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Theorem 1. Let {H, (·, ·)} be a Hilbert space, let A = BG,

where B, G : H → H are bounded operators, B : Im (Bx, x) ≥ 0,

G = G∗, 0 �∈ σp(B) ∪ σp(G), and (−∞,0) ∩ σ(G) consists of a

κ <∞ eigenvalues.

Then A has a κ-dimensional G-nonpositive invariant subspace L
such that Imσ(A|L) ≥ 0.

If B = B∗ then there exists also an A-invariant κ-dimensional

G-nonpositive subspace M such that Imσ(A|M) ≤ 0.

Proof. G = J |G|, {H̃, (·, ·)1}, H ⊂ H̃, (x, y)1 = (|G|x, y),
x, y ∈ H

Ã ⊃ A, G̃ ⊃ G, J̃ ⊃ J =⇒ Ã = BG̃.

Πκ = {H̃, [·, ·] = (J̃ ·, ·)1}, [x, y] = (Gx, y), x, y ∈ H.



Ã : Πκ → Πκ diss. =⇒ ∃L, ÃL ⊂ L, dimL = κ, [x, x] ≤ 0,

x ∈ L and Imσ(A|L) ≥ 0.

0 �∈ σp(B) ∪ σp(G) =⇒ ÃL = L,

Ã = BG̃ =⇒ L ⊂ H and AL = L.

B = B∗ =⇒ ∃M, ÃM = M and Imσ(A|M) ≤ 0.



Example 1. Let H = span {e0} ⊕H1, ‖e0‖ = 1.

G =

[
0 (·, e)e0

(·, e0)e G1

]
, G1 > 0, G1 ∈ S∞, e �∈ ranG1.

B =

[
0 0
0 I

]
.

The operator G has κ = 1 negative eigenvalue, but

A = BG =

[
0 0

(·, e0)e G1

]
has no G-nonpositive eigenvectors.
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K(z) = R− zS

R = R∗, S = S∗, 0 /∈ σp(R) ∪ σp(S)

∃H = H∗ � 0 : R = H +W, S−1 = H + V , W,V are H-compact.

B := R−1, G := S, and A := R−1S.

In [G] spectral properties and the stability problem for such a

pencil ≡ A = BG are studied.



du

dt
= JE′(u(t)), u(t) ∈ H,

E : H → R, E ∈ C2, J : H → H, J = −J−1 = −J∗.

Let ϕ ∈ H be a localized critical point (soliton): E′(ϕ) = 0.

Solitons exist for some nonlinear Schrödinger, Klein-Gordon,

Korteweg-de Vries equations.

Linearization around ϕ:

dv

dt
= JE′′(ϕ)v+O(‖v‖2).



Assume

A := JE′′ =
[

0 L−
−L+ 0

]
, L± = L∗±.

P1 σc(L±) ≥ ω±, ω+ ≥ 0, ω− > 0;

P2 σp(L±) is a finite set (counting multiplicity)

P3 kerL− ⊂ domL+ ([G]: domL+ = domL−).

Hence one can reduce the eigenvalue problem

A(u,w)t = λ(u, w)t ⇐⇒ L+u = −λw, L−w = λu

to the case kerL− = {0}:
Ru = zSu, R := L+, S := L−1

− , z = −λ2



We shown ∃ a regular point (z0) of the pencil K(z) = R− zS.

z = 1
γ + z0: Ru = zSu =⇒ (R− z0S)−1Su = γu

B := (R− z0S)−1, G := S and A = (R− z0S)−1S.

Let z0 = 0.

By definition, an eigenvalue z of the pencil K(z) is stable iff

z > 0 and semi-simple. Otherwise it is unstable.

Proposition 2. K(z) has (i) a finite number (≥ 0) of negative

eigenvalues and (ii) not more than 2κ+1 (counting multiplicity)

nonreal and unstable positive eigenvalues.

(i) follows from assumptions P1 and P2



(ii) from Theorem 1: σnonreal(A) = σnonreal(A|L)∪σnonreal(A|L)∗.

Proposition 3. If R and S have different (finite) numbers

(counting multiplicity) of negative eigenvalues, the pencil K(z)

has at least one negative eigenvalue, that is, at least one unsta-

ble eigenvalue.



Example 2. Consider a scalar nonlinear Schrödinger equation:

iψt = −Δψ+ F(|ψ|2)ψ, Δ = ∂2
x1x1

+ ...+ ∂2
xdxd

,

(x, t) ∈ Rd × R, ψ ∈ C.

If F(|ψ|2) is a localized potential, for instance, F ∈ C∞ and

F(0) = 0, the equation has a solitary wave solution

ψ = ϕ(x)eiωt, ω > 0, ϕ : R
d → R

Hence ϕ(x) ∈ C∞ is an exponentially decreasing function.

(see, K. McLeod, ”Uniqueness of positive radial solutions of

Δu+ f(u) = 0 in Rn”, Trans. Amer. Math.Soc. 339, 495–505

(1993)).



Substitute

ψ =
(
ϕ(x) + [u(x) + iw(x)]eλt + [ū(x) + iw̄(x)]eλ̄t

)
eiωt,

λ ∈ C and (u,w) ∈ C2, and have a Hamiltonian system with

Schrödinger operators:

L+ = −Δ + ω+ F(ϕ2) + 2ϕ2F ′(ϕ2),

L− = −Δ + ω+ F(ϕ2).

Here L± are unbounded operators,

σc(L±) = [ω,∞), ω+ = ω− = ω > 0.

dimkerL− ≥ 1, ϕ(x) ∈ kerL−,

dimkerL+ ≥ d, ∂xjϕ(x) ∈ kerL+, j = 1, ..., d.



H := W1
2 (Rd,C).

Assumptions P1 and P2 hold since the functions F(ϕ2) and

ϕ2F ′(ϕ2) are exponentially decreasing.


