Positive operators in Krein spaces similar to self-adjoint operators in Hilbert spaces

Branko Ćurgus Western Washington University Bellingham, Washington, USA curgus@gmail.com

December 8, 2006

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space. Let $J = J^{-1} \neq I$ be self-adjoint on $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. Set $[\cdot, \cdot] = \langle J \cdot, \cdot \rangle$. Then $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space. Let $J = J^{-1} \neq I$ be self-adjoint on $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. Set $[\cdot, \cdot] = \langle J \cdot, \cdot \rangle$. Then $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space.

An operator J_1 on $(\mathcal{H}, [\cdot, \cdot])$ is called a fundamental symmetry if $J_1 = J_1^{-1}$ and $(\mathcal{H}, [J_1 \cdot, \cdot])$ is a Hilbert space. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space. Let $J = J^{-1} \neq I$ be self-adjoint on $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. Set $[\cdot, \cdot] = \langle J \cdot, \cdot \rangle$. Then $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space.

An operator J_1 on $(\mathcal{H}, [\cdot, \cdot])$ is called a fundamental symmetry if $J_1 = J_1^{-1}$ and $(\mathcal{H}, [J_1 \cdot, \cdot])$ is a Hilbert space.

With $\mathcal{H}_{\pm} = (I \pm J_1) \mathcal{H}$,

 $\mathcal{H} = \mathcal{H}_{-}[\dot{+}]\mathcal{H}_{+}$ is a fundamental decomposition

 $P_{\pm} = \frac{1}{2}(I \pm J_1)$ are the corresponding fundamental projections.

Examples.

Let $n \ge 1$, $w \in L_{loc}(\mathbb{R}^n)$, w > 0 a.e. on \mathbb{R}^n . Set $\mathcal{H} = L^2(\mathbb{R}^n; w)$, $\langle f, g \rangle = \int_{\mathbb{R}^n} f(x) \overline{g(x)} w(x) dx$

Examples.

Let $n \ge 1$, $w \in L_{loc}(\mathbb{R}^n)$, w > 0 a.e. on \mathbb{R}^n . Set $\mathcal{H} = L^2(\mathbb{R}^n; w)$, $\langle f, g \rangle = \int_{\mathbb{R}^n} f(x) \overline{g(x)} w(x) dx$

$$(Jf)(x) = (\operatorname{sgn} x_n) f(x), \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

Examples.

Let $n \ge 1$, $w \in L_{loc}(\mathbb{R}^n)$, w > 0 a.e. on \mathbb{R}^n . Set $\mathcal{H} = L^2(\mathbb{R}^n; w)$, $\langle f, g \rangle = \int_{\mathbb{R}^n} f(x) \overline{g(x)} w(x) dx$

$$(Jf)(x) = (\operatorname{sgn} x_n) f(x), \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

or

$$(Jf)(x) = f(\mathsf{M}x), \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n,$$

M is $n \times n$ matrix such that $M^2 = I$ and $w(Mx) = w(x), x \in \mathbb{R}^n$. For example, $(Jf)(x) = f(-x), x \in \mathbb{R}^n$ and w = 1. Albaverio&Kuzhel call this J the space parity operator. **Definition.** Let $(\mathcal{H}, [\cdot, \cdot])$ be a Krein space. In this talk an operator $A : \operatorname{dom}(A) \to \mathcal{H}$ is *positive* in $(\mathcal{H}, [\cdot, \cdot])$, (or [positive] for short) if the following three conditions are satisfied

1. $\varrho(A) \neq \emptyset$.

- 2. *A* is [self-adjoint] in $(\mathcal{H}, [\cdot, \cdot])$. $\Leftrightarrow JA \quad \langle \text{self-adjoint} \rangle \text{ in the Hilbert space } (\mathcal{H}, \langle \cdot, \cdot \rangle).$
- 3. [Ax, x] > 0 for all $x \in dom(A) \setminus \{0\}$. $\Leftrightarrow JA \ \langle \text{positive} \rangle \text{ in the Hilbert space } (\mathcal{H}, \langle \cdot, \cdot \rangle).$

• $\sigma(A) \subseteq \mathbb{R}$.

