Positive operators in Krein spaces similar to self-adjoint operators in Hilbert spaces

Branko Ćurgus
Western Washington University
Bellingham, Washington, USA
curgus@gmail.com

December 8, 2006

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a complex Hilbert space.
Let $J=J^{-1} \neq I$ be self-adjoint on $(\mathcal{H},\langle\cdot, \cdot\rangle)$.
Set $[\cdot, \cdot]=\langle J \cdot, \cdot\rangle$. Then $(\mathcal{H},[\cdot, \cdot])$ is a Krein space.

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a complex Hilbert space.
Let $J=J^{-1} \neq I$ be self-adjoint on $(\mathcal{H},\langle\cdot, \cdot\rangle)$.
Set $[\cdot, \cdot]=\langle J \cdot, \cdot\rangle$. Then $(\mathcal{H},[\cdot, \cdot])$ is a Krein space.

An operator J_{1} on $(\mathcal{H},[\cdot, \cdot])$ is called a fundamental symmetry if $J_{1}=J_{1}^{-1}$ and $\left(\mathcal{H},\left[J_{1} \cdot, \cdot\right]\right)$ is a Hilbert space.

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a complex Hilbert space.
Let $J=J^{-1} \neq I$ be self-adjoint on $(\mathcal{H},\langle\cdot, \cdot\rangle)$.
Set $[\cdot, \cdot]=\langle J \cdot, \cdot\rangle$. Then $(\mathcal{H},[\cdot, \cdot])$ is a Krein space.

An operator J_{1} on $(\mathcal{H},[\cdot, \cdot])$ is called a fundamental symmetry if $J_{1}=J_{1}^{-1}$ and $\left(\mathcal{H},\left[J_{1} \cdot, \cdot\right]\right)$ is a Hilbert space.

With $\mathcal{H}_{ \pm}=\left(I \pm J_{1}\right) \mathcal{H}$,
$\mathcal{H}=\mathcal{H}_{-}[\dot{+}] \mathcal{H}_{+} \quad$ is a fundamental decomposition
$P_{ \pm}=\frac{1}{2}\left(I \pm J_{1}\right)$ are the corresponding fundamental projections.

Examples.

Let $n \geq 1, w \in L_{\text {loc }}\left(\mathbb{R}^{n}\right), w>0$ a.e. on \mathbb{R}^{n}.
Set $\mathcal{H}=L^{2}\left(\mathbb{R}^{n} ; w\right), \quad\langle f, g\rangle=\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} w(x) d x$

Examples.

Let $n \geq 1, w \in L_{\mathrm{loc}}\left(\mathbb{R}^{n}\right), w>0$ a.e. on \mathbb{R}^{n}.
Set $\mathcal{H}=L^{2}\left(\mathbb{R}^{n} ; w\right), \quad\langle f, g\rangle=\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} w(x) d x$

$$
(J f)(x)=\left(\operatorname{sgn} x_{n}\right) f(x), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Examples.

Let $n \geq 1, w \in L_{\text {loc }}\left(\mathbb{R}^{n}\right), w>0$ a.e. on \mathbb{R}^{n}.
Set $\mathcal{H}=L^{2}\left(\mathbb{R}^{n} ; w\right), \quad\langle f, g\rangle=\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} w(x) d x$

$$
(J f)(x)=\left(\operatorname{sgn} x_{n}\right) f(x), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

or

$$
(J f)(x)=f(\mathrm{M} x), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

M is $n \times n$ matrix such that $\mathrm{M}^{2}=\mathrm{I}$ and $w(\mathrm{M} x)=w(x), x \in \mathbb{R}^{n}$.
For example, $(J f)(x)=f(-x), x \in \mathbb{R}^{n}$ and $w=1$.
Albaverio\&Kuzhel call this J the space parity operator.

Definition. Let $(\mathcal{H},[\cdot, \cdot])$ be a Krein space. In this talk an operator $A: \operatorname{dom}(A) \rightarrow \mathcal{H}$ is positive in $(\mathcal{H},[\cdot, \cdot])$, (or [positive] for short) if the following three conditions are satisfied

1. $\varrho(A) \neq \emptyset$.
2. A is [self-adjoint] in $(\mathcal{H},[\cdot, \cdot])$.

$$
\Leftrightarrow J A\langle\text { self-adjoint }\rangle \text { in the Hilbert space }(\mathcal{H},\langle\cdot, \cdot\rangle) .
$$

3. $[A x, x]>0$ for all $x \in \operatorname{dom}(A) \backslash\{0\}$.
$\Leftrightarrow \quad J A\langle$ positive \rangle in the Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$.

