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(Ã− λ)−1 = (A0 − λ)−1 − 1

m(λ) + τ
(·, ϕλ)ϕλ,

where m is a Q-function/Weyl function, ϕλ ∈ ker (A∗ − λ);

m Nevanlinna fct: Im m(λ) > 0 on C+, m(λ) = m(λ), hol. on ρ(A0)



Krein’s formula for canonical extensions

A simple symmetric operator in Hilbert space H,n+(A) = n−(A) = 1,
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PH(Ã− λ)−1 �H= (A0 − λ)−1 − 1

m(λ) + τ (λ)
(·, ϕλ)ϕλ,
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λ-dependent boundary value problems

Ã in Krein’s formula is a linearization of an “abstract” boundary value

problem with λ 7→ τ (λ) in the boundary condition.

Example Af = −f ′′+ qf |{f (0) = f ′(0) = 0} in L2(0,∞), LP at ∞,

then A∗ = −f ′′ + qf and m is usual Titchmarsh-Weyl function

(if e.g. q = 0 then m(λ) = i
√

λ).

For g ∈ L2(0,∞) the solution f ∈ L2(0,∞) of

(A∗ − λ)f = −f ′′ + (q − λ)f = g, τ (λ)f (0) + f ′(0) = 0,

is given by

f := PL2

(
Ã− λ

)−1 �L2 g.

∗ Spectral properties of Ã correspond to solvability of BVP, e.g.

Nontrivial solutions of homogeneous problem = Eigenvectors of Ã.

∗ Good news: σp(Ã) can be described with m and τ .
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(i) µ generalized zero of λ 7→ m(λ) + τ (λ)

or (ii) µ generalized pole of λ 7→ m(λ) and λ 7→ τ (λ).



Pontryagin space generalization

A symmetric in Πκ-space K, n±(A) = 1, A0 self-adj. extension in K.

Then Q-function/Weyl function m is generalized Nevanlinna function.
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∗ A0, Ã locally definitizable operators of type π+;



Krein space generalization

Main theorem holds in Krein space if A0, Ã local Πκ spectral properties!
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We will only consider the case of a matrix-function τ !
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Let τ be an n× n-matrix (generalized) Nevanlinna function

Definition We say τ has a generalized value at µ ∈ R if

lim
λ→̂µ

τ (λ) and lim
λ,η→̂µ

τ (λ)− τ (η)∗

λ− η
exist.

Proposition The usual operator representation

τ (µ) = Reτ (i) + γ′∗
(
µ + (µ2 + 1)(T0 − µ)−1)γ′

holds for generalized values τ (µ). Note: µ ∈ σc(T0) or µ ∈ ρ(T0).

Proposition τ has generalized value at µ ⇐⇒ ∃ interval ∆, µ ∈ ∆:

τ (λ) =

∫
∆

1

t− λ
dΣ(t) + H∆(λ),

∫
∆

1

(t− µ)2
dΣ(t) < ∞,

H∆ holomorphic on ∆, Σ nondecreasing, left-cont. n×n-matrix fct.
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PH(Ã− λ)−1 �H= (A0 − λ)−1 − γ(λ)
(
m(λ) + τ (λ)

)−1
γ(λ)∗.

Assumption: τ (gen.) Nevanlinna function (instead relation family).



Analytic characterization of σp(Ã) for n±(A) = n < ∞
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A ⊂ A∗, n±(A) = n < ∞, A0 self-adjoint ext. in K, Ã = Ã∗ in K̃,
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of m and τ in Hilbert/Pontryagin spaces (+ special Krein space setting)

∗ Matrix case: Description for σp(Ã) for real points where τ has a
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A ⊂ A∗, n±(A) = n < ∞, A0 self-adjoint ext. in K, Ã = Ã∗ in K̃,
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Summary

∗ Scalar case: Complete description of σp(Ã) with analytic properties

of m and τ in Hilbert/Pontryagin spaces (+ special Krein space setting)

∗ Matrix case: Description for σp(Ã) for real points where τ has a

generalized value

∗ Applicable for analysis of boundary value problems, e.g. (indefinite)

Sturm-Liouville operators with λ-dependent boundary conditions