- $\sigma(A) \subseteq \mathbb{R}$.
- A has a projection-valued spectral function E defined for all bounded intervals i, i = [a, b] ⊂ ℝ \ {0}.

- $\sigma(A) \subseteq \mathbb{R}$.
- A has a projection-valued spectral function E defined for all bounded intervals i, i = [a, b] ⊂ ℝ \ {0}.
- The spectral function may have singularities at 0 and at ∞ :

- $\sigma(A) \subseteq \mathbb{R}$.
- A has a projection-valued spectral function E defined for all bounded intervals i, i = [a, b] ⊂ ℝ \ {0}.
- The spectral function may have singularities at 0 and at ∞ :
 - 0 is a singular critical point of A if the set $\{\|E(i)\|: \overline{i} \subset [-1,1] \setminus \{0\}\}$ is unbounded.

- $\sigma(A) \subseteq \mathbb{R}$.
- A has a projection-valued spectral function E defined for all bounded intervals i, i = [a, b] ⊂ ℝ \ {0}.
- The spectral function may have singularities at 0 and at ∞ :
 - 0 is a singular critical point of A if the set $\big\{\|E(\imath)\|: \overline{\imath} \subset [-1,1] \setminus \{0\}\big\} \text{ is unbounded}.$
 - ∞ is a singular critical point of A if the set $\{ \|E(i)\| : \overline{i} \subset \mathbb{R} \setminus (-1,1) \}$ is unbounded.

(b) There exists a fundamental symmetry J_1 on $(\mathcal{H}, [\cdot, \cdot])$ such that $J_1A = AJ_1$.

- (b) There exists a fundamental symmetry J_1 on $(\mathcal{H}, [\cdot, \cdot])$ such that $J_1A = AJ_1$.
- (c) 0 and ∞ are not singular critical points of A.

- (b) There exists a fundamental symmetry J_1 on $(\mathcal{H}, [\cdot, \cdot])$ such that $J_1A = AJ_1$.
- (c) 0 and ∞ are not singular critical points of A.
- (d) The following two statements hold.
 - (∞) $\exists \mu > 0$ and a [positive] homomorphism W on \mathcal{H} such that $W \operatorname{dom}((JA)^{\mu}) \subseteq \operatorname{dom}((JA)^{\mu})$.
 - (0) $\exists \nu > 0 \text{ and a [positive] homomorphism } X \text{ on } \mathcal{H}$ such that $X \operatorname{ran}((AJ)^{\nu}) \subseteq \operatorname{ran}((AJ)^{\nu}).$

- (b) There exists a fundamental symmetry J_1 on $(\mathcal{H}, [\cdot, \cdot])$ such that $J_1A = AJ_1$.
- (c) 0 and ∞ are not singular critical points of A.
- (d) The following two statements hold. (∞) $\exists \mu > 0$ and a [positive] homomorphism W on \mathcal{H} such that $W \operatorname{dom}((JA)^{\mu}) \subseteq \operatorname{dom}((JA)^{\mu})$.
 - (0) $\exists \nu > 0$ and a [positive] homomorphism X on \mathcal{H} such that $X \operatorname{ran}((AJ)^{\nu}) \subseteq \operatorname{ran}((AJ)^{\nu}).$

The operators from Theorem 1 we denote by $[p]_s \langle sa \rangle$.

1-2. The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$,

1-2. The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$, and J is either one of the operators

 $(Jf)(x) = (\operatorname{sgn} x)f(x)$

1-2. The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$, and J is either one of the operators

 $(Jf)(x) = (\operatorname{sgn} x)f(x)$ or $(Jf)(x) = f(-x), x \in \mathbb{R}$.