Properties of positive operators.

- $\sigma(A) \subseteq \mathbb{R}$.

Properties of positive operators.

- $\sigma(A) \subseteq \mathbb{R}$.
- A has a projection-valued spectral function E defined for all bounded intervals $\imath, \bar{\imath}=[a, b] \subset \mathbb{R} \backslash\{0\}$.

Properties of positive operators.

- $\sigma(A) \subseteq \mathbb{R}$.
- A has a projection-valued spectral function E defined for all bounded intervals $\imath, \bar{\imath}=[a, b] \subset \mathbb{R} \backslash\{0\}$.
- The spectral function may have singularities at 0 and at ∞ :

Properties of positive operators.

- $\sigma(A) \subseteq \mathbb{R}$.
- A has a projection-valued spectral function E defined for all bounded intervals $\imath, \bar{\imath}=[a, b] \subset \mathbb{R} \backslash\{0\}$.
- The spectral function may have singularities at 0 and at ∞ :

0 is a singular critical point of A if the set

$$
\{\|E(\imath)\|: \bar{\imath} \subset[-1,1] \backslash\{0\}\} \quad \text { is unbounded. }
$$

Properties of positive operators.

- $\sigma(A) \subseteq \mathbb{R}$.
- A has a projection-valued spectral function E defined for all bounded intervals $\imath, \bar{\imath}=[a, b] \subset \mathbb{R} \backslash\{0\}$.
- The spectral function may have singularities at 0 and at ∞ :

0 is a singular critical point of A if the set

$$
\{\|E(\imath)\|: \bar{\imath} \subset[-1,1] \backslash\{0\}\} \quad \text { is unbounded. }
$$

∞ is a singular critical point of A if the set

$$
\{\|E(\imath)\|: \bar{\imath} \subset \mathbb{R} \backslash(-1,1)\} \quad \text { is unbounded. }
$$

Theorem 1. Let A be a [positive] operator in the Krein space $(\mathcal{H},[\cdot, \cdot])$. The following statements are equivalent.
(a) A is similar to a 〈self-adjoint \rangle operator.

Theorem 1. Let A be a [positive] operator in the Krein space $(\mathcal{H},[\cdot, \cdot])$. The following statements are equivalent.
(a) A is similar to a 〈self-adjoint〉 operator.
(b) There exists a fundamental symmetry J_{1} on $(\mathcal{H},[\cdot, \cdot])$ such that $J_{1} A=A J_{1}$.

Theorem 1. Let A be a [positive] operator in the Krein space $(\mathcal{H},[\cdot, \cdot])$. The following statements are equivalent.
(a) A is similar to a 〈self-adjoint〉 operator.
(b) There exists a fundamental symmetry J_{1} on $(\mathcal{H},[\cdot, \cdot])$ such that $J_{1} A=A J_{1}$.
(c) 0 and ∞ are not singular critical points of A.

Theorem 1. Let A be a [positive] operator in the Krein space $(\mathcal{H},[\cdot, \cdot])$. The following statements are equivalent.
(a) A is similar to a 〈self-adjoint〉 operator.
(b) There exists a fundamental symmetry J_{1} on $(\mathcal{H},[\cdot, \cdot])$ such that $J_{1} A=A J_{1}$.
(c) 0 and ∞ are not singular critical points of A.
(d) The following two statements hold.
$(\infty) \quad \exists \mu>0$ and a [positive] homomorphism W on \mathcal{H} such that $\quad W \operatorname{dom}\left((J A)^{\mu}\right) \subseteq \operatorname{dom}\left((J A)^{\mu}\right)$.
(0) $\exists \nu>0$ and a [positive] homomorphism X on \mathcal{H} such that $\quad X \operatorname{ran}\left((A J)^{\nu}\right) \subseteq \operatorname{ran}\left((A J)^{\nu}\right)$.

Theorem 1. Let A be a [positive] operator in the Krein space $(\mathcal{H},[\cdot, \cdot])$. The following statements are equivalent.
(a) A is similar to a 〈self-adjoint〉 operator.
(b) There exists a fundamental symmetry J_{1} on $(\mathcal{H},[\cdot, \cdot])$ such that $J_{1} A=A J_{1}$.
(c) 0 and ∞ are not singular critical points of A.
(d) The following two statements hold.
$(\infty) \quad \exists \mu>0$ and a [positive] homomorphism W on \mathcal{H} such that $\quad W \operatorname{dom}\left((J A)^{\mu}\right) \subseteq \operatorname{dom}\left((J A)^{\mu}\right)$.
(0) $\exists \nu>0$ and a [positive] homomorphism X on \mathcal{H} such that $\quad X \operatorname{ran}\left((A J)^{\nu}\right) \subseteq \operatorname{ran}\left((A J)^{\nu}\right)$.

