On the eigenvalues of non-canonical self-adjoint extensions

Jussi Behrndt

jointly with Annemarie Luger

A simple symmetric operator in Hilbert space $\mathcal{H}, n_+(A) = n_-(A) = 1$, A_0 , \widetilde{A} self-adjoint extensions in \mathcal{H} .

A simple symmetric operator in Hilbert space $\mathcal{H}, n_+(A) = n_-(A) = 1$, A_0 , \widetilde{A} self-adjoint extensions in \mathcal{H} . Then $\exists \tau \in \mathbb{R}$

$$(\widetilde{A} - \lambda)^{-1} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

where m is a Q-function/Weyl function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$;

A simple symmetric operator in Hilbert space $\mathcal{H}, n_+(A) = n_-(A) = 1$, A_0, \widetilde{A} self-adjoint extensions in \mathcal{H} . Then $\exists \tau \in \mathbb{R}$

$$(\widetilde{A} - \lambda)^{-1} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

where m is a Q-function/Weyl function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$;

m Nevanlinna fct: Im $m(\lambda)>0$ on \mathbb{C}^+ , $m(\overline{\lambda})=\overline{m(\lambda)}$, hol. on $\rho(A_0)$

A simple symmetric operator in Hilbert space $\mathcal{H}, n_+(A) = n_-(A) = 1$, A_0 , \widetilde{A} self-adjoint extensions in \mathcal{H} . Then $\exists \tau \in \mathbb{R}$

$$(\widetilde{A} - \lambda)^{-1} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

where m is a Q-function/Weyl function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$;

m Nevanlinna fct: Im $m(\lambda)>0$ on \mathbb{C}^+ , $m(\overline{\lambda})=\overline{m(\lambda)}$, hol. on $\rho(A_0)$

For $\mu \in \rho(A_0)$ here

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau$$

A simple symmetric operator in Hilbert space $\mathcal{H}, n_+(A) = n_-(A) = 1$, A_0 , \widetilde{A} self-adjoint extensions in \mathcal{H} . Then $\exists \tau \in \mathbb{R}$

$$(\widetilde{A} - \lambda)^{-1} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

where m is a Q-function/Weyl function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$;

m Nevanlinna fct: Im $m(\lambda)>0$ on \mathbb{C}^+ , $m(\overline{\lambda})=\overline{m(\lambda)}$, hol. on $\rho(A_0)$

For $\mu \in \rho(A_0)$ here

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau$$

but what if $\mu \in \sigma(A_0)$ (in particular $\sigma_{ess}(A_0)$) ?

A simple symmetric operator in Hilbert space $\mathcal{H}, n_+(A) = n_-(A) = 1$, A_0 , \widetilde{A} self-adjoint extensions in \mathcal{H} . Then $\exists \tau \in \mathbb{R}$

$$(\widetilde{A} - \lambda)^{-1} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

where m is a Q-function/Weyl function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$;

m Nevanlinna fct: $\mathrm{Im}\, m(\lambda)>0$ on \mathbb{C}^+ , $m(\overline{\lambda})=\overline{m(\lambda)}$, hol. on $\rho(A_0)$

For $\mu \in \rho(A_0)$ here

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau$$

but what if $\mu \in \sigma(A_0)$ (in particular $\sigma_{ess}(A_0)$)? Then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau$$
 i.e. $\lim_{\lambda \to \mu} \frac{m(\lambda) + \tau}{\lambda - \mu}$ exists.

A simple symmetric operator in Hilbert space $\mathcal{H}, n_+(A) = n_-(A) = 1$, A_0 , \widetilde{A} self-adjoint extensions in \mathcal{H} . Then $\exists \tau \in \mathbb{R}$

$$(\widetilde{A} - \lambda)^{-1} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

where m is a Q-function/Weyl function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$;

m Nevanlinna fct: $\operatorname{Im} m(\lambda) > 0$ on \mathbb{C}^+ , $m(\overline{\lambda}) = \overline{m(\lambda)}$, hol. on $\rho(A_0)$

For $\mu \in \rho(A_0)$ here

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau$$

but what if $\mu \in \sigma(A_0)$ (in particular $\sigma_{ess}(A_0)$)? Then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau$$
 i.e. $\lim_{\lambda \hat{\to} \mu} \frac{m(\lambda) + \tau}{\lambda - \mu}$ exists.

* Eigenvalues of $\widetilde{A} = \text{generalized zeros of } \lambda \mapsto m(\lambda) + \tau.$

A symmetric in \mathcal{H} , $n_{\pm}(A) = 1$, A_0 self-adjoint extension in \mathcal{H} .

A symmetric in \mathcal{H} , $n_{\pm}(A)=1$, A_0 self-adjoint extension in \mathcal{H} . Let \widetilde{A} be self-adjoint extension of A in Hilbert space $\widetilde{\mathcal{H}}$, $\mathcal{H}\subset\widetilde{\mathcal{H}}$.