1-2. The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$, and J is either one of the operators

 $(Jf)(x) = (\operatorname{sgn} x)f(x)$ or $(Jf)(x) = f(-x), x \in \mathbb{R}$.

With $p(x) = |x|^{\beta}, \beta < 1$, set

$$A = J \frac{1}{|x|^{\alpha}} \left(-\frac{d}{dx} \left(|x|^{\beta} \frac{d}{dx} \right) \right).$$

1-2. The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$, and J is either one of the operators

 $(Jf)(x) = (\operatorname{sgn} x)f(x) \quad \text{or} \quad (Jf)(x) = f(-x), \ x \in \mathbb{R}.$

With $p(x) = |x|^{\beta}, \, \beta < 1$, set

$$A = J \frac{1}{|x|^{\alpha}} \left(-\frac{d}{dx} \left(|x|^{\beta} \frac{d}{dx} \right) \right).$$

lpha=eta=0 C&Najman, Karabash, Karabash&Kostenko more general weights

1-2. The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$, and J is either one of the operators

 $(Jf)(x) = (\operatorname{sgn} x)f(x)$ or $(Jf)(x) = f(-x), x \in \mathbb{R}.$

With $p(x) = |x|^{\beta}, \, \beta < 1$, set

$$A = J \frac{1}{|x|^{\alpha}} \left(-\frac{d}{dx} \left(|x|^{\beta} \frac{d}{dx} \right) \right).$$

$$\label{eq:alpha} \begin{split} \alpha &= \beta = 0 \ \text{C\&Najman, Karabash,} \\ & \text{Karabash\&Kostenko more general weights} \\ \beta &= 0, \alpha > -1 \ \text{Fleige\&Najman, Kostenko,} \\ & \text{Faddeev\&Shterenberg more general weights} \end{split}$$

1-2. The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$, and J is either one of the operators

 $(Jf)(x) = (\operatorname{sgn} x)f(x)$ or $(Jf)(x) = f(-x), x \in \mathbb{R}.$

With $p(x) = |x|^{\beta}, \, \beta < 1$, set

$$A = J \frac{1}{|x|^{\alpha}} \left(-\frac{d}{dx} \left(|x|^{\beta} \frac{d}{dx} \right) \right).$$

$$\begin{split} \alpha &= \beta = 0 \ \text{C\&Najman, Karabash,} \\ & \text{Karabash\&Kostenko more general weights} \\ \beta &= 0, \alpha > -1 \ \text{Fleige\&Najman, Kostenko,} \\ & \text{Faddeev\&Shterenberg more general weights} \\ & \text{Higher order } \ \text{C\&Najman, Karabash} \end{split}$$

The operators on this slide are good **candidates** for $[p]_s\langle sa \rangle$.

$$A = J\left(-\frac{d^2}{dx^2}\right)$$

The operators on this slide are good **candidates** for $[p]_s(sa)$.

$$A = J\left(-\frac{d^2}{dx^2}\right)$$

Examples ?-?. The Hilbert space is $L^2(\mathbb{R})$, $dom(A) = W_2^2(\mathbb{R})$, and J is the multiplication operator by

$$\operatorname{sgn}(x^2 - 1),$$

The operators on this slide are good **candidates** for $[p]_s(sa)$.

$$A = J\left(-\frac{d^2}{dx^2}\right)$$

Examples ?-?. The Hilbert space is $L^2(\mathbb{R})$, $dom(A) = W_2^2(\mathbb{R})$, and J is the multiplication operator by

$$\operatorname{sgn}(x^2-1),$$
 or $\operatorname{sgn}(\sin x), x \in \mathbb{R}.$

The operators on this slide are good **candidates** for $[p]_{s(sa)}$.

$$A = J\left(-\frac{d^2}{dx^2}\right)$$

Examples ?-?. The Hilbert space is $L^2(\mathbb{R})$, $dom(A) = W_2^2(\mathbb{R})$, and J is the multiplication operator by

$$\operatorname{sgn}(x^2-1),$$
 or $\operatorname{sgn}(\sin x), x \in \mathbb{R}.$