The operators from Theorem 1 we denote by $[p] s\langle s a\rangle$.

Examples of $[\mathbf{p}]_{\mathbf{s}}\langle\mathbf{s a}\rangle$ operators.

1-2. The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$,

Examples of $[\mathbf{p}]_{\mathbf{s}}\langle\mathbf{s a}\rangle$ operators.

1-2. The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$, and J is either one of the operators

$$
(J f)(x)=(\operatorname{sgn} x) f(x)
$$

Examples of $[\mathbf{p}] \mathbf{s}\langle\mathbf{s a}\rangle$ operators.

1-2. The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$, and J is either one of the operators

$$
(J f)(x)=(\operatorname{sgn} x) f(x) \quad \text { or } \quad(J f)(x)=f(-x), \quad x \in \mathbb{R}
$$

Examples of $[\mathbf{p}]_{\mathbf{s}}\langle\mathbf{s a}\rangle$ operators.

1-2. The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$, and J is either one of the operators

$$
(J f)(x)=(\operatorname{sgn} x) f(x) \quad \text { or } \quad(J f)(x)=f(-x), \quad x \in \mathbb{R}
$$

With $p(x)=|x|^{\beta}, \beta<1$, set

$$
A=J \frac{1}{|x|^{\alpha}}\left(-\frac{d}{d x}\left(|x|^{\beta} \frac{d}{d x}\right)\right)
$$

Examples of $[\mathbf{p}]_{\mathbf{s}}\langle\mathbf{s a}\rangle$ operators.

1-2. The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$, and J is either one of the operators

$$
(J f)(x)=(\operatorname{sgn} x) f(x) \quad \text { or } \quad(J f)(x)=f(-x), \quad x \in \mathbb{R}
$$

With $p(x)=|x|^{\beta}, \beta<1$, set

$$
A=J \frac{1}{|x|^{\alpha}}\left(-\frac{d}{d x}\left(|x|^{\beta} \frac{d}{d x}\right)\right)
$$

$\alpha=\beta=0$ C\&Najman, Karabash, Karabash\&Kostenko more general weights

Examples of $[\mathbf{p}]_{\mathbf{s}}\langle\mathbf{s} \mathbf{s}\rangle$ operators.

1-2. The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$, and J is either one of the operators

$$
(J f)(x)=(\operatorname{sgn} x) f(x) \quad \text { or } \quad(J f)(x)=f(-x), \quad x \in \mathbb{R}
$$

With $p(x)=|x|^{\beta}, \beta<1$, set

$$
A=J \frac{1}{|x|^{\alpha}}\left(-\frac{d}{d x}\left(|x|^{\beta} \frac{d}{d x}\right)\right)
$$

$\alpha=\beta=0$ C\&Najman, Karabash, Karabash\&Kostenko more general weights
$\beta=0, \alpha>-1$ Fleige\&Najman, Kostenko,
Faddeev\&Shterenberg more general weights

Examples of $[\mathbf{p}]_{\mathbf{s}}\langle\mathbf{s} \mathbf{s}\rangle$ operators.

1-2. The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$, and J is either one of the operators

$$
(J f)(x)=(\operatorname{sgn} x) f(x) \quad \text { or } \quad(J f)(x)=f(-x), \quad x \in \mathbb{R}
$$

With $p(x)=|x|^{\beta}, \beta<1$, set

$$
A=J \frac{1}{|x|^{\alpha}}\left(-\frac{d}{d x}\left(|x|^{\beta} \frac{d}{d x}\right)\right)
$$

$\alpha=\beta=0$ C\&Najman, Karabash, Karabash\&Kostenko more general weights
$\beta=0, \alpha>-1$ Fleige\&Najman, Kostenko,
Faddeev\&Shterenberg more general weights
Higher order C\&Najman, Karabash

The operators on this slide are good candidates for $[\mathrm{p}]_{\mathrm{s}}\langle\mathrm{sa}\rangle$.

$$
A=J\left(-\frac{d^{2}}{d x^{2}}\right)
$$

The operators on this slide are good candidates for $[\mathrm{p}]_{\mathrm{s}}\langle\mathrm{sa}\rangle$.

