H^{2}_{2I}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition.

If n > 2I then there is the infinite set of non-negative singular perturbations of $(-\Delta)^{I}$ associated with A_{0} and for those as non-negative extensions of A_{0} in the set of the in $H_{2I}^{2}(\mathbf{R}_{n} \setminus \{0\})$ the operator $(-\Delta)^{I}$ is the maximal element.

Proposition.

If n < 2I then there are infinitely many non-negative singular perturbations of $(-\Delta)^{I}$ associated with the one-point symmetric restriction A_{0} and $(-\Delta)^{I}$ is the minimal element in the set of the non-negative extensions of A_{0} in $H_{2I}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition.

If n = 2I then $(-\Delta)^{I}$ has no such perturbations in $H_{2I}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition.

If n > 2I then there is the infinite set of non-negative singular perturbations of $(-\Delta)^{l}$ associated with A_{0} and for those as non-negative extensions of A_{0} in the set of the in $H_{2l}^{2}(\mathbf{R}_{n} \setminus \{0\})$ the operator $(-\Delta)^{l}$ is the maximal element.

Proposition.

If n < 2I then there are infinitely many non-negative singular perturbations of $(-\Delta)^{I}$ associated with the one-point symmetric restriction A_{0} and $(-\Delta)^{I}$ is the minimal element in the set of the non-negative extensions of A_{0} in $H_{2I}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition

If n = 2I then $(-\Delta)^{I}$ has no such perturbations in $H^{2}_{2I}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition.

If n > 2I then there is the infinite set of non-negative singular perturbations of $(-\Delta)^{l}$ associated with A_{0} and for those as non-negative extensions of A_{0} in the set of the in $H_{2l}^{2}(\mathbf{R}_{n} \setminus \{0\})$ the operator $(-\Delta)^{l}$ is the maximal element.

Propositions

Proposition.

If n < 2I then there are infinitely many non-negative singular perturbations of $(-\Delta)^{I}$ associated with the one-point symmetric restriction A_{0} and $(-\Delta)^{I}$ is the minimal element in the set of the non-negative extensions of A_{0} in $H_{2I}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition.

If n = 2I then $(-\Delta)^{I}$ has no such perturbations in $H_{2I}^{2}(\mathbf{R}_{n} \setminus \{0\})$.

Proposition.

If n > 2I then there is the infinite set of non-negative singular perturbations of $(-\Delta)^{l}$ associated with A_{0} and for those as non-negative extensions of A_{0} in the set of the in $H_{2l}^{2}(\mathbf{R}_{n} \setminus \{0\})$ the operator $(-\Delta)^{l}$ is the maximal element.