Examples ?-?. The Hilbert space is $L^2(\mathbb{R}_+)$,

 $dom(A) = \{ f \in W_2^2(\mathbb{R}_+) : f(0) = 0 \}, \text{ and }$

 \boldsymbol{J} is the multiplication operator by

 $\operatorname{sgn}(x-1),$

The operators on this slide are good **candidates** for [p]s(sa).

$$A = J\left(-\frac{d^2}{dx^2}\right)$$

Examples ?-?. The Hilbert space is $L^2(\mathbb{R})$, $dom(A) = W_2^2(\mathbb{R})$, and J is the multiplication operator by

$$\operatorname{sgn}(x^2-1),$$
 or $\operatorname{sgn}(\sin x), x \in \mathbb{R}.$

Examples ?-?. The Hilbert space is $L^2(\mathbb{R}_+)$, $\operatorname{dom}(A) = \{f \in W_2^2(\mathbb{R}_+) : f(0) = 0\}$, and

 ${\boldsymbol{J}}$ is the multiplication operator by

$$sgn(x-1)$$
, or $sgn(x-1)(x-2)$,

The operators on this slide are good **candidates** for [p]s(sa).

$$A = J\left(-\frac{d^2}{dx^2}\right)$$

Examples ?-?. The Hilbert space is $L^2(\mathbb{R})$, $dom(A) = W_2^2(\mathbb{R})$, and J is the multiplication operator by

$$\operatorname{sgn}(x^2-1),$$
 or $\operatorname{sgn}(\sin x), x \in \mathbb{R}.$

Examples ?-?. The Hilbert space is $L^2(\mathbb{R}_+)$, $\operatorname{dom}(A) = \left\{ f \in W_2^2(\mathbb{R}_+) : f(0) = 0 \right\}$, and

 \boldsymbol{J} is the multiplication operator by

 $\operatorname{sgn}(x-1)$, or $\operatorname{sgn}(x-1)(x-2)$, or $\operatorname{sgn}(\sin x)$, $x \in \mathbb{R}_+$.

3-4. The Hilbert space is $L^2(\mathbb{R}^n)$, n > 1,

3-4. The Hilbert space is $L^2(\mathbb{R}^n)$, n > 1, and J is either one of the operators

 $(Jf)(x) = (\operatorname{sgn} x_n)f(x)$

3-4. The Hilbert space is $L^2(\mathbb{R}^n)$, n > 1, and J is either one of the operators

$$(Jf)(x) = (\operatorname{sgn} x_n)f(x) \quad \text{or} \quad (Jf)(x) = f(\mathsf{M}x), \ x \in \mathbb{R}.$$

Here $M = M^{-1}$ is an $n \times n$ generalized permutation matrix whose nonzero entries are either 1 or -1. For example

$$M = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 there are 20 such 3×3 matrices

3-4. The Hilbert space is $L^2(\mathbb{R}^n)$, n > 1, and J is either one of the operators

$$(Jf)(x) = (\operatorname{sgn} x_n)f(x) \quad \text{or} \quad (Jf)(x) = f(\mathsf{M}x), \ x \in \mathbb{R}.$$

Here $M = M^{-1}$ is an $n \times n$ generalized permutation matrix whose nonzero entries are either 1 or -1. For example

	$\left[0 \right]$	1	0	there are
M =	1	0	0	20 such
	0	0	-1_	3×3 matrices

Then $A = -J\Delta$ is [p]s(sa). (C&Najman)

Form bounded perturbations.

Theorem 2.(C&Najman, Jonas) $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space; A is $[p]_{s}(sa)$ operator; a is the closure of the form $[A \cdot, \cdot]$.

Form bounded perturbations.

Theorem 2.(C&Najman, Jonas) $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space; A is $[p]_{s}(sa)$ operator; a is the closure of the form $[A \cdot, \cdot]$.