$$
A=J\left(-\frac{d^{2}}{d x^{2}}\right)
$$

Examples ?-?. The Hilbert space is $L^{2}(\mathbb{R}), \operatorname{dom}(A)=W_{2}^{2}(\mathbb{R})$, and J is the multiplication operator by

$$
\operatorname{sgn}\left(x^{2}-1\right)
$$

The operators on this slide are good candidates for $[\mathrm{p}]_{\mathrm{s}}\langle\mathrm{sa}\rangle$.

$$
A=J\left(-\frac{d^{2}}{d x^{2}}\right)
$$

Examples ?-?. The Hilbert space is $L^{2}(\mathbb{R}), \operatorname{dom}(A)=W_{2}^{2}(\mathbb{R})$, and J is the multiplication operator by

$$
\operatorname{sgn}\left(x^{2}-1\right), \quad \text { or } \quad \operatorname{sgn}(\sin x), \quad x \in \mathbb{R} .
$$

The operators on this slide are good candidates for $[p] s\langle s a\rangle$.

$$
A=J\left(-\frac{d^{2}}{d x^{2}}\right)
$$

Examples ?-?. The Hilbert space is $L^{2}(\mathbb{R}), \operatorname{dom}(A)=W_{2}^{2}(\mathbb{R})$, and J is the multiplication operator by

$$
\operatorname{sgn}\left(x^{2}-1\right), \quad \text { or } \quad \operatorname{sgn}(\sin x), \quad x \in \mathbb{R} .
$$

Examples ?-?. The Hilbert space is $L^{2}\left(\mathbb{R}_{+}\right)$,

$$
\operatorname{dom}(A)=\left\{f \in W_{2}^{2}\left(\mathbb{R}_{+}\right): f(0)=0\right\}, \text { and }
$$

J is the multiplication operator by
$\operatorname{sgn}(x-1)$,

The operators on this slide are good candidates for $[p] s\langle s a\rangle$.

$$
A=J\left(-\frac{d^{2}}{d x^{2}}\right)
$$

Examples ?-?. The Hilbert space is $L^{2}(\mathbb{R}), \operatorname{dom}(A)=W_{2}^{2}(\mathbb{R})$, and J is the multiplication operator by

$$
\operatorname{sgn}\left(x^{2}-1\right), \quad \text { or } \quad \operatorname{sgn}(\sin x), \quad x \in \mathbb{R} .
$$

Examples ?-?. The Hilbert space is $L^{2}\left(\mathbb{R}_{+}\right)$,

$$
\operatorname{dom}(A)=\left\{f \in W_{2}^{2}\left(\mathbb{R}_{+}\right): f(0)=0\right\}, \text { and }
$$

J is the multiplication operator by
$\operatorname{sgn}(x-1)$, or $\operatorname{sgn}(x-1)(x-2)$,

The operators on this slide are good candidates for $[p] s\langle s a\rangle$.

$$
A=J\left(-\frac{d^{2}}{d x^{2}}\right)
$$

Examples ?-?. The Hilbert space is $L^{2}(\mathbb{R}), \operatorname{dom}(A)=W_{2}^{2}(\mathbb{R})$, and J is the multiplication operator by

$$
\operatorname{sgn}\left(x^{2}-1\right), \quad \text { or } \quad \operatorname{sgn}(\sin x), \quad x \in \mathbb{R} .
$$

Examples ?-?. The Hilbert space is $L^{2}\left(\mathbb{R}_{+}\right)$,

$$
\operatorname{dom}(A)=\left\{f \in W_{2}^{2}\left(\mathbb{R}_{+}\right): f(0)=0\right\}, \text { and }
$$

J is the multiplication operator by
$\operatorname{sgn}(x-1)$, or $\operatorname{sgn}(x-1)(x-2)$, or $\operatorname{sgn}(\sin x), x \in \mathbb{R}_{+}$.

More examples of $[p] s\langle s a\rangle$ operators.

3-4. The Hilbert space is $L^{2}\left(\mathbb{R}^{n}\right), n>1$,

More examples of $[p] s\langle s a\rangle$ operators.

3-4. The Hilbert space is $L^{2}\left(\mathbb{R}^{n}\right), n>1$, and J is either one of the operators

$$
(J f)(x)=\left(\operatorname{sgn} x_{n}\right) f(x)
$$

More examples of $[p] s\langle s a\rangle$ operators.