A symmetric in \mathcal{H} , $n_{\pm}(A) = 1$, A_0 self-adjoint extension in \mathcal{H} . Let \widetilde{A} be self-adjoint extension of A in Hilbert space $\widetilde{\mathcal{H}}$, $\mathcal{H} \subset \widetilde{\mathcal{H}}$.

Then \exists Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0-\lambda)^{-1} - \frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

m Q-function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$.

A symmetric in \mathcal{H} , $n_{\pm}(A) = 1$, A_0 self-adjoint extension in \mathcal{H} . Let \widetilde{A} be self-adjoint extension of A in Hilbert space $\widetilde{\mathcal{H}}$, $\mathcal{H} \subset \widetilde{\mathcal{H}}$.

Then \exists Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

m Q-function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$.

<u>Problem:</u> Characterize $\sigma_p(\widetilde{A})$ in terms of m and τ .

A symmetric in \mathcal{H} , $n_{\pm}(A) = 1$, A_0 self-adjoint extension in \mathcal{H} . Let \widetilde{A} be self-adjoint extension of A in Hilbert space $\widetilde{\mathcal{H}}$, $\mathcal{H} \subset \widetilde{\mathcal{H}}$.

Then \exists Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

m Q-function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$.

<u>Problem:</u> Characterize $\sigma_p(\widetilde{A})$ in terms of m and τ . Of course, if

$$\mu \in \rho(A_0) \cap \mathfrak{h}(\tau): \quad \mu \in \sigma_p(\widetilde{A}) \quad \Longleftrightarrow \quad \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau(\lambda),$$

A symmetric in \mathcal{H} , $n_{\pm}(A) = 1$, A_0 self-adjoint extension in \mathcal{H} . Let \widetilde{A} be self-adjoint extension of A in Hilbert space $\widetilde{\mathcal{H}}$, $\mathcal{H} \subset \widetilde{\mathcal{H}}$.

Then \exists Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

m Q-function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$.

<u>Problem:</u> Characterize $\sigma_p(\widetilde{A})$ in terms of m and τ . Of course, if

$$\mu \in \rho(A_0) \cap \mathfrak{h}(\tau) : \quad \mu \in \sigma_p(\widetilde{A}) \quad \Longleftrightarrow \quad \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau(\lambda),$$

but what if $\mu \in \sigma(A_0)$, $\mu \not\in \mathfrak{h}(\tau)$?

A symmetric in \mathcal{H} , $n_{\pm}(A) = 1$, A_0 self-adjoint extension in \mathcal{H} . Let \widetilde{A} be self-adjoint extension of A in Hilbert space $\widetilde{\mathcal{H}}$, $\mathcal{H} \subset \widetilde{\mathcal{H}}$.

Then \exists Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

m Q-function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$.

<u>Problem:</u> Characterize $\sigma_p(\widetilde{A})$ in terms of m and τ . Of course, if

$$\mu \in \rho(A_0) \cap \mathfrak{h}(\tau): \quad \mu \in \sigma_p(\widetilde{A}) \quad \Longleftrightarrow \quad \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau(\lambda),$$

but what if $\mu \in \sigma(A_0)$, $\mu \notin \mathfrak{h}(\tau)$? Then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

A symmetric in \mathcal{H} , $n_{\pm}(A) = 1$, A_0 self-adjoint extension in \mathcal{H} . Let \widetilde{A} be self-adjoint extension of A in Hilbert space $\widetilde{\mathcal{H}}$, $\mathcal{H} \subset \widetilde{\mathcal{H}}$.

Then \exists Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

m Q-function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$.

<u>Problem:</u> Characterize $\sigma_p(\widetilde{A})$ in terms of m and τ . Of course, if

$$\mu \in \rho(A_0) \cap \mathfrak{h}(\tau): \quad \mu \in \sigma_p(\widetilde{A}) \quad \Longleftrightarrow \quad \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau(\lambda),$$

but what if $\mu \in \sigma(A_0)$, $\mu \notin \mathfrak{h}(\tau)$? Then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

is **NOT TRUE**

A symmetric in \mathcal{H} , $n_{\pm}(A) = 1$, A_0 self-adjoint extension in \mathcal{H} . Let \widetilde{A} be self-adjoint extension of A in Hilbert space $\widetilde{\mathcal{H}}$, $\mathcal{H} \subset \widetilde{\mathcal{H}}$.

Then \exists Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda},$$

m Q-function, $\varphi_{\lambda} \in \ker (A^* - \lambda)$.