Let v be a closed symmetric form in \mathcal{H} such that:

• $\operatorname{dom}(a) \subseteq \operatorname{dom}(v)$.

$$\begin{array}{ll} \bullet & c_- \, a(x) \leq v(x) \leq c_+ \, a(x), \quad x \in \mathrm{dom}(a), \\ & \text{where} \ -1 < c_- \ \text{ and } \ 0 < c_+. \end{array}$$

Form bounded perturbations.

Theorem 2.(C&Najman, Jonas) $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space; A is $[p]_{s}(sa)$ operator; a is the closure of the form $[A \cdot, \cdot]$.

Let v be a closed symmetric form in \mathcal{H} such that:

•
$$\operatorname{dom}(a) \subseteq \operatorname{dom}(v).$$

$$\begin{array}{ll} \bullet & c_-\,a(x) \leq v(x) \leq c_+\,a(x), \quad x \in \mathrm{dom}(a), \\ \mathrm{where} & -1 < c_- \quad \mathrm{and} \quad 0 < c_+. \end{array}$$

Let A_1 be the operator associated with the form a + v in the Krein space $(\mathcal{H}, [\cdot, \cdot])$.

Form bounded perturbations.

Theorem 2.(C&Najman, Jonas) $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space; A is $[p]_{s}(sa)$ operator; a is the closure of the form $[A \cdot, \cdot]$.

Let v be a closed symmetric form in \mathcal{H} such that:

•
$$\operatorname{dom}(a) \subseteq \operatorname{dom}(v)$$
.

$$\begin{array}{ll} \bullet & c_-\,a(x) \leq v(x) \leq c_+\,a(x), \quad x \in \mathrm{dom}(a), \\ \mathrm{where} & -1 < c_- \quad \mathrm{and} \quad 0 < c_+. \end{array}$$

Let A_1 be the operator associated with the form a + v in the Krein space $(\mathcal{H}, [\cdot, \cdot])$.

Then A_1 is $[p]_s\langle sa \rangle$.

Applications to Examples 1-2.

The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$ and J is either one of the operators

$$(Jf)(x) = (\operatorname{sgn} x)f(x)$$
 or $(Jf)(x) = f(-x), x \in \mathbb{R}$.
$$A = J \frac{1}{|x|^{\alpha}} \left(-\frac{d^2}{dx^2}\right).$$

Let $q \in L_{loc}(\mathbb{R})$ be a real-valued function.

Is
$$A_1 = J \frac{1}{|x|^{\alpha}} \left(-\frac{d^2}{dx^2} + q \right)$$
 [p]s(sa)?

Applications to Examples 1-2.

The Hilbert space is $L^2(\mathbb{R}; w)$ with $w(x) = |x|^{\alpha}, \alpha > -1$ and J is either one of the operators

$$(Jf)(x) = (\operatorname{sgn} x)f(x)$$
 or $(Jf)(x) = f(-x), x \in \mathbb{R}.$
$$A = J \frac{1}{|x|^{\alpha}} \left(-\frac{d^2}{dx^2}\right).$$

Let $q \in L_{loc}(\mathbb{R})$ be a real-valued function.

Is
$$A_1 = J \frac{1}{|x|^{\alpha}} \left(-\frac{d^2}{dx^2} + q \right)$$
 [p]s(sa)?

