Pontryagin theorem and an analysis of the spectral stability of solitons

Tomas Ya. Azizov

joint work with Marina V. Chugunova (Canada)

1. The main result.

2. Motivations.

3. Models.

Theorem 1. Let $\{\mathcal{H}, (\cdot, \cdot)\}$ be a Hilbert space, let A = BG, where $B, G : \mathcal{H} \to \mathcal{H}$ are bounded operators, $B : \operatorname{Im}(Bx, x) \geq 0$, $G = G^*, \ 0 \notin \sigma_p(B) \cup \sigma_p(G)$, and $(-\infty, 0) \cap \sigma(G)$ consists of a $\kappa < \infty$ eigenvalues.

Then A has a κ -dimensional G-nonpositive invariant subspace \mathcal{L} such that $\operatorname{Im} \sigma(A|\mathcal{L}) \geq 0$.

If $B = B^*$ then there exists also an A-invariant κ -dimensional G-nonpositive subspace \mathcal{M} such that $\operatorname{Im} \sigma(A|\mathcal{M}) \leq 0$.

Proof. G = J|G|, $\{\widetilde{\mathcal{H}}, (\cdot, \cdot)_1\}$, $\mathcal{H} \subset \widetilde{\mathcal{H}}, (x, y)_1 = (|G|x, y), x, y \in \mathcal{H}$

 $\widetilde{A} \supset A$, $\widetilde{G} \supset G$, $\widetilde{J} \supset J \implies \widetilde{A} = B\widetilde{G}$.

 $\Pi_{\kappa} = \{ \widetilde{\mathcal{H}}, [\cdot, \cdot] = (\widetilde{J} \cdot, \cdot)_1 \}, \quad [x, y] = (Gx, y), \ x, y \in \mathcal{H}.$

 \widetilde{A} : $\Pi_{\kappa} \to \Pi_{\kappa}$ diss. $\Longrightarrow \exists \mathcal{L}, \quad \widetilde{A}\mathcal{L} \subset \mathcal{L}, \dim \mathcal{L} = \kappa, \quad [x, x] \leq 0,$ $x \in \mathcal{L}$ and $\operatorname{Im} \sigma(A|\mathcal{L}) \geq 0.$

$$0 \not\in \sigma_p(B) \cup \sigma_p(G) \Longrightarrow \widetilde{A}\mathcal{L} = \mathcal{L},$$

$$\widetilde{A} = B\widetilde{G} \Longrightarrow \mathcal{L} \subset \mathcal{H} \text{ and } A\mathcal{L} = \mathcal{L}.$$

 $B = B^* \Longrightarrow \exists \mathcal{M}, \quad \widetilde{A}\mathcal{M} = \mathcal{M} \text{ and } \operatorname{Im} \sigma(A|\mathcal{M}) \leq 0.$

Example 1. Let $\mathcal{H} = \operatorname{span} \{e_0\} \oplus H_1$, $||e_0|| = 1$.

$$G = \begin{bmatrix} 0 & (\cdot, e)e_0\\ (\cdot, e_0)e & G_1 \end{bmatrix}, \quad G_1 > 0, \ G_1 \in \mathfrak{S}_{\infty}, \ e \not\in \operatorname{ran} G_1.$$
$$B = \begin{bmatrix} 0 & 0\\ 0 & I \end{bmatrix}.$$

The operator G has $\kappa = 1$ negative eigenvalue, but

$$A = BG = \begin{bmatrix} 0 & 0\\ (\cdot, e_0)e & G_1 \end{bmatrix}$$

has no *G*-nonpositive eigenvectors.

M.Grillakis, "Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system", Comm. Pure Appl. Math. **43**, 299–333 (1990) **[G]**

K(z) = R - zS $R = R^*, S = S^*, 0 \notin \sigma_p(R) \cup \sigma_p(S)$ $\exists H = H^* \gg 0 : R = H + W, S^{-1} = H + V, W, V \text{ are } H\text{-compact.}$ $B := R^{-1}, G := S, \text{ and } A := R^{-1}S.$

In **[G]** spectral properties and the stability problem for such a pencil $\equiv A = BG$ are studied.

$$\frac{du}{dt} = JE'(u(t)), \ u(t) \in \mathcal{H},$$
$$E : \mathcal{H} \to \mathbb{R}, \ E \in C^2, \ J : \mathcal{H} \to \mathcal{H}, \ J = -J^{-1} = -J^*.$$

Let $\varphi \in \mathcal{H}$ be a localized critical point (soliton): $E'(\varphi) = 0$.