<u>Problem:</u> Characterize $\sigma_p(\widetilde{A})$ in terms of m and τ . Of course, if

$$\mu \in \rho(A_0) \cap \mathfrak{h}(\tau): \quad \mu \in \sigma_p(\widetilde{A}) \quad \Longleftrightarrow \quad \mu \text{ zero of } \lambda \mapsto m(\lambda) + \tau(\lambda),$$

but what if $\mu \in \sigma(A_0)$, $\mu \notin \mathfrak{h}(\tau)$? Then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

is **NOT TRUE** (since \widetilde{A} **NOT MINIMAL** for $\lambda \mapsto -(m(\lambda) + \tau(\lambda))^{-1}$).

$$A\subset A^*$$
, $n_{\pm}(A)=1$, $A_0=A_0^*$ in \mathcal{H} , $\widetilde{A}=\widetilde{A}^*$ in $\widetilde{\mathcal{H}}$, m,τ Nevanlinna
$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

$$A\subset A^*$$
, $n_{\pm}(A)=1$, $A_0=A_0^*$ in \mathcal{H} , $\widetilde{A}=\widetilde{A}^*$ in $\widetilde{\mathcal{H}}$, m,τ Nevanlinna
$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

Theorem $\mu \in \sigma_p(\widetilde{A})$ if and only if (i) or (ii) holds:

$$A\subset A^*$$
, $n_{\pm}(A)=1$, $A_0=A_0^*$ in \mathcal{H} , $\widetilde{A}=\widetilde{A}^*$ in $\widetilde{\mathcal{H}}$, m,τ Nevanlinna
$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

Theorem $\mu \in \sigma_p(\widetilde{A})$ if and only if (i) or (ii) holds:

(i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$

$$A\subset A^*$$
, $n_{\pm}(A)=1$, $A_0=A_0^*$ in \mathcal{H} , $\widetilde{A}=\widetilde{A}^*$ in $\widetilde{\mathcal{H}}$, m,τ Nevanlinna
$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

Theorem $\mu \in \sigma_p(\widetilde{A})$ if and only if (i) or (ii) holds:

- (i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$
- (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$,

$$A\subset A^*$$
, $n_{\pm}(A)=1$, $A_0=A_0^*$ in \mathcal{H} , $\widetilde{A}=\widetilde{A}^*$ in $\widetilde{\mathcal{H}}$, m,τ Nevanlinna
$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

Theorem $\mu \in \sigma_p(\widetilde{A})$ if and only if (i) or (ii) holds:

- (i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$
- (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$, i.e. μ generalized zero of $\lambda \mapsto -m(\lambda)^{-1}$ and $\lambda \mapsto -\tau(\lambda)^{-1}$.

$$A\subset A^*$$
, $n_{\pm}(A)=1$, $A_0=A_0^*$ in \mathcal{H} , $\widetilde{A}=\widetilde{A}^*$ in $\widetilde{\mathcal{H}}$, m,τ Nevanlinna
$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

Theorem $\mu \in \sigma_p(\widetilde{A})$ if and only if (i) or (ii) holds:

- (i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$
- (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$, i.e. μ generalized zero of $\lambda \mapsto -m(\lambda)^{-1}$ and $\lambda \mapsto -\tau(\lambda)^{-1}$.

Proof Key idea:

$$A\subset A^*$$
, $n_{\pm}(A)=1$, $A_0=A_0^*$ in \mathcal{H} , $\widetilde{A}=\widetilde{A}^*$ in $\widetilde{\mathcal{H}}$, m,τ Nevanlinna
$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

Theorem $\mu \in \sigma_p(\widetilde{A})$ if and only if (i) or (ii) holds:

- (i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$
- (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$, i.e. μ generalized zero of $\lambda \mapsto -m(\lambda)^{-1}$ and $\lambda \mapsto -\tau(\lambda)^{-1}$.

<u>Proof</u> Key idea: \widetilde{A} not minimal for $-(m+\tau)^{-1}$, but for $-\binom{m}{1} - \tau^{-1}$:

$$A\subset A^*$$
, $n_{\pm}(A)=1$, $A_0=A_0^*$ in \mathcal{H} , $\widetilde{A}=\widetilde{A}^*$ in $\widetilde{\mathcal{H}}$, m,τ Nevanlinna
$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

Theorem $\mu \in \sigma_p(\widetilde{A})$ if and only if (i) or (ii) holds:

- (i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$
- (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$, i.e. μ generalized zero of $\lambda \mapsto -m(\lambda)^{-1}$ and $\lambda \mapsto -\tau(\lambda)^{-1}$.

