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The classical case

Various families of reproducing kernel Hilbert

spaces of functions which take values in a

Hilbert space and are analytic in the open

unit disk or in the open upper half-plane

have been introduced by L. de Branges and

J. Rovnyak.

These spaces play an important role in

operator theory, interpolation theory, in-

verse scattering, the theory of wide sense

stationary stochastic processes and related

topics
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In the case of the open unit disk D, of

particular importance are:

kφ(z, w) =
φ(z) + φ(w)∗

2(1− zw∗)
,

ks(z, w) =
I − s(z)s(w)∗

1− zw∗
.

s(z) and φ(z) are operator-valued functions

analytic in D are called Carathéodory and

Schur functions when the kernels are pos-

itive.

The Cayley transform

s(z) = (I − φ(z))(I + φ(z))−1

reduces the study of the kernels kφ(z, w) to

the study of the kernels ks(z, w). For these

latter it is well known that the positivity

of the kernel ks(z, w) implies analyticity of

s(z).
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Every Carathéodory function admits two
equivalent representations. The first, (Riesz
– Herglotz representation) is:

φ(z) = ia +
∫ 2π
0

eit+z
eit−z

dµ(t)

where a is a self-adjoint operator and where
µ(t) is an increasing function such that

µ(2π) < ∞.

The integral is a Stieltjes integral and the
proof relies on Helly’s theorem.

The second representation is:

φ(z) = ia + Γ(U + zI)(U − zI)−1Γ∗

where U is a unitary operator in an auxiliary
Hilbert space H and Γ is a bounded oper-
ator from H into C (the coefficient space).
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The expression

φ(z) = ia + Γ(U + zI)(U − zI)−1Γ∗

still makes sense in a more general setting

when the kernel kφ(z, w) has a finite number

of negative squares. The space H is then a

Pontryagin space. (see Krĕın and Langer).

They allowed the values of the function

φ(z) to be operators between Pontryagin

spaces and required weak continuity at the

origin.
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Without some continuity hypothesis one

can find functions for which the kernel

kφ(z, w) = φ(z)+φ(w)∗

2(1−zw∗)

has a finite number of negative squares

but which are not meromorphic in D and

cannot admit representations of the form

above. For instance the function

φ(z) =

0 if z 6= 0

1 if z = 0

defines a kernel kφ(z, w) which has one neg-

ative square.
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The notion of reproducing kernel space

(with positive or indefinite metric) can also

be introduced for functions which take val-

ues in Banach spaces. Motivations origi-

nate from the theory of partial differential

equations and the theory of stochastic pro-

cesses.

It seems that there are no natural

analogs of Schur functions or the Cay-

ley transform in this setting.
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The Banach space setting: Positive
operators and positive kernels

Let B be a Banach space.

B∗ is the space of anti-linear bounded func-

tionals (that is, its conjugate dual space).

Duality between B and B∗:

〈b∗, b〉B = b∗(b), where b ∈ B and b∗ ∈ B∗.

The operator A ∈ L(B,B∗) is positive if

〈Ab, b〉B ≥ 0, ∀b ∈ B.

Note that a positive operator is in particu-

lar self-adjoint in the sense that A = A∗
∣∣∣
B
,

that is,

〈Ab, c〉B = 〈Ac, b〉B.
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The following factorization result is well
known and originates with the works of
Pedrick (in the case of topological vec-
tor spaces with appropriate properties) and
Vakhania (for positive elements in L(B∗,B))

Theorem: The operator A ∈ L(B,B∗) is posi-
tive if and only if there exist a Hilbert space H
and a bounded operator T ∈ L(B,H) such that
A = T ∗T . Moreover,

〈Ab, c〉B = 〈Tb, T c〉H, b, c ∈ B
and

sup
‖b‖=1

〈Ab, b〉B = ‖A‖ = ‖T‖2.

Finally

|〈Ab, c〉B| ≤ 〈Ab, b〉1/2〈Ac, c〉1/2.

We will say that A ≤ B if B − A ≥ 0. Note
that

A ≤ B =⇒ ‖A‖ ≤ ‖B‖.
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Let H be a Hilbert space of B∗-valued func-

tions defined on a set Ω and let K(z, w) be

an L(B,B∗)-valued kernel defined on Ω×Ω.

The kernel K(z, w) is called the reproducing

kernel of the Hilbert space H if for every

w ∈ Ω and b ∈ B K(·, w)b ∈ H and

〈f, K(·, w)b〉H = 〈f(w), b〉B, ∀f ∈ H.

Let K(z, w) be an L(B,B∗)-valued kernel de-

fined on Ω×Ω. The kernel K(z, w) is said to

be positive if for any choice of z1, . . . , zn ∈ Ω

and b1, . . . , bn ∈ B it holds that

n∑
j=1

〈K(zi, zj)bj, bi〉B ≥ 0.

The reproducing kernel K(z, w) of a Hilbert

space of B∗-valued functions, when it ex-

ists, is unique and positive.
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Let K(z, w) be an L(B,B∗)-valued positive

kernel defined on Ω×Ω. Then there exists a

unique Hilbert space of B∗-valued functions

defined on Ω with the reproducing kernel

K(z, w).

One can derive the notion of a reproducing

kernel Hilbert space of B-valued functions

using the natural injection τ from B into

B∗∗ defined by

〈τ(b), b∗〉B∗ = 〈b∗, b〉B.
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Stieltjes integral

Given an increasing positive function

M : [a, b] −→ L(B,B∗).
Thus, M(t) ≥ 0 for all t ∈ [a, b] and moreover

a ≤ t1 ≤ t2 ≤ b =⇒ M(t2)−M(t1) ≥ 0.