Faddeev&Shterenberg, Karabash&Malamud, Karabash&Kostenko

 $c_-,c_+\in \mathbb{R} \ \ \text{and} \ \ q \ \ \text{such that} \ \ -1 < c_-, \ \ 0 < c_+\text{,}$ and for all $\ f\in C_0^\infty(\mathbb{R})$

$$c_{-} \int_{\mathbb{R}} |f'(x)|^2 dx \le \int_{\mathbb{R}} q(x) |f(x)|^2 dx \le c_{+} \int_{\mathbb{R}} |f'(x)|^2 dx.$$

 $c_-,c_+\in \mathbb{R} \ \ \text{and} \ \ q \ \ \text{such that} \ \ -1 < c_-, \ \ 0 < c_+,$ and for all $\ f\in C_0^\infty(\mathbb{R})$

$$c_{-}\int_{\mathbb{R}}|f'(x)|^{2}dx\leq\int_{\mathbb{R}}q(x)|f(x)|^{2}dx\leq c_{+}\int_{\mathbb{R}}|f'(x)|^{2}dx.$$

The bad news is: I don't know of any q that satisfies this inequality.

 $c_-,c_+\in \mathbb{R} \ \ \text{and} \ \ q \ \ \text{such that} \ \ -1 < c_-, \ \ 0 < c_+,$ and for all $\ f\in C_0^\infty(\mathbb{R})$

$$c_{-}\int_{\mathbb{R}}|f'(x)|^{2}dx \leq \int_{\mathbb{R}}q(x)|f(x)|^{2}dx \leq c_{+}\int_{\mathbb{R}}|f'(x)|^{2}dx.$$

The bad news is: I don't know of any q that satisfies this inequality. In fact, if $q \ge 0$ or $q \le 0$ a.e. on \mathbb{R} , then

the above inequality $\Leftrightarrow q = 0$ a.e.

 $c_-,c_+\in \mathbb{R} \ \ \text{and} \ \ q \ \ \text{such that} \ \ -1 < c_-, \ \ 0 < c_+,$ and for all $\ f\in C_0^\infty(\mathbb{R})$

$$c_{-}\int_{\mathbb{R}}|f'(x)|^{2}dx \leq \int_{\mathbb{R}}q(x)|f(x)|^{2}dx \leq c_{+}\int_{\mathbb{R}}|f'(x)|^{2}dx.$$

The bad news is: I don't know of any q that satisfies this inequality. In fact, if $q \ge 0$ or $q \le 0$ a.e. on \mathbb{R} , then

the above inequality $\Leftrightarrow q = 0$ a.e. But, ...

There is a good news for Examples **3-4**.

There is a good news for Examples 3-4. In Maz'ya&Verbitsky Acta Math. (2002) there is a characterization of all potentials q for which, with $n \ge 3$,

$$\left| \int_{\mathbb{R}^n} q(x) |f(x)|^2 dx \right| \le \text{const.} \int_{\mathbb{R}^n} |\nabla f(x)|^2 dx, \quad f \in C_0^\infty(\mathbb{R}^n).$$

There is a good news for Examples 3-4. In Maz'ya&Verbitsky Acta Math. (2002) there is a characterization of all potentials q for which, with $n \ge 3$,

$$\left| \int_{\mathbb{R}^n} q(x) |f(x)|^2 dx \right| \le \text{const.} \int_{\mathbb{R}^n} |\nabla f(x)|^2 dx, \quad f \in C_0^\infty(\mathbb{R}^n).$$

Hence, for all such potentials,

with sufficiently small $\kappa>0$ the operator,

$$A_{\kappa} = J\left(-\Delta + \kappa q\right)$$
 is $[p]s\langle sa \rangle$.

There is a good news for Examples **3-4**. In Maz'ya&Verbitsky Acta Math. (2002) there is a characterization of all potentials q for which, with $n \ge 3$,

$$\left| \int_{\mathbb{R}^n} q(x) |f(x)|^2 dx \right| \le \text{const.} \int_{\mathbb{R}^n} |\nabla f(x)|^2 dx, \quad f \in C_0^\infty(\mathbb{R}^n).$$

Hence, for all such potentials,

with sufficiently small $\kappa > 0$ the operator,

$$A_{\kappa} = J\left(-\Delta + \kappa q\right) \quad \text{is} \quad [p]_{s}\langle s_{a} \rangle.$$

An example (Kato): $n = 3, a_j \in \mathbb{R}^3$, $c_j > 0$,

$$q(x) = -\sum_{j=1}^{k} \frac{c_j}{|x - a_j|^2}$$
 and $\kappa < \frac{1}{4\sum c_j}$.