<u>Proof</u> Key idea: \widetilde{A} not minimal for $-(m+\tau)^{-1}$, but for $-\binom{m}{1} - \tau^{-1}$:

$$-\left(\frac{m(\lambda)}{1} \frac{1}{-\tau(\lambda)^{-1}}\right)^{-1} = S + \gamma^* \left(\lambda + (\lambda^2 + 1)(\widetilde{A} - \lambda)^{-1}\right) \gamma$$

$$\text{ and } \widetilde{\mathcal{H}} = \mathrm{clsp} \big\{ (1 + (\lambda - i)(\widetilde{A} - \lambda)^{-1}) \gamma x : x \in \mathbb{C}^2, \lambda \in \rho(\widetilde{A}) \big\}.$$

$$A\subset A^*\text{, }n_{\pm}(A)=1\text{, }A_0=A_0^*\text{ in }\mathcal{H}\text{, }\widetilde{A}=\widetilde{A}^*\text{ in }\widetilde{\mathcal{H}}\text{, }m,\tau\text{ Nevanlinna}$$

$$P_{\mathcal{H}}(\widetilde{A}-\lambda)^{-1}\restriction_{\mathcal{H}}=(A_0-\lambda)^{-1}-\frac{1}{m(\lambda)+\tau(\lambda)}(\cdot,\varphi_{\overline{\lambda}})\varphi_{\lambda},$$

Theorem $\mu \in \sigma_p(\widetilde{A})$ if and only if (i) or (ii) holds:

- (i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$
- (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$, i.e. μ generalized zero of $\lambda \mapsto -m(\lambda)^{-1}$ and $\lambda \mapsto -\tau(\lambda)^{-1}$.

<u>Proof</u> Key idea: \widetilde{A} not minimal for $-(m+\tau)^{-1}$, but for $-\binom{m}{1} - \tau^{-1}$:

$$-\left(\frac{m(\lambda)}{1} \frac{1}{-\tau(\lambda)^{-1}}\right)^{-1} = S + \gamma^* \left(\lambda + (\lambda^2 + 1)(\widetilde{A} - \lambda)^{-1}\right) \gamma$$

$$\text{ and } \widetilde{\mathcal{H}} = \mathrm{clsp} \big\{ (1 + (\lambda - i)(\widetilde{A} - \lambda)^{-1}) \gamma x : x \in \mathbb{C}^2, \lambda \in \rho(\widetilde{A}) \big\}.$$

* $\mu = \infty$ [LangerTextorius77, DerkachHassiMalamudSnoo00]

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

Example
$$Af = -f'' + qf | \{f(0) = f'(0) = 0\}$$
 in $L^2(0, \infty)$, LP at ∞

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

Example $Af = -f'' + qf | \{f(0) = f'(0) = 0\}$ in $L^2(0, \infty)$, LP at ∞ , then $A^* = -f'' + qf$ and m is usual Titchmarsh-Weyl function

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

Example $Af = -f'' + qf | \{f(0) = f'(0) = 0\}$ in $L^2(0, \infty)$, LP at ∞ , then $A^* = -f'' + qf$ and m is usual Titchmarsh-Weyl function (if e.g. q = 0 then $m(\lambda) = i\sqrt{\lambda}$).

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

Example $Af = -f'' + qf | \{f(0) = f'(0) = 0\}$ in $L^2(0, \infty)$, LP at ∞ , then $A^* = -f'' + qf$ and m is usual Titchmarsh-Weyl function (if e.g. q = 0 then $m(\lambda) = i\sqrt{\lambda}$).

For $g \in L^2(0,\infty)$ the solution $f \in L^2(0,\infty)$ of

$$(A^* - \lambda)f = -f'' + (q - \lambda)f = g,$$
 $\tau(\lambda)f(0) + f'(0) = 0,$

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

Example $Af = -f'' + qf | \{f(0) = f'(0) = 0\}$ in $L^2(0, \infty)$, LP at ∞ , then $A^* = -f'' + qf$ and m is usual Titchmarsh-Weyl function (if e.g. q = 0 then $m(\lambda) = i\sqrt{\lambda}$).

For $g\in L^2(0,\infty)$ the solution $f\in L^2(0,\infty)$ of

$$(A^* - \lambda)f = -f'' + (q - \lambda)f = g,$$
 $\tau(\lambda)f(0) + f'(0) = 0,$

is given by

$$f := P_{L^2} (\widetilde{A} - \lambda)^{-1} \upharpoonright_{L^2} g.$$

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

Example $Af = -f'' + qf | \{f(0) = f'(0) = 0\}$ in $L^2(0, \infty)$, LP at ∞ , then $A^* = -f'' + qf$ and m is usual Titchmarsh-Weyl function (if e.g. q = 0 then $m(\lambda) = i\sqrt{\lambda}$).

For $g\in L^2(0,\infty)$ the solution $f\in L^2(0,\infty)$ of

$$(A^* - \lambda)f = -f'' + (q - \lambda)f = g,$$
 $\tau(\lambda)f(0) + f'(0) = 0,$

is given by

$$f := P_{L^2} (\widetilde{A} - \lambda)^{-1} \upharpoonright_{L^2} g.$$

* Spectral properties of \widetilde{A} correspond to solvability of BVP,

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

Example $Af = -f'' + qf | \{f(0) = f'(0) = 0\}$ in $L^2(0, \infty)$, LP at ∞ , then $A^* = -f'' + qf$ and m is usual Titchmarsh-Weyl function (if e.g. q = 0 then $m(\lambda) = i\sqrt{\lambda}$).

