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General symmetric 1-D coupled-mode system:

i(ug +ug) +v=0W
i(?}t — ’Ux) +u = OgW

o P1: W is invariant with respect to the gauge transformation:
(u,v) — e'"*u,v), for all @ € R

o P2: W is symmetric with respect to the interchange: (u,v) — (v, u)

o P3: W is analytic in its variables near u = v = 0, such that W = O(4)



oIf W € C and property P1 is satisfied, such that
W(u,u,v,0) =W (uem, ue ", vem,@e_m) . Ya € R, then

W = W(lul*, [o]?, uv).

oIf W € R and property P1 is met, then
W =W(|ul?, |v|?, ut + va).

oIf W € R and properies P1-P3 are satisfied, then
W =W (ul> + |v]%, [u*|v]?, uv + va).



a4

a
W = %(\u|4+ o) + aolul?|v)? +as(|ul* + |v]?) (va+vu) +?(vﬂ+@u)2

oay,as # 0 and ag = a4 = 0 represents a standard coupled-mode
system for a sub-harmonic resonance, e.g. in the context of optical
gratings.

(C.M. de Sterke and J.E. Sipe, “Gap solitons”, Progress in Optics, 33, 203 (1994))

oa; = a3 = a4 = 0 system is integrable, inverse scattering is applied
and is referred to as the massive Thirring model.

(D.J. Kaup and A.C. Newell, ”On the Coleman correspondence and the solution of
the Massive Thirring model”, Lett. Nuovo Cimento 20, 325-331 (1977))



o A stationary solution u*(x) of a dynamical system u = F(u) is
spectrally stable if the spectrum of the linear operator obtained
by linearizing F'(u) around u* has no strictly positive real part.

o A stationary solution u*(x) of a dynamical system @ = F(u) is
Lyapunov stable if for every € > 0 there is a 0 > 0 such that
if ||u™(x) — u(z,t)||i=0 < 6, then ||u*(x) — u(z,t)|| < eforallt.

Spectral stability is a necessary condition for nonlinear stability:.



o We rewrite the coupled-mode system as a Hamiltonian system in complex-
valued matrix-vector notations:

du

—=JVH

b (u),

Whereu:(U,ﬂ,fU,@)Ta

0 —1 0 0 |
lioo00 | g
T=loo0o0—i| =7

00 i 0

and H(u,u,v,0) = [ph(u,@,v,0)dr is the Hamiltonian functional
with the density:
h =W(u,u,v,0) — (va + uv) + %(uﬂx — Upl) — %(v@x — VD).



o The Hamiltonian H (u,u,v,v) is constant in time ¢ > 0. Due to the
gauge invariance, the coupled-mode system has another constant of
motion Q(u, u, v, V), where

Q = /R (]u\Z + |v]2) dx.

o Due to the translational invariance, the coupled-mode system has yet
another constant of motion P(u, @, v,?), where

Pzz/ (utly — Uzt + VUy — vV 0) dex.
2 JR

o In applications, the quantities () and P are referred to as the power
and momentum of the coupled-mode system.



o Linearized Hamiltonian PDE

dv
W iH
dt v

o Nonlinear Schrodinger equation (NLS)
Wy = =gy + U(z) + F<|¢|2)¢

Bounds on complex eigenvalues are given by the Pontryagin theorem.
o Korteweg-De Vries equation (KdV)
up + Ox(f(u) + ugy) =0
Bounds on complex eigenvalues are given by the Pontryagin theorem.
o Coupled Mode System(CM)
i(ur + ugz) + v+ OgW(u, u,v,v) =0,
i(vp —vg) +u+ W (u, u,v,v) = 0.

