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* Spectral properties of A correspond to solvability of BVP, e.g.

Nontrivial solutions of homogeneous problem = Eigenvectors of A

~

+ Good news: 0p(A) can be described with m and 7.
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x m, T local Ng-functions, cf. recent papers of
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A C A%, nt(A) = n < oo, Ay self-adjoint extension in . Then

() /Weyl function m is n X n-matrix (generalized) Nevanlinna function.

For A= A* in K again
Pr(A =275 = (Ag = M7= 2N (m(A) + 7(A) ()%,

but 7 (generalized) Nevanlinna relation family.

[14-case: [Krein,Langer 71] Derkach,Dijksma,Langer,Sorjonen,Snoo..

Krein space case with local II,-properties [B. Luger Trunk 07]

Remark If /C, K Hilbert spaces, AN Ay = A, then 7 matrix-function.
What about (local) Pontryagin space case: 777,

We will only consider the case of a matrix-function 7 |
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7(w) = Rer (i) + " (u+ (u* + 1)(Ty — p) 1)y

holds for generalized values 7(). Note: u € o.(Tp) or pu € p(1y).



Generalized values

Let 7 be an n X n-matrix (generalized) Nevanlinna function

Definition We say 7 has a generalized value at u € R if

L S
lim 7(A\) and  lim T 7_(77)

exist.

Proposition The usual operator representation

7(w) = Rer (i) + " (u+ (u* + 1)(Ty — p) 1)y

holds for generalized values 7(). Note: u € o.(Tp) or pu € p(1y).

Proposition 7 has generalized value at <= d interval A, € A:

1 1

O GRS I "

H A holomorphic on A, > nondecreasing, left-cont. n X n-matrix fct.

d¥(t) < oo,
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Analytic characterization of 0,(A) for n4(A) =n < oo

A C A* ne(A) = n < oo, Ay self-adjoint ext. in K, A = A* in K,
~ . . —1 O\ ok
Pr(A= X" Tr= (Ao = 2) 7 =) (mA) +7(0) (V)"

Assumption: 7 (gen.) Nevanlinna function (instead relation family).




—~

Analytic characterization of oy(A) for n4(A) =n < o0
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+ Scalar case: Complete description of o;)(A) with analytic properties

of m and 7 in HiIbert/Pontryagin Spaces (+ special Krein space setting)
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Analytic characterization of oy(A) for n4(A) =n < o0

A C A* ne(A) = n < oo, Ay self-adjoint ext. in K, A = A* in K,
~ . . —1 O\ ok
Pr(A= X" Tr= (Ao = 2) 7 =) (mA) +7(0) (V)"

Assumption: 7 (gen.) Nevanlinna function (instead relation family).

Theorem If 7 has generalized value at u, then

—~

p e op(A) <= generalized zero of A — m(\) + 7(\)

Summary

~

+ Scalar case: Complete description of o;)(A) with analytic properties
of m and 7 in HiIbert/Pontryagin Spaces (+ special Krein space setting)

x Matrix case:
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Analytic characterization of oy(A) for n4(A) =n < o0
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A C A", nt(A) =n < oo, Ay self-adjoint ext. in K, A= A*in IC,
~ . . _1 O\ ok
Pr(A=XN)"" T= (Ao = X7 =y (m(N) +7(N)  v(V)*.

Assumption: 7 (gen.) Nevanlinna function (instead relation family).

Theorem If 7 has generalized value at u, then
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p e op(A) <= generalized zero of A — m(\) + 7(\)

Summary

~

+ Scalar case: Complete description of o;)(A) with analytic properties
of m and 7 in HiIbert/Pontryagin Spaces (+ special Krein space setting)
+ Matrix case: Description for o;)(A) for real points where 7 has a

generalized value
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A C A", nt(A) =n < oo, Ay self-adjoint ext. in K, A= A*in IC,
~ . . _1 O\ ok
Pr(A=XN)"" T= (Ao = X7 =y (m(N) +7(N)  v(V)*.

Assumption: 7 (gen.) Nevanlinna function (instead relation family).

Theorem If 7 has generalized value at u, then

—~

p e op(A) <= generalized zero of A — m(\) + 7(\)

Summary

~

+ Scalar case: Complete description of o;)(A) with analytic properties
of m and 7 in Hilbert/Pontryagin spaces (+ special Krein space setting)

« Matrix case: Description for ap(g) for real points where 7 has a
generalized value

x Applicable for analysis of boundary value problems,
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Analytic characterization of oy(A) for n4(A) =n < o0

~

A C A", nt(A) =n < oo, Ay self-adjoint ext. in K, A= A*in IC,
~ . . _1 O\ ok
Pr(A=XN)"" T= (Ao = X7 =y (m(N) +7(N)  v(V)*.

Assumption: 7 (gen.) Nevanlinna function (instead relation family).

Theorem If 7 has generalized value at p, then

—~

p e op(A) <= generalized zero of A — m(\) + 7(\)

Summary

~

+ Scalar case: Complete description of o;)(A) with analytic properties
of m and 7 in Hilbert/Pontryagin spaces (+ special Krein space setting)

« Matrix case: Description for ap(g) for real points where 7 has a
generalized value

« Applicable for analysis of boundary value problems, e.g. (indefinite)

Sturm-Liouville operators with A-dependent boundary conditions