For $g\in L^2(0,\infty)$ the solution $f\in L^2(0,\infty)$ of

$$(A^* - \lambda)f = -f'' + (q - \lambda)f = g,$$
 $\tau(\lambda)f(0) + f'(0) = 0,$

is given by

$$f := P_{L^2} (\widetilde{A} - \lambda)^{-1} \upharpoonright_{L^2} g.$$

* Spectral properties of \widetilde{A} correspond to solvability of BVP, e.g. Nontrivial solutions of homogeneous problem = Eigenvectors of \widetilde{A} .

 \widetilde{A} in Krein's formula is a linearization of an "abstract" boundary value problem with $\lambda \mapsto \tau(\lambda)$ in the boundary condition.

Example $Af = -f'' + qf | \{f(0) = f'(0) = 0\}$ in $L^2(0, \infty)$, LP at ∞ , then $A^* = -f'' + qf$ and m is usual Titchmarsh-Weyl function (if e.g. q = 0 then $m(\lambda) = i\sqrt{\lambda}$).

For $g\in L^2(0,\infty)$ the solution $f\in L^2(0,\infty)$ of

$$(A^* - \lambda)f = -f'' + (q - \lambda)f = g,$$
 $\tau(\lambda)f(0) + f'(0) = 0,$

is given by

$$f := P_{L^2} (\widetilde{A} - \lambda)^{-1} \upharpoonright_{L^2} g.$$

- * Spectral properties of \widetilde{A} correspond to solvability of BVP, e.g. Nontrivial solutions of homogeneous problem = Eigenvectors of \widetilde{A} .
- * Good news: $\sigma_p(\widetilde{A})$ can be described with m and τ .

Pontryagin space generalization

A symmetric in Π_{κ} -space K, $n_{\pm}(A)=1$, A_0 self-adj. extension in K.

A symmetric in Π_{κ} -space K, $n_{\pm}(A) = 1$, A_0 self-adj. extension in K. Then Q-function/Weyl function m is generalized Nevanlinna function.

A symmetric in Π_{κ} -space \mathcal{K} , $n_{\pm}(A)=1$, A_0 self-adj. extension in \mathcal{K} . Then Q-function/Weyl function m is generalized Nevanlinna function. Assume \widetilde{A} self-adjoint extension in $\Pi_{\widetilde{\kappa}}$ -space $\widetilde{\mathcal{K}}$, $\mathcal{K} \subset \widetilde{\mathcal{K}}$.

A symmetric in Π_{κ} -space \mathcal{K} , $n_{\pm}(A)=1$, A_0 self-adj. extension in \mathcal{K} . Then Q-function/Weyl function m is generalized Nevanlinna function. Assume \widetilde{A} self-adjoint extension in $\Pi_{\widetilde{\kappa}}$ -space $\widetilde{\mathcal{K}}$, $\mathcal{K} \subset \widetilde{\mathcal{K}}$.

Then \exists generalized Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda}$$

A symmetric in Π_{κ} -space \mathcal{K} , $n_{\pm}(A)=1$, A_0 self-adj. extension in \mathcal{K} . Then Q-function/Weyl function m is generalized Nevanlinna function. Assume \widetilde{A} self-adjoint extension in $\Pi_{\widetilde{\kappa}}$ -space $\widetilde{\mathcal{K}}$, $\mathcal{K} \subset \widetilde{\mathcal{K}}$.

Then \exists generalized Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda}$$

and Main Theorem still holds: $\mu \in \sigma_p(\widetilde{A}) \Longleftrightarrow$

- (i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$
- or (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$.

A symmetric in Π_{κ} -space \mathcal{K} , $n_{\pm}(A)=1$, A_0 self-adj. extension in \mathcal{K} . Then Q-function/Weyl function m is generalized Nevanlinna function. Assume \widetilde{A} self-adjoint extension in $\Pi_{\widetilde{\kappa}}$ -space $\widetilde{\mathcal{K}}$, $\mathcal{K} \subset \widetilde{\mathcal{K}}$.

Then \exists generalized Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda}$$

and Main Theorem still holds: $\mu \in \sigma_p(\widetilde{A}) \Longleftrightarrow$

(i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$

or (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$.

Sign type of eigenspace (one-dimensional)

(i)
$$\lim_{\lambda \hat{\to} \mu} \frac{m(\lambda) + \tau(\lambda)}{\lambda - \mu}$$
 or (ii) $\lim_{\lambda \hat{\to} \mu} \frac{-m(\lambda)^{-1} - \tau(\lambda)^{-1}}{\lambda - \mu}$.

