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Coupled mode system with symmetries.

General symmetric 1-D coupled-mode system:

{
i(ut + ux) + v = ∂ūW (u, ū, v, v̄)
i(vt − vx) + u = ∂v̄W (u, ū, v, v̄)

◦ P1: W is invariant with respect to the gauge transformation:
(u, v) 7→ eiα(u, v), for all α ∈ R

◦ P2: W is symmetric with respect to the interchange: (u, v) 7→ (v, u)

◦ P3: W is analytic in its variables near u = v = 0, such thatW = O(4)
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General structure of the nonlinearity W .

◦ If W ∈ C and property P1 is satisfied, such that

W (u, ū, v, v̄) = W
(
ueiα, ūe−iα, veiα, v̄e−iα

)
, ∀α ∈ R, then

W = W (|u|2, |v|2, uv̄).

◦ If W ∈ R and property P1 is met, then

W = W (|u|2, |v|2, uv̄ + vū).

◦ If W ∈ R and properies P1-P3 are satisfied, then

W = W (|u|2 + |v|2, |u|2|v|2, uv̄ + vū).
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Special cases of the nonlinearity W .

W =
a1

2
(|u|4+ |v|4)+a2|u|2|v|2+a3(|u|2+ |v|2)(vū+ v̄u)+

a4

2
(vū+ v̄u)2

◦ a1, a2 6= 0 and a3 = a4 = 0 represents a standard coupled-mode
system for a sub-harmonic resonance, e.g. in the context of optical
gratings.

(C.M. de Sterke and J.E. Sipe, “Gap solitons”, Progress in Optics, 33, 203 (1994))

◦ a1 = a3 = a4 = 0 system is integrable, inverse scattering is applied
and is referred to as the massive Thirring model.

(D.J. Kaup and A.C. Newell, ”On the Coleman correspondence and the solution of

the Massive Thirring model”, Lett. Nuovo Cimento 20, 325–331 (1977))
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Spectral stability of the stationary solution.

◦ A stationary solution u∗(x) of a dynamical system u̇ = F (u) is
spectrally stable if the spectrum of the linear operator obtained
by linearizing F (u) around u∗ has no strictly positive real part.

◦ A stationary solution u∗(x) of a dynamical system u̇ = F (u) is
Lyapunov stable if for every ε > 0 there is a δ > 0 such that
if ||u∗(x)− u(x, t)||t=0 < δ, then ||u∗(x)− u(x, t)|| < ε for all t .

Spectral stability is a necessary condition for nonlinear stability.

5



Hamiltonian structure of the coupled mode system.

◦We rewrite the coupled-mode system as a Hamiltonian system in complex-
valued matrix-vector notations:

du

dt
= J∇H(u),

where u = (u, ū, v, v̄)T ,

J =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 = −JT ,

and H(u, ū, v, v̄) =
∫
R h(u, ū, v, v̄)dx is the Hamiltonian functional

with the density:

h = W (u, ū, v, v̄)− (vū + uv̄) +
i

2
(uūx − uxū)− i

2
(vv̄x − vxv̄).
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Conserved quantities of the coupled-mode system.

◦ The Hamiltonian H(u, ū, v, v̄) is constant in time t ≥ 0. Due to the
gauge invariance, the coupled-mode system has another constant of
motion Q(u, ū, v, v̄), where

Q =

∫
R

(
|u|2 + |v|2

)
dx.

◦ Due to the translational invariance, the coupled-mode system has yet
another constant of motion P (u, ū, v, v̄), where

P =
i

2

∫
R

(uūx − uxū + vv̄x − vxv̄) dx.

◦ In applications, the quantities Q and P are referred to as the power
and momentum of the coupled-mode system.
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Classes of Hamiltonian evolution equations.

◦ Linearized Hamiltonian PDE
dv

dt
= JHv

◦ Nonlinear Schrödinger equation (NLS)

iψt = −ψxx + U(x)ψ + F (|ψ|2)ψ
Bounds on complex eigenvalues are given by the Pontryagin theorem.

◦ Korteweg-De Vries equation (KdV)

ut + ∂x(f (u) + uxx) = 0

Bounds on complex eigenvalues are given by the Pontryagin theorem.

◦ Coupled Mode System(CM)

i(ut + ux) + v + ∂ūW (u, ū, v, v̄) = 0,

i(vt − vx) + u + ∂v̄W (u, ū, v, v̄) = 0.

Can we apply Krein space theory for this case ?
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General characterization of 1-D gap solitons

Stationary solutions of the coupled-mode system:{
ust(x, t) = u0(x + s)eiωt+iθ

vst(x, t) = v0(x + s)eiωt+iθ

◦ (s, θ) ∈ R2 are arbitrary parameters and −1 < ω < 1

◦ If |u0|, |v0| → 0 as |x| → ∞, then u0 = v̄0

◦ Analytical expressions are available for homogeneous functionsW . For
example if (a1 = 1, a2 = a3 = a4 = 0)

u0 =

√
2(1− ω)

(cosh βx + i
√
µ sinh βx)

, µ =
1− ω

1 + ω
, β =

√
1− ω2

◦ Explicit gap solitons are stationary solutions. Traveling gap solitons
are only available implicitly except few special examples.
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Linearized stability problem for 1-D gap solitons

◦ Standard linearization, e.g.

u(x, t) = eiωt
(
u0(x) + U1(x)eλt

)
◦ Eigenvalue problem

iσHωU = λU, U ∈ C4,

where

Hω = D(∂x) +D2W [u0(x)], σ = diag(1,−1, 1,−1)

and D(∂x) is the four-component Dirac operator in 1-D

D =


ω − i∂x 0 −1 0

0 ω + i∂x 0 −1
−1 0 ω + i∂x 0
0 −1 0 ω − i∂x


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Structure of kernels of Hω and L

◦ Due to the gauge and translational symmetries, the energy operator
Hω has at least a two-dimensional kernel with two eigenvectors:

U1 = σu0(x), U2 = u′0(x).