3-4. The Hilbert space is $L^{2}\left(\mathbb{R}^{n}\right), n>1$, and J is either one of the operators

$$
(J f)(x)=\left(\operatorname{sgn} x_{n}\right) f(x) \quad \text { or } \quad(J f)(x)=f(\mathrm{M} x), \quad x \in \mathbb{R}
$$

Here $\mathrm{M}=\mathrm{M}^{-1}$ is an $n \times n$ generalized permutation matrix whose nonzero entries are either 1 or -1 . For example

$$
M=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \quad \begin{gathered}
\text { there are } \\
20 \text { such } \\
3 \times 3 \text { matrices }
\end{gathered}
$$

More examples of $[p] s\langle s a\rangle$ operators.

3-4. The Hilbert space is $L^{2}\left(\mathbb{R}^{n}\right), n>1$, and J is either one of the operators

$$
(J f)(x)=\left(\operatorname{sgn} x_{n}\right) f(x) \quad \text { or } \quad(J f)(x)=f(\mathrm{M} x), \quad x \in \mathbb{R}
$$

Here $\mathrm{M}=\mathrm{M}^{-1}$ is an $n \times n$ generalized permutation matrix whose nonzero entries are either 1 or -1 . For example

$$
M=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \quad \begin{gathered}
\text { there are } \\
20 \text { such } \\
3 \times 3 \text { matrices }
\end{gathered}
$$

Then $A=-J \Delta$ is [p]s $\langle\mathrm{sa}\rangle$. (C\&Najman)

Form bounded perturbations.

Theorem 2.(C\&Najman, Jonas) $(\mathcal{H},[\cdot, \cdot])$ is a Krein space; A is $[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle$ operator; $\quad a$ is the closure of the form $[A \cdot, \cdot]$.

Form bounded perturbations.

Theorem 2.(C\&Najman, Jonas) $(\mathcal{H},[\cdot, \cdot])$ is a Krein space; A is $[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle$ operator; $\quad a$ is the closure of the form $[A \cdot, \cdot]$.

Let v be a closed symmetric form in \mathcal{H} such that:

- $\operatorname{dom}(a) \subseteq \operatorname{dom}(v)$.
- $\quad c_{-} a(x) \leq v(x) \leq c_{+} a(x), \quad x \in \operatorname{dom}(a)$, where $-1<c_{-}$and $0<c_{+}$.

Form bounded perturbations.

Theorem 2.(C\&Najman, Jonas) $(\mathcal{H},[\cdot, \cdot])$ is a Krein space;
A is $[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle$ operator; $\quad a$ is the closure of the form $[A \cdot, \cdot]$.

Let v be a closed symmetric form in \mathcal{H} such that:

- $\operatorname{dom}(a) \subseteq \operatorname{dom}(v)$.
- $\quad c_{-} a(x) \leq v(x) \leq c_{+} a(x), \quad x \in \operatorname{dom}(a)$, where $-1<c_{-}$and $0<c_{+}$.

Let A_{1} be the operator associated with the form $a+v$ in the Krein space $(\mathcal{H},[\cdot, \cdot])$.

Form bounded perturbations.

Theorem 2.(C\&Najman, Jonas) $(\mathcal{H},[\cdot, \cdot])$ is a Krein space;
A is $[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle$ operator; $\quad a$ is the closure of the form $[A \cdot, \cdot]$.

Let v be a closed symmetric form in \mathcal{H} such that:

- $\operatorname{dom}(a) \subseteq \operatorname{dom}(v)$.
- $\quad c_{-} a(x) \leq v(x) \leq c_{+} a(x), \quad x \in \operatorname{dom}(a)$, where $-1<c_{-}$and $0<c_{+}$.

Let A_{1} be the operator associated with the form $a+v$ in the Krein space $(\mathcal{H},[\cdot, \cdot])$.

Then A_{1} is $[\mathrm{p}]_{\mathrm{s}}\langle\mathrm{sa}\rangle$.

Applications to Examples 1-2.

The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$ and J is either one of the operators

$$
\begin{gathered}
(J f)(x)=(\operatorname{sgn} x) f(x) \quad \text { or }(J f)(x)=f(-x), \quad x \in \mathbb{R} \\
A=J \frac{1}{|x|^{\alpha}}\left(-\frac{d^{2}}{d x^{2}}\right)
\end{gathered}
$$

Let $q \in L_{\mathrm{loc}}(\mathbb{R})$ be a real-valued function.
Is $\quad A_{1}=J \frac{1}{|x|^{\alpha}}\left(-\frac{d^{2}}{d x^{2}}+q\right) \quad[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle ?$

Applications to Examples 1-2.