The class of operators $([p]_{s}\langle sa \rangle)_{\infty,\rho}$

Definition.

Let A be a [self-adjoint] operator in a Krein space $(\mathcal{H}, [\cdot, \cdot])$.

 $\langle self-adjoint \rangle$

$$A \quad \text{is} \ \left([\mathsf{p}]\mathsf{s}\langle\mathsf{sa}\rangle\right)_{\infty,\rho}$$
 that is $A \quad \text{is} \ [\text{positive}] \ \text{and} \ \text{similar to}$

in $\mathbb{E}_{\rho} = \{z \in \mathbb{C} : |z| > \rho\}$ if

- $\mathcal{H} = \mathcal{H}_0[\dot{+}]\mathcal{H}_\infty.$
- \mathcal{H}_0 and \mathcal{H}_∞ are invariant under A.
- $A_0 = A|_{\mathcal{H}_0}$ is bounded and $\sigma(A_0) \subset \{z \in \mathbb{C} : |z| \le \rho\}.$
- $A_{\infty} = A|_{\mathcal{H}_{\infty}}$ is $[p]s\langle sa \rangle$.

If A is $\left([\mathsf{p}]\mathsf{s}\langle\mathsf{sa}\rangle\right)_{\infty,\rho}$ then

If A is $\left([\mathsf{p}]_{\mathsf{s}}\langle\mathsf{sa}\rangle\right)_{\infty,\rho}$ then

• $\sigma(A) \subseteq \mathbb{R} \cup \{z \in \mathbb{C} : |z| \le \rho\}$

If A is $([p]_{s}(sa))_{\infty,\rho}$ then

•
$$\sigma(A) \subseteq \mathbb{R} \cup \{z \in \mathbb{C} : |z| \le \rho\}$$

• A has a projection-valued spectral function E defined for all bounded intervals i, $\overline{i} \subset (-\infty, -\rho) \cup (\rho, +\infty)$

If A is $([p]_{s}(sa))_{\infty,\rho}$ then

•
$$\sigma(A) \subseteq \mathbb{R} \cup \{z \in \mathbb{C} : |z| \le \rho\}$$

- A has a projection-valued spectral function E defined for all bounded intervals i, $\overline{i} \subset (-\infty, -\rho) \cup (\rho, +\infty)$
- *E* is bounded:

 $\sup\{\|E(i)\|: i \in (-\infty, -\rho) \cup (\rho, +\infty)\} < +\infty.$

If A is $([p]_{s}(sa))_{\infty,\rho}$ then

•
$$\sigma(A) \subseteq \mathbb{R} \cup \{z \in \mathbb{C} : |z| \le \rho\}$$

- A has a projection-valued spectral function E defined for all bounded intervals i, $\overline{i} \subset (-\infty, -\rho) \cup (\rho, +\infty)$
- *E* is bounded:

$$\sup\{\|E(i)\|: i \subset (-\infty, -\rho) \cup (\rho, +\infty)\} < +\infty.$$

• If $i \in (\rho, +\infty)$, then $(E(i)\mathcal{H}, [\cdot, \cdot])$ is a Hilbert space. If $i \in (-\infty, -\rho)$, then $(E(i)\mathcal{H}, -[\cdot, \cdot])$ is a Hilbert space.

- A is [p]s(sa).
- *B* is [self-adjoint] and bounded.

Then A + B is $([p]_{s\langle sa \rangle})_{\infty,\rho}$ for some $\rho > 0$.

We also give an estimate for ρ .

p,q and w are real functions defined on an interval $i \subseteq \mathbb{R}$ and such that p, |w| > 0 a.e. on i and $1/p, q, w \in L_{\text{loc}}(i)$.

p, q and w are real functions defined on an interval $i \subseteq \mathbb{R}$ and such that p, |w| > 0 a.e. on i and $1/p, q, w \in L_{loc}(i)$.