Let f(t) be a scalar continuous function on
[a, b] and let

a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ t2 ≤ · · · ≤ ξm ≤ tm = b

be a subdivision of [a, b] be a decomposition
of [a, b].

The Stieltjes integral
∫ b
a f(t)dM(t) is the limit

(in the L(B,B∗) topology) of the sums of
the form

m∑
j=1

f(ξj)(M(tj)−M(tj−1))

as supj |tj − tj−1| goes to 0.

Theorem: The integral
∫ b
a f(t)dM(t) exists.
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Helly’s theorem

Theorem: Let Fn(t) (t ∈ [0,2π]) be a se-

quence of increasing L(B,B∗)–valued func-

tions such that

Fn(t) ≤ F0, n = 0,1, . . . and t ∈ [0,2π],

where F0 is some bounded operator. Then,

there exists a subsequence of Fn which

converges weakly for every t ∈ [0,2π]. More-

over, for f(t) a continuous scalar function

we have (in the weak sense, and via the

subsequence):∫ 2π

0
f(t)dF (t) = lim

n→∞ f(t)dFn(t)

(B is separable)
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L(B,B∗)-valued Carathéodory func-
tions

An L(B,B∗)-valued function φ(z) weakly con-

tinuous at the origin will be called a

Carathéodory function if the L(B,B∗)-valued
kernel

kφ(z, w) =
φ(z)+φ(w)∗

∣∣∣
B

2(1−zw∗)

is positive.

We always weak continuity at the origin in

the sense that

〈φ(z)b, b〉B → 〈φ(0)b, b〉B as z → 0, ∀b ∈ B.
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For a Carathéodory function φ(z) we shall
denote by L(φ) the Hilbert space of B∗-
valued functions with the reproducing ker-
nel

kφ(z, w) =
φ(z)+φ(w)∗

∣∣∣
B

2(1−zw∗)

We give two representation theorems for
Carathéodory functions. In the first we
make no assumption on the space B. Fol-
lowing arguments of Krein and Langer, we
prove the existence of a realization of the
form

φ(z)∗
∣∣∣
B

= D + C∗(I − z∗V )−1(I + z∗V )−1C

The second theorem assumes that the space
B is separable. We prove that in this case
the Carathéodory functions can be char-
acterized as functions analytic in the open
unit disk with positive real part. Then we
derive a Herglotz-type representation for-
mula.
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Theorem: Let φ(z) be an L(B,B∗)-valued
defined in a neighborhood of the origin and

weakly continuous at the origin. Then φ(z)

is a Carathéodory function if and only if it

admits the representation

φ(z)∗
∣∣∣
B

= D + C∗(I − z∗V )−1(I + z∗V )−1C

where V is an isometric operator in some

Hilbert space H, C is a bounded operator

from B into H and D is a purely imaginary

operator from B into B∗ in the sense that

D + D∗
∣∣∣
B

= 0.

In particular, every Carathéodory function

has an analytic extension to the whole open

unit disk.
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Let φ(z) be a Carathéodory function. The

elements of L(φ) are weakly continuous at

the origin:

〈f(w), b〉B → 〈f(0), b〉B as w → 0,

∀ f ∈ L(φ), b ∈ B.

This is a consequence of the Cauchy –

Schwarz inequality as

〈f(w), b〉B−〈f(0), b〉B = 〈f, (kφ(·, w)−kφ(·,0))b〉L(φ)

and

‖(kφ(·, w)−kφ(·,0))b‖2L(φ) =
|w|2

1− |w|2
<〈φ(w)b, b〉B.
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We consider in L(φ) × L(φ) the linear rela-

tion R spanned by the pairs( ∑
Kφ(z, wi)w

∗
i bi,

∑
Kφ(z, wi)bi −Kφ(z,0)(

∑
bi)

)
where all the sums are finite. This rela-

tion is densely defined because of the weak

continuity of the elements of L(φ) at the

origin.

The relation R is isometric. Its closure is

thus the graph of an isometry, which we

call V . We have:

V (Kφ(z, w)w∗b) = K(z, w)b−K(z,0)b,

and in particular

(I − w∗V )−1Kφ(·,0)b = Kφ(·, w)b.

Denote by C the map

C : B −→ L(φ), (Cb)(z) = K(z,0)b.

to obtain the required formula.
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The arguments are very close to the ones

in Krein-Langer, but we note the following:

we use a concrete space (the space L(φ))

to build the relation rather than abstract

elements and the relation R is defined slightly

differently.

As already mentioned, the above argument

still goes through when the kernel has a

finite number of negative squares. In this

case the space L(φ) is a Pontryagin space.
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Let B be a separable Banach space and let

φ(z) be a L(B,B∗)–valued function analytic

in the open unit disk, such that

φ(z) + φ(z)∗
∣∣∣
B
≥ 0.

Then there exists an increasing L(B,B∗)–
valued function M(t) (t ∈ [0,2π]) and a purely

imaginary operator D such that

φ(z) = D +
∫ 2π

0

eit + z

eit − z
dM(t),

where the integral is defined in the weak

sense. Furthermore the kernel kφ(z, w) is

positive in D.

We follow the arguments in the book of

Brodski, and apply Helly’s theorem. The

separability hypothesis of B is used at this

point.
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Conclusions:

No Schur functions and no Cayley trans-

form here.

Also results with unitary operators

Can define inverse scattering, interpola-

tion, and related problems.

Look for applications to stochastic pro-

cesses.

Also more general settings (Arveson space,...).
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