◦ Due to the Hamiltonian structure, the linearized operator iσHω has
at least four-dimensional generalized kernel with two eigenvectors and
two generalized eigenvectors.

U3 = σ
∂

∂ω
u0(x), U4 = −1

2
xD−1 u0(x).

( D.E. Pelinovsky, ”Inertia law for spectral stability of solitary waves in coupled

nonlinear Schrodinger equations”, Proc. Roy. Soc. Lond. A 461, 783–812 (2005))
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The location of the continuous spectrum.

◦ The continuous spectrum for the linearized coupled-mode system can
be found from the no-potential case V (x) ≡ 0.

◦ It consists of two pairs of symmetric branches on the imaginary axis
λ ∈ iR for |Im(λ)| > 1− ω and |Im(λ)| > 1 + ω .

◦ In the potential case V (x) 6= 0, the continuous spectrum does not
move, but the discrete spectrum appears.

◦ The discrete spectrum is represented by symmetric pairs or quartets
of isolated non-zero eigenvalues and zero eigenvalue of algebraic mul-
tiplicity four for the generalized kernel of iσHω
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Block-diagonalization of the stability problem

◦ Exists the orthogonal similarity transformation S that
simultaneously block-diagonalizes the energy operator Hω and the lin-
earized Hamiltonian L = iσHω

S−1HωS =

(
H+ 0
0 H−

)
S−1iσHωS = iσ

(
0 H−
H+ 0

)
.

Where H± are two-by-two Dirac operators:

H± =

(
ω − i∂x ∓1
∓1 ω + i∂x

)
+ V±(x)

and

V± =

 ∂2
ū0u0

± ∂2
ū0v̄0

∂2
ū2

0
± ∂2

ū0v0

∂2
u2

0
± ∂2

u0v̄0
∂2
ū0u0

± ∂2
u0v0

W (u0, ū0, v0, v̄0).
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Eigenvalues and instability bifurcations

◦ Eigenvalues and instability bifurcations for the symmetric
quadric potential W with a1 = 1 and a2 = a3 = a4 = 0.
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Stable and unstable regime.

◦ Light propagation in the optical cable.
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The Dirac equation in the vacuum.

◦ The conclusion that physical vacuum had nontrivial structure was first
made by Dirac on the basis of the equation:

(iγµ∂µ −m)Ψ(x) = 0

where γµ = (γ0, γ) are γ-Dirac matrices ∂µ = (∂0, ∂1) = (∂t, ∂x),
m is a fermion mass and Ψ(x) is a 4−component spinor field.

◦ The nonlinear Dirac equation in vacuum

(iγµ∂µ − g(ΨΨ))Ψ(x) = 0

where g(0) = m > 0

◦We can rewrite this as a system{
i∂tΨ1 = ∂xΨ2 + g(|Ψ1|2 − |Ψ2|2)Ψ1,

i∂tΨ2 = −∂xΨ1 − g(|Ψ1|2 − |Ψ2|2)Ψ2.
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The most simple case of the nonlinearity g(x) = x.

◦ Potential function W takes the form

W =
1

2
(Ψ1Ψ2 + Ψ1Ψ2)

2.

◦ System takes the form{
i(∂t + ∂x)Ψ1 + Ψ2 = ∂Ψ1

W

i(∂t − ∂x)Ψ2 + Ψ1 = ∂Ψ2
W.

◦ Stationary solutions can be found explicitly

Ψ0
1(x) =

√
Q(x) exp[−iΘ(x)], Ψ0

2(x) = Ψ0
1(x),

where

Q(x) = (1 + ω)
(cosh2(βx) + µ sinh2(βx))

(cosh2(βx)− µ sinh2(βx))2
,

cos(Θ) =
cosh(βx)√

( cosh2(βx) + µ sinh2(βx))
, β =

√
1− ω2, µ =

1 + ω

1− ω
.
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Diagonalization and spectral analysis for the linearized problem.

◦ Block-diagonalized energy operator Hω = diag(H+, H−) where

H+ =

(
−ω − i∂x + 2|Ψ0|2 Ψ2

0 + 3Ψ0
2 − 1

Ψ0
2

+ 3Ψ2
0 − 1 −ω + i∂x + 2|Ψ0|2

)
,

H− =

(
−ω − i∂x 1− Ψ2

0 − Ψ0
2

1− Ψ2
0 − Ψ0

2 −ω + i∂x

)
.

◦ Spectral analysis of the non self-adjoint operator L

L = i σ

(
0 H+

H− 0

)
.
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Double-hump soliton and instability bifurcation
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