The Hilbert space is $L^{2}(\mathbb{R} ; w)$ with $w(x)=|x|^{\alpha}, \alpha>-1$ and J is either one of the operators

$$
\begin{gathered}
(J f)(x)=(\operatorname{sgn} x) f(x) \quad \text { or }(J f)(x)=f(-x), \quad x \in \mathbb{R} \\
A=J \frac{1}{|x|^{\alpha}}\left(-\frac{d^{2}}{d x^{2}}\right)
\end{gathered}
$$

Let $q \in L_{\mathrm{loc}}(\mathbb{R})$ be a real-valued function.
Is $\quad A_{1}=J \frac{1}{|x|^{\alpha}}\left(-\frac{d^{2}}{d x^{2}}+q\right) \quad[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle ?$
Faddeev\&Shterenberg, Karabash\&Malamud, Karabash\&Kostenko

To use Theorem 2, look for

$$
c_{-}, c_{+} \in \mathbb{R} \text { and } q \text { such that }-1<c_{-}, 0<c_{+},
$$ and for all $f \in C_{0}^{\infty}(\mathbb{R})$

$$
c_{-} \int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x \leq \int_{\mathbb{R}} q(x)|f(x)|^{2} d x \leq c_{+} \int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x
$$

To use Theorem 2, look for

$$
c_{-}, c_{+} \in \mathbb{R} \text { and } q \text { such that }-1<c_{-}, 0<c_{+}
$$

and for all $f \in C_{0}^{\infty}(\mathbb{R})$

$$
c_{-} \int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x \leq \int_{\mathbb{R}} q(x)|f(x)|^{2} d x \leq c_{+} \int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x .
$$

The bad news is: I don't know of any q that satisfies this inequality.

To use Theorem 2, look for

$$
c_{-}, c_{+} \in \mathbb{R} \text { and } q \text { such that }-1<c_{-}, 0<c_{+}
$$

and for all $f \in C_{0}^{\infty}(\mathbb{R})$

$$
c_{-} \int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x \leq \int_{\mathbb{R}} q(x)|f(x)|^{2} d x \leq c_{+} \int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x .
$$

The bad news is: I don't know of any q that satisfies this inequality. In fact, if $q \geq 0$ or $q \leq 0$ a.e. on \mathbb{R}, then the above inequality $\Leftrightarrow q=0$ a.e.

To use Theorem 2, look for

$$
c_{-}, c_{+} \in \mathbb{R} \text { and } q \text { such that }-1<c_{-}, 0<c_{+}
$$

and for all $f \in C_{0}^{\infty}(\mathbb{R})$

$$
c_{-} \int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x \leq \int_{\mathbb{R}} q(x)|f(x)|^{2} d x \leq c_{+} \int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x .
$$

The bad news is: I don't know of any q that satisfies this inequality. In fact, if $q \geq 0$ or $q \leq 0$ a.e. on \mathbb{R}, then the above inequality $\Leftrightarrow q=0$ a.e.
But, ...

There is a good news for Examples 3-4.

There is a good news for Examples 3-4.
In Maz'ya\&Verbitsky Acta Math. (2002) there is a characterization of all potentials q for which, with $n \geq 3$,

$$
\left.\left|\int_{\mathbb{R}^{n}} q(x)\right| f(x)\right|^{2} d x \mid \leq \text { const. } \int_{\mathbb{R}^{n}}|\nabla f(x)|^{2} d x, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

There is a good news for Examples 3-4.
In Maz'ya\&Verbitsky Acta Math. (2002) there is a characterization of all potentials q for which, with $n \geq 3$,
$\left.\left|\int_{\mathbb{R}^{n}} q(x)\right| f(x)\right|^{2} d x \mid \leq$ const. $\int_{\mathbb{R}^{n}}|\nabla f(x)|^{2} d x, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
Hence, for all such potentials,
with sufficiently small $\kappa>0$ the operator,

$$
A_{\kappa}=J(-\Delta+\kappa q) \quad \text { is } \quad[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle
$$

There is a good news for Examples 3-4.
In Maz'ya\&Verbitsky Acta Math. (2002) there is a characterization of all potentials q for which, with $n \geq 3$,
$\left.\left|\int_{\mathbb{R}^{n}} q(x)\right| f(x)\right|^{2} d x \mid \leq$ const. $\int_{\mathbb{R}^{n}}|\nabla f(x)|^{2} d x, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
Hence, for all such potentials,
with sufficiently small $\kappa>0$ the operator,

$$
A_{\kappa}=J(-\Delta+\kappa q) \quad \text { is } \quad[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle
$$

An example (Kato): $n=3, a_{j} \in \mathbb{R}^{3}, c_{j}>0$,

$$
q(x)=-\sum_{j=1}^{k} \frac{c_{j}}{\left|x-a_{j}\right|^{2}} \quad \text { and } \quad \kappa<\frac{1}{4 \sum c_{j}}
$$

The class of operators $([\mathbf{p}] \mathbf{s}\langle\mathbf{s a}\rangle)_{\infty, \rho}$

Definition.