A symmetric in Π_{κ} -space \mathcal{K} , $n_{\pm}(A)=1$, A_0 self-adj. extension in \mathcal{K} . Then Q-function/Weyl function m is generalized Nevanlinna function. Assume \widetilde{A} self-adjoint extension in $\Pi_{\widetilde{\kappa}}$ -space $\widetilde{\mathcal{K}}$, $\mathcal{K} \subset \widetilde{\mathcal{K}}$.

Then \exists generalized Nevanlinna function $\lambda \mapsto \tau(\lambda)$

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \frac{1}{m(\lambda) + \tau(\lambda)} (\cdot, \varphi_{\overline{\lambda}}) \varphi_{\lambda}$$

and Main Theorem still holds: $\mu \in \sigma_p(\widetilde{A}) \Longleftrightarrow$

(i) μ generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$

or (ii) μ generalized pole of $\lambda \mapsto m(\lambda)$ and $\lambda \mapsto \tau(\lambda)$.

Sign type of eigenspace (one-dimensional)

(i)
$$\lim_{\lambda \hat{\to} \mu} \frac{m(\lambda) + \tau(\lambda)}{\lambda - \mu}$$
 or (ii) $\lim_{\lambda \hat{\to} \mu} \frac{-m(\lambda)^{-1} - \tau(\lambda)^{-1}}{\lambda - \mu}$.

Main theorem holds in Krein space if $A_0, \widetilde{A} \operatorname{local} \Pi_{\kappa}$ spectral properties!

Main theorem holds in Krein space if $A_0, \widetilde{A} \operatorname{local} \Pi_{\kappa}$ spectral properties!

* A_0 , \widetilde{A} locally definitizable operators of type π_+ ;

Main theorem holds in Krein space if $A_0, \widetilde{A} \operatorname{local} \Pi_{\kappa}$ spectral properties!

- * A_0 , \widetilde{A} locally definitizable operators of type π_+ ;
- $* m, \tau$ local N_{κ} -functions

Main theorem holds in Krein space if $A_0, \widetilde{A} \text{ local } \Pi_{\kappa}$ spectral properties!

- * A_0 , \widetilde{A} locally definitizable operators of type π_+ ;
- $*m, \tau \text{ local } N_{\kappa}\text{-functions, cf. recent papers of}$

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint extension in \mathcal{K} . Then Q/Weyl function m is $n \times n$ -matrix (generalized) Nevanlinna function.

 $A\subset A^*$, $n_\pm(A)=n<\infty$, A_0 self-adjoint extension in $\mathcal K$. Then Q/Weyl function m is $n\times n$ -matrix (generalized) Nevanlinna function. For $\widetilde A=\widetilde A^*$ in $\widetilde \mathcal K$ again

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*,$$

 $A\subset A^*$, $n_\pm(A)=n<\infty$, A_0 self-adjoint extension in $\mathcal K$. Then Q/Weyl function m is $n\times n$ -matrix (generalized) Nevanlinna function. For $\widetilde A=\widetilde A^*$ in $\widetilde \mathcal K$ again

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*,$$

but τ (generalized) Nevanlinna relation family.

 $A\subset A^*$, $n_\pm(A)=n<\infty$, A_0 self-adjoint extension in $\mathcal K$. Then Q/Weyl function m is $n\times n$ -matrix (generalized) Nevanlinna function. For $\widetilde A=\widetilde A^*$ in $\widetilde \mathcal K$ again

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*,$$

but τ (generalized) Nevanlinna relation family.

 Π_{κ} -case: [Krein, Langer 71] Derkach, Dijksma, Langer, Sorjonen, Snoo...

 $A\subset A^*$, $n_\pm(A)=n<\infty$, A_0 self-adjoint extension in $\mathcal K$. Then Q/Weyl function m is $n\times n$ -matrix (generalized) Nevanlinna function. For $\widetilde A=\widetilde A^*$ in $\widetilde \mathcal K$ again

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*,$$

but τ (generalized) Nevanlinna relation family.

 Π_{κ} -case: [Krein, Langer 71] Derkach, Dijksma, Langer, Sorjonen, Snoo...

Krein space case with local Π_{κ} -properties [B. Luger Trunk 07]

 $A\subset A^*$, $n_\pm(A)=n<\infty$, A_0 self-adjoint extension in $\mathcal K$. Then Q/Weyl function m is $n\times n$ -matrix (generalized) Nevanlinna function. For $\widetilde A=\widetilde A^*$ in $\widetilde \mathcal K$ again

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*,$$

but τ (generalized) Nevanlinna relation family.