Can we apply Krein space theory for this case 7



Stationary solutions of the coupled-mode system:

{ ugt(,t) = ug(x + s)ewt+id

vst(x,t) = vo(x + S)eM“@

o (s,0) € R? are arbitrary parameters and —1 < w < 1
o If |ug), |vg] — 0 as |x| — oo, then ug = v

o Analytical expressions are available for homogeneous functions W. For
example if (al =1,a2 = a3 = a4 = 0)

uy = VEUE) uzl_—w, B=V1-w

(cosh B + i\ /msinh fz)’ 14+ w

o Explicit gap solitons are stationary solutions. Traveling gap solitons
are only available implicitly except few special examples.



o Standard linearization, e.g.
u(z, t) = ! (uo(x) + Ul(x)e)‘t)

o Eigenvalue problem
icH,U=\U, UeccC*
where

H, = D(0y) + D*Wlug(z)], o = diag(1,—1,1,-1)

and D(0;) is the four-component Dirac operator in 1-D

(w—¢at 0 —1 0 \
n_ 0 w + 10y 0 —1
- —1 0 w410, 0

\ 0 -1 0 w—id,)



o Due to the gauge and translational symmetries, the energy operator
H, has at least a two-dimensional kernel with two eigenvectors:

o Due to the Hamiltonian structure, the linearized operator 10 H,, has
at least four-dimensional generalized kernel with two eigenvectors and
two generalized eigenvectors.

%, 1
Us=o —uy(z), Uy=—su D1 uy(z).

( D.E. Pelinovsky, "Inertia law for spectral stability of solitary waves in coupled
nonlinear Schrodinger equations”, Proc. Roy. Soc. Lond. A 461, 783-812 (2005))



o The continuous spectrum for the linearized coupled-mode system can
be found from the no-potential case V(z) = 0.

o It consists of two pairs of symmetric branches on the imaginary axis
A €1R for [Im(A)| > 1 —w and [Im(A)| > 1+ w .

o In the potential case V(z) # 0, the continuous spectrum does not
move, but the discrete spectrum appears.

o The discrete spectrum is represented by symmetric pairs or quartets
of isolated non-zero eigenvalues and zero eigenvalue of algebraic mul-
tiplicity four for the generalized kernel of 10 H,



o Exists the orthogonal similarity transformation S that
simultaneously block-diagonalizes the energy operator H,, and the lin-
earized Hamiltonian L = 10 H,

1 (Hy 0 1. . 0 H_
S HwS—< 0 H) S ZOHWS_ZU<H+ 0 )

Where H+ are two-by-two Dirac operators:

[ w—10; TF1
Hi_( T1 w+i8m)+vi($)

and
02+ 92

(O upv( U U

0%+ 02 92+ 02

us ugvy U upv(

0%, + 02

V:l: — W(UO,I_LO,UO,Z_)O).



MNumerical eigenvalues of L, H+, H_ {w=0.362).

Mumerical sigenvaluas of L, H+. H_(w=0.008).
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o Light propagation in the optical cable.



o The conclusion that physical vacuum had nontrivial structure was first
made by Dirac on the basis of the equation:

(iv"0y — m)¥(x) =0
where 4* = (7Y, ~) are y-Dirac matrices Oy = (0p,01) = (O, Oy),
m is a fermion mass and W(x) is a 4—component spinor field.
o The nonlinear Dirac equation in vacuum
(170, — (T () = 0
where g(0) =m > 0

o We can rewrite this as a system

{ 104V = 0 W9 + g(|\I!1|2 — |\112|2)\If1,
10U = =001 — g(|W1]* — [Wo|*) Ws.



o Potential function W takes the form

1
W= (00 + U105)°,

o System takes the form

10 + 0p)V + Vg = Oy, W
i(0f — Op)Vo + Wy = 8@—2W

o Stationary solutions can be found explicitly

Wi(z) = Q) exp[—iO(x)],  Wy(x) = ¥i(),

where
_ (cosh?(Bx) + psinh®(Bz))
Qle) =1+ u))(C()s]nQ(ﬁ:l?) — psinh*(Bz))?
. ~ cosh(Bx) _ — w2 _
(0 V/(cosh?(Bx) + psinh?(Bz)) YT e



o Block-diagonalized energy operator H,, = diag(Hy, H_) where

g e =0+ 2R 0430 -1
' \11_02+3\If%—1 —w 400y + 2| T? )

. —9
o —w—z@izl—\lf%—\llo |
1 — W3 =Wy —w+id,

o Spectral analysis of the non self-adjoint operator L

. 0 Hi
L=10 (H 0 )
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