Let A be a [self-adjoint] operator in a Krein space $(\mathcal{H},[\cdot, \cdot])$.

$$
A \text { is }([\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle)_{\infty, \rho}
$$

that is A is [positive] and similar to 〈self-adjoint〉 in $\mathbb{E}_{\rho}=\{z \in \mathbb{C}:|z|>\rho\}$ if

- $\mathcal{H}=\mathcal{H}_{0}[\dot{+}] \mathcal{H}_{\infty}$.
- \mathcal{H}_{0} and \mathcal{H}_{∞} are invariant under A.
- $A_{0}=\left.A\right|_{\mathcal{H}_{0}}$ is bounded and $\sigma\left(A_{0}\right) \subset\{z \in \mathbb{C}:|z| \leq \rho\}$.
- $A_{\infty}=\left.A\right|_{\mathcal{H}_{\infty}}$ is $\quad[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle$.

$$
\text { If } A \text { is }([\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle)_{\infty, \rho} \text { then }
$$

If A is $([p] s\langle s a\rangle)_{\infty, \rho}$ then

- $\sigma(A) \subseteq \mathbb{R} \cup\{z \in \mathbb{C}:|z| \leq \rho\}$

If A is $\left([\mathrm{p}]_{\mathrm{s}}\langle\mathrm{sa}\rangle\right)_{\infty, \rho}$ then

- $\sigma(A) \subseteq \mathbb{R} \cup\{z \in \mathbb{C}:|z| \leq \rho\}$
- A has a projection-valued spectral function E defined for all bounded intervals $\imath, \bar{\imath} \subset(-\infty,-\rho) \cup(\rho,+\infty)$

If A is $([\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle)_{\infty, \rho}$ then

- $\sigma(A) \subseteq \mathbb{R} \cup\{z \in \mathbb{C}:|z| \leq \rho\}$
- A has a projection-valued spectral function E defined for all bounded intervals $\imath, \bar{\imath} \subset(-\infty,-\rho) \cup(\rho,+\infty)$
- E is bounded:

$$
\sup \{\|E(\imath)\|: \imath \subset(-\infty,-\rho) \cup(\rho,+\infty)\}<+\infty
$$

If A is $([\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle)_{\infty, \rho}$ then

- $\sigma(A) \subseteq \mathbb{R} \cup\{z \in \mathbb{C}:|z| \leq \rho\}$
- A has a projection-valued spectral function E defined for all bounded intervals $\imath, \bar{\imath} \subset(-\infty,-\rho) \cup(\rho,+\infty)$
- E is bounded:

$$
\sup \{\|E(\imath)\|: \imath \subset(-\infty,-\rho) \cup(\rho,+\infty)\}<+\infty
$$

- If $\imath \subset(\rho,+\infty)$, then $(E(\imath) \mathcal{H},[\cdot, \cdot])$ is a Hilbert space. If $\imath \subset(-\infty,-\rho)$, then $(E(\imath) \mathcal{H},-[\cdot, \cdot])$ is a Hilbert space.

Theorem 3.(C\&Jonas) Assume

- A is $[\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle$.
- B is [self-adjoint] and bounded.

Then $A+B$ is $([\mathrm{p}] \mathrm{s}\langle\mathrm{sa}\rangle)_{\infty, \rho}$ for some $\rho>0$.
We also give an estimate for ρ.

Theorem 3 applies to a wide class of differential operators.
For example,

Theorem 3 applies to a wide class of differential operators.
For example,
p, q and w are real functions defined on an interval $\imath \subseteq \mathbb{R}$ and such that $p,|w|>0$ a.e. on \imath and $1 / p, q, w \in L_{\mathrm{loc}}(\imath)$.

Theorem 3 applies to a wide class of differential operators.
For example,
p, q and w are real functions defined on an interval $\imath \subseteq \mathbb{R}$ and such that $p,|w|>0$ a.e. on \imath and $1 / p, q, w \in L_{\mathrm{loc}}(\imath)$.