 Π_{κ} -case: [Krein,Langer 71] Derkach,Dijksma,Langer,Sorjonen,Snoo.. Krein space case with local Π_{κ} -properties [B. Luger Trunk 07]

Remark If $\mathcal{K}, \widetilde{\mathcal{K}}$ Hilbert spaces, $\widetilde{A} \cap A_0 = A$, then τ matrix-function.

 $A\subset A^*$, $n_\pm(A)=n<\infty$, A_0 self-adjoint extension in $\mathcal K$. Then Q/Weyl function m is $n\times n$ -matrix (generalized) Nevanlinna function. For $\widetilde A=\widetilde A^*$ in $\widetilde \mathcal K$ again

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*,$$

but τ (generalized) Nevanlinna relation family.

 Π_{κ} -case: [Krein,Langer 71] Derkach,Dijksma,Langer,Sorjonen,Snoo.. Krein space case with local Π_{κ} -properties [B. Luger Trunk 07]

Remark If K, \widetilde{K} Hilbert spaces, $\widetilde{A} \cap A_0 = A$, then τ matrix-function. What about (local) Pontryagin space case:

 $A\subset A^*$, $n_\pm(A)=n<\infty$, A_0 self-adjoint extension in $\mathcal K$. Then Q/Weyl function m is $n\times n$ -matrix (generalized) Nevanlinna function. For $\widetilde A=\widetilde A^*$ in $\widetilde \mathcal K$ again

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*,$$

but τ (generalized) Nevanlinna relation family.

 Π_{κ} -case: [Krein,Langer 71] Derkach,Dijksma,Langer,Sorjonen,Snoo.. Krein space case with local Π_{κ} -properties [B. Luger Trunk 07]

Remark If K, \widetilde{K} Hilbert spaces, $\widetilde{A} \cap A_0 = A$, then τ matrix-function. What about (local) Pontryagin space case: ???.

 $A\subset A^*$, $n_\pm(A)=n<\infty$, A_0 self-adjoint extension in $\mathcal K$. Then Q/Weyl function m is $n\times n$ -matrix (generalized) Nevanlinna function. For $\widetilde A=\widetilde A^*$ in $\widetilde \mathcal K$ again

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*,$$

but τ (generalized) Nevanlinna relation family.

 Π_{κ} -case: [Krein,Langer 71] Derkach,Dijksma,Langer,Sorjonen,Snoo.. Krein space case with local Π_{κ} -properties [B. Luger Trunk 07]

Remark If K, \widetilde{K} Hilbert spaces, $\widetilde{A} \cap A_0 = A$, then τ matrix-function. What about (local) Pontryagin space case: ???.

We will only consider the case of a matrix-function τ !

Let au be an n imes n-matrix (generalized) Nevanlinna function

Let τ be an $n \times n$ -matrix (generalized) Nevanlinna function

<u>Definition</u> We say τ has a <u>generalized value</u> at $\mu \in \mathbb{R}$ if

$$\lim_{\lambda \hat{\to} \mu} \tau(\lambda) \quad \text{and} \quad \lim_{\lambda, \eta \hat{\to} \mu} \frac{\tau(\lambda) - \tau(\eta)^*}{\lambda - \overline{\eta}} \quad \text{exist.}$$

Let τ be an $n \times n$ -matrix (generalized) Nevanlinna function

<u>Definition</u> We say τ has a <u>generalized value</u> at $\mu \in \mathbb{R}$ if

$$\lim_{\lambda \hat{\to} \mu} \tau(\lambda) \quad \text{and} \quad \lim_{\lambda, \eta \hat{\to} \mu} \frac{\tau(\lambda) - \tau(\eta)^*}{\lambda - \overline{\eta}} \quad \text{exist.}$$

Proposition The usual operator representation

$$\tau(\mu) = \text{Re}\tau(i) + \gamma'^* (\mu + (\mu^2 + 1)(T_0 - \mu)^{-1})\gamma'$$

holds for generalized values $\tau(\mu)$.

Let τ be an $n \times n$ -matrix (generalized) Nevanlinna function

<u>Definition</u> We say τ has a <u>generalized value</u> at $\mu \in \mathbb{R}$ if

$$\lim_{\lambda \hat{\to} \mu} \tau(\lambda) \quad \text{and} \quad \lim_{\lambda, \eta \hat{\to} \mu} \frac{\tau(\lambda) - \tau(\eta)^*}{\lambda - \overline{\eta}} \quad \text{exist.}$$

Proposition The usual operator representation

$$\tau(\mu) = \text{Re}\tau(i) + \gamma'^* (\mu + (\mu^2 + 1)(T_0 - \mu)^{-1})\gamma'$$

holds for generalized values $\tau(\mu)$. Note: $\mu \in \sigma_c(T_0)$ or $\mu \in \rho(T_0)$.