Solitons exist for some nonlinear Schrödinger, Klein-Gordon, Korteweg-de Vries equations.

Linearization around φ :

$$\frac{dv}{dt} = JE''(\varphi)v + O(||v||^2).$$

Assume

$$\mathfrak{A} := JE'' = \begin{bmatrix} 0 & L_- \\ -L_+ & 0 \end{bmatrix}, \qquad L_{\pm} = L_{\pm}^*.$$

P1 $\sigma_c(L_{\pm}) \ge \omega_{\pm}, \ \omega_+ \ge 0, \ \omega_- > 0;$ P2 $\sigma_p(L_{\pm})$ is a finite set (counting multiplicity) P3 ker $L_- \subset \text{dom } L_+$ ([G]: dom $L_+ = \text{dom } L_-$).

Hence one can reduce the eigenvalue problem

$$\mathfrak{A}(u,w)^t = \lambda(u,w)^t \iff L_+ u = -\lambda w, \ L_- w = \lambda u$$

to the case ker $L_{-} = \{0\}$:

$$Ru = zSu, \quad R := L_+, \ S := L_-^{-1}, \ z = -\lambda^2$$

We shown \exists a regular point (z_0) of the pencil K(z) = R - zS.

$$z = \frac{1}{\gamma} + z_0$$
: $Ru = zSu \implies (R - z_0S)^{-1}Su = \gamma u$

 $B := (R - z_0 S)^{-1}$, G := S and $A = (R - z_0 S)^{-1} S$.

Let $z_0 = 0$.

By definition, an eigenvalue z of the pencil K(z) is **stable** iff z > 0 and semi-simple. Otherwise it is **unstable**.

Proposition 2. K(z) has (i) a finite number (≥ 0) of negative eigenvalues and (ii) not more than $2\kappa + 1$ (counting multiplicity) nonreal and unstable positive eigenvalues.

(i) follows from assumptions **P1** and **P2**

(ii) from Theorem 1: $\sigma_{nonreal}(A) = \sigma_{nonreal}(A|\mathcal{L}) \cup \sigma_{nonreal}(A|\mathcal{L})^*$.

Proposition 3. If R and S have different (finite) numbers (counting multiplicity) of negative eigenvalues, the pencil K(z) has at least one negative eigenvalue, that is, at least one unstable eigenvalue.

Example 2. Consider a scalar nonlinear Schrödinger equation:

$$i\psi_t = -\Delta \psi + F(|\psi|^2)\psi, \qquad \Delta = \partial_{x_1x_1}^2 + \dots + \partial_{x_dx_d}^2,$$

 $(x,t) \in \mathbb{R}^d \times \mathbb{R}, \ \psi \in \mathbb{C}.$

If $F(|\psi|^2)$ is a localized potential, for instance, $F \in C^{\infty}$ and F(0) = 0, the equation has a solitary wave solution

$$\psi = \varphi(x)e^{i\omega t}, \quad \omega > 0, \ \varphi : \mathbb{R}^d \to \mathbb{R}$$

Hence $\varphi(x) \in C^{\infty}$ is an exponentially decreasing function.

(see, K. McLeod, "Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in \mathbb{R}^{n} ", Trans. Amer. Math.Soc. **339**, 495–505 (1993)).

Substitute

$$\psi = \left(\varphi(x) + [u(x) + iw(x)]e^{\lambda t} + [\bar{u}(x) + i\bar{w}(x)]e^{\bar{\lambda}t}\right)e^{i\omega t},$$

 $\lambda \in \mathbb{C}$ and $(u, w) \in \mathbb{C}^2$, and have a Hamiltonian system with Schrödinger operators:

$$L_{+} = -\Delta + \omega + F(\varphi^{2}) + 2\varphi^{2}F'(\varphi^{2}),$$
$$L_{-} = -\Delta + \omega + F(\varphi^{2}).$$

Here L_{\pm} are unbounded operators,

$$\sigma_c(L_{\pm}) = [\omega, \infty), \quad \omega_+ = \omega_- = \omega > 0.$$

dim ker $L_- \ge 1, \quad \varphi(x) \in \ker L_-,$
dim ker $L_+ \ge d, \quad \partial_{x_j} \varphi(x) \in \ker L_+, j = 1, ..., d.$

$$\mathcal{H} := W_2^1(\mathbb{R}^d, \mathbb{C}).$$

Assumptions **P1** and **P2** hold since the functions $F(\varphi^2)$ and $\varphi^2 F'(\varphi^2)$ are exponentially decreasing.