Here the Hilbert space is $\mathcal{H} = L^2(\imath; |w|)$ and $(Jf)(x) = (\operatorname{sgn} w(x))f(x).$

p, q and w are real functions defined on an interval $i \subseteq \mathbb{R}$ and such that p, |w| > 0 a.e. on i and $1/p, q, w \in L_{\text{loc}}(i)$.

Here the Hilbert space is $\mathcal{H} = L^2(\imath; |w|)$ and $(Jf)(x) = (\operatorname{sgn} w(x))f(x).$

Under these conditions (self-adjoint) operators in ${\cal H}$ can be associated with the expression

$$\frac{1}{|w|} \left(-\frac{d}{dx} \left(p \frac{d}{dx} \right) + q \right)$$

Let S be such an operator in the Hilbert space $\mathcal{H} = L^2(\imath; |w|)$.

• w has a finite number of turning points.

- w has a finite number of turning points.
- in a neighborhood of each turning point, w satisfies a Beals type condition (Beals(1985), C&Langer(1989), Fleige(1995), Volkmer(1996), Parfenov(2003), C&Binding(2006)).

- w has a finite number of turning points.
- in a neighborhood of each turning point, w satisfies a Beals type condition (Beals(1985), C&Langer(1989), Fleige(1995), Volkmer(1996), Parfenov(2003), C&Binding(2006)).
- The operator S is (bounded) from below in $\mathcal{H} = L^2(\imath; |w|)$.

- w has a finite number of turning points.
- in a neighborhood of each turning point, w satisfies a Beals type condition (Beals(1985), C&Langer(1989), Fleige(1995), Volkmer(1996), Parfenov(2003), C&Binding(2006)).
- The operator S is (bounded) from below in $\mathcal{H} = L^2(\imath; |w|)$.

Then A = JS is $([p]_{s\langle sa \rangle})_{\infty,\rho}$.

- w has a finite number of turning points.
- in a neighborhood of each turning point, w satisfies a Beals type condition (Beals(1985), C&Langer(1989), Fleige(1995), Volkmer(1996), Parfenov(2003), C&Binding(2006)).
- The operator S is (bounded) from below in $\mathcal{H} = L^2(\imath; |w|)$.

Then A = JS is $([p]_{s}\langle sa \rangle)_{\infty,\rho}$.

Here ρ might be hard to calculate.

For the special case $i = \mathbb{R}, p = 1, q \in L^{\infty}(\mathbb{R})$ and $w(x) = \operatorname{sgn} x$ we calculated that

 $\rho < 7.903 \|q\|_{\infty}.$

For example:

$$A = (\operatorname{sgn} x) \left(-\frac{d^2}{dx^2} - \sin x \right)$$
$$\sigma(A) \subset \mathbb{R} \cup \left\{ z \in \mathbb{C} : |z| < 7.903 \right\}$$

and

 $(-\infty, -7.903]$ are spectral points of negative type and $[7.903, +\infty)$ are spectral points of positive type.

The end

Maz'ya&Verbitsky

The following statements are equivalent

•
$$\left| \int_{\mathbb{R}} q(x) |u(x)|^2 dx \right| \le C \left(\int_{\mathbb{R}} |u'(x)|^2 dx + \int_{\mathbb{R}} |u(x)|^2 dx \right)$$

•
$$\sup_{x \in \mathbb{R}} \int_{x}^{x+1} \left(|\Gamma(\xi)|^2 + |\gamma(\xi)| \right) d\xi < +\infty$$

where

$$\Gamma(\xi) = \int_{\mathbb{R}} \operatorname{sgn}(\xi - t) e^{-|\xi - t|} q(t) dt, \quad \gamma(\xi) = \int_{\mathbb{R}} e^{-|\xi - t|} q(t) dt.$$