Let τ be an $n \times n$ -matrix (generalized) Nevanlinna function

<u>Definition</u> We say τ has a <u>generalized value</u> at $\mu \in \mathbb{R}$ if

$$\lim_{\lambda \hat{\to} \mu} \tau(\lambda) \quad \text{and} \quad \lim_{\lambda, \eta \hat{\to} \mu} \frac{\tau(\lambda) - \tau(\eta)^*}{\lambda - \overline{\eta}} \quad \text{exist.}$$

Proposition The usual operator representation

$$\tau(\mu) = \text{Re}\tau(i) + \gamma'^* (\mu + (\mu^2 + 1)(T_0 - \mu)^{-1})\gamma'$$

holds for generalized values $\tau(\mu)$. Note: $\mu \in \sigma_c(T_0)$ or $\mu \in \rho(T_0)$.

Proposition τ has generalized value at $\mu \iff \exists$ interval Δ , $\mu \in \Delta$:

$$\tau(\lambda) = \int_{\Delta} \frac{1}{t - \lambda} d\Sigma(t) + H_{\Delta}(\lambda), \quad \int_{\Delta} \frac{1}{(t - \mu)^2} d\Sigma(t) < \infty,$$

 H_{Δ} holomorphic on Δ , Σ nondecreasing, left-cont. $n \times n$ -matrix fct.

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$, $P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*$.

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$, $P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) \left(m(\lambda) + \tau(\lambda)\right)^{-1} \gamma(\overline{\lambda})^*$.

Assumption: τ (gen.) Nevanlinna function (instead relation family).

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$, $P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*$.

Assumption: τ (gen.) Nevanlinna function (instead relation family).

Theorem If τ has generalized value at μ , then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$,

$$P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*.$$

Assumption: τ (gen.) Nevanlinna function (instead relation family).

Theorem If τ has generalized value at μ , then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

Summary

* Scalar case:

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$, $P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) \left(m(\lambda) + \tau(\lambda)\right)^{-1} \gamma(\overline{\lambda})^*$.

Assumption: τ (gen.) Nevanlinna function (instead relation family).

Theorem If τ has generalized value at μ , then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu$$
 generalized zero of $\lambda \mapsto m(\lambda) + \tau(\lambda)$

Summary

* Scalar case: Complete description of $\sigma_p(\widetilde{A})$ with analytic properties of m and τ in Hilbert/Pontryagin spaces (+ special Krein space setting)

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$, $P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*$.

Assumption: τ (gen.) Nevanlinna function (instead relation family).

Theorem If τ has generalized value at μ , then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

- * Scalar case: Complete description of $\sigma_p(\tilde{A})$ with analytic properties of m and τ in Hilbert/Pontryagin spaces (+ special Krein space setting)
- * Matrix case:

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$, $P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*$.

Assumption: τ (gen.) Nevanlinna function (instead relation family).

Theorem If τ has generalized value at μ , then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

- * Scalar case: Complete description of $\sigma_p(\widetilde{A})$ with analytic properties of m and τ in Hilbert/Pontryagin spaces (+ special Krein space setting)
- * Matrix case: Description for $\sigma_p(\widetilde{A})$ for real points where τ has a generalized value

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$, $P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) (m(\lambda) + \tau(\lambda))^{-1} \gamma(\overline{\lambda})^*$.

Assumption: τ (gen.) Nevanlinna function (instead relation family).

Theorem If τ has generalized value at μ , then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

- * Scalar case: Complete description of $\sigma_p(\widetilde{A})$ with analytic properties of m and τ in Hilbert/Pontryagin spaces (+ special Krein space setting)
- * Matrix case: Description for $\sigma_p(\widetilde{A})$ for real points where τ has a generalized value
- * Applicable for analysis of boundary value problems,

 $A \subset A^*$, $n_{\pm}(A) = n < \infty$, A_0 self-adjoint ext. in \mathcal{K} , $\widetilde{A} = \widetilde{A}^*$ in $\widetilde{\mathcal{K}}$, $P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_0 - \lambda)^{-1} - \gamma(\lambda) \left(m(\lambda) + \tau(\lambda)\right)^{-1} \gamma(\overline{\lambda})^*$.

Assumption: τ (gen.) Nevanlinna function (instead relation family).

Theorem If τ has generalized value at μ , then

$$\mu \in \sigma_p(\widetilde{A}) \iff \mu \text{ generalized zero of } \lambda \mapsto m(\lambda) + \tau(\lambda)$$

- * Scalar case: Complete description of $\sigma_p(\widetilde{A})$ with analytic properties of m and τ in Hilbert/Pontryagin spaces (+ special Krein space setting)
- * Matrix case: Description for $\sigma_p(\widetilde{A})$ for real points where τ has a generalized value
- * Applicable for analysis of boundary value problems, e.g. (indefinite) Sturm-Liouville operators with λ -dependent boundary conditions