Here the Hilbert space is $\quad \mathcal{H}=L^{2}(\imath ;|w|)$
and $\quad(J f)(x)=(\operatorname{sgn} w(x)) f(x)$.

Theorem 3 applies to a wide class of differential operators.
For example,
p, q and w are real functions defined on an interval $\imath \subseteq \mathbb{R}$ and such that $p,|w|>0$ a.e. on \imath and $1 / p, q, w \in L_{\mathrm{loc}}(\imath)$.

Here the Hilbert space is $\quad \mathcal{H}=L^{2}(\imath ;|w|)$
and $\quad(J f)(x)=(\operatorname{sgn} w(x)) f(x)$.
Under these conditions 〈self-adjoint〉 operators in \mathcal{H} can be associated with the expression

$$
\frac{1}{|w|}\left(-\frac{d}{d x}\left(p \frac{d}{d x}\right)+q\right)
$$

Let S be such an operator in the Hilbert space $\mathcal{H}=L^{2}(\imath ;|w|)$.

Theorem 4. (C\&Jonas) Assume:

- w has a finite number of turning points.

Theorem 4. (C\&Jonas) Assume:

- w has a finite number of turning points.
- in a neighborhood of each turning point, w satisfies a Beals type condition (Beals(1985), C\&Langer(1989), Fleige(1995), Volkmer(1996), Parfenov(2003), C\&Binding(2006)).

Theorem 4. (C\&Jonas) Assume:

- w has a finite number of turning points.
- in a neighborhood of each turning point, w satisfies a Beals type condition (Beals(1985), C\&Langer(1989), Fleige(1995), Volkmer(1996), Parfenov(2003), C\&Binding(2006)).
- The operator S is 〈bounded〉 from below in $\mathcal{H}=L^{2}(\imath ;|w|)$.

Theorem 4. (C\&Jonas) Assume:

- w has a finite number of turning points.
- in a neighborhood of each turning point, w satisfies a Beals type condition (Beals(1985), C\&Langer(1989), Fleige(1995), Volkmer(1996), Parfenov(2003), C\&Binding(2006)).
- The operator S is 〈bounded〉 from below in $\mathcal{H}=L^{2}(\imath ;|w|)$.

Then $A=J S$ is $\left([\mathrm{p}]_{\mathrm{s}}\langle\mathrm{sa}\rangle\right)_{\infty, \rho}$.

Theorem 4. (C\&Jonas) Assume:

- w has a finite number of turning points.
- in a neighborhood of each turning point, w satisfies a Beals type condition (Beals(1985), C\&Langer(1989), Fleige(1995), Volkmer(1996), Parfenov(2003), C\&Binding(2006)).
- The operator S is 〈bounded〉 from below in $\mathcal{H}=L^{2}(\imath ;|w|)$.

Then $A=J S$ is $\left([\mathrm{p}]_{\mathrm{s}}\langle\mathrm{sa}\rangle\right)_{\infty, \rho}$.
Here ρ might be hard to calculate.

For the special case $\quad \imath=\mathbb{R}, p=1, q \in L^{\infty}(\mathbb{R})$
and $w(x)=\operatorname{sgn} x$ we calculated that

$$
\rho<7.903\|q\|_{\infty} .
$$

For example:

$$
\begin{aligned}
A & =(\operatorname{sgn} x)\left(-\frac{d^{2}}{d x^{2}}-\sin x\right) \\
\sigma(A) & \subset \mathbb{R} \cup\{z \in \mathbb{C}:|z|<7.903\}
\end{aligned}
$$

and
$(-\infty,-7.903]$ are spectral points of negative type and
$[7.903,+\infty)$ are spectral points of positive type.

The end

Maz'ya\&Verbitsky
The following statements are equivalent

- $\left.\left|\int_{\mathbb{R}} q(x)\right| u(x)\right|^{2} d x \mid \leq C\left(\int_{\mathbb{R}}\left|u^{\prime}(x)\right|^{2} d x+\int_{\mathbb{R}}|u(x)|^{2} d x\right)$
- $\sup _{x \in \mathbb{R}} \int_{x}^{x+1}\left(|\Gamma(\xi)|^{2}+|\gamma(\xi)|\right) d \xi<+\infty$
where

$$
\Gamma(\xi)=\int_{\mathbb{R}} \operatorname{sgn}(\xi-t) e^{-|\xi-t|} q(t) d t, \quad \gamma(\xi)=\int_{\mathbb{R}} e^{-|\xi-t|} q(t) d t
$$

