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Let (H, (- )) be a complex Hilbert space.
Let J = J~1 # I be self-adjoint on (H, (-,-)).
Set [-,-]=(J-, ). Then (H,[-,-]) is a Krein space.

An operator J; on (H, -, ]) is called a fundamental symmetry
if J,=J;' and (H,[J1-, -]) is a Hilbert space.

With ‘Hi = (I + J1)H,
H =H_[+]|H, is a fundamental decomposition

Py = %(Ii J1) are the corresponding fundamental projections.
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Examples.

Let n > 1, w € Lioc(R™), w > 0 a.e. on R™.

Set H = L*(R™w), (f,9) = - f(x)g(x)w(z)de

(Jf)(x) = (sgnzy) f(x), x=(z1,...,2,) ER"
or

(Jf)(x) = f(Mz), = (21,...,2n) € R,
M is nxn matrix such that M2 = | and w(Mz) = w(z), z € R™.
For example, (Jf)(z) = f(—z), € R and w = 1.

Albaverio& Kuzhel call this J the space parity operator.



Definition. Let (H,[-,-]) be a Krein space. In this talk
an operator A : dom(A) — H is positive in (H,[-,-]), (or
[positive| for short) if the following three conditions are satisfied

1. o(A) #0.

2. A's [self-adjoint] in (H,[-,]).
& JA (self-adjoint) in the Hilbert space (H, (-,-)).

3. [Az, x| > 0 for all z € dom(A) \ {0}.
& JA (positive) in the Hilbert space (H,(-,-)).
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Properties of positive operators.

e 0(A) CR.

e A has a projection-valued spectral function FE defined for
all bounded intervals 2, 7 = [a,b] C R\ {0}.

e The spectral function may have singularities at 0 and at oc:

0 is a singular critical point of A if the set

{HE(Z)H 1 C [—1,1]\ {0}} is unbounded.

oo is a singular critical point of A if the set

{HE(Z)H 7 C R\ (-1, 1)} is unbounded.
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Theorem 1. Let A be a [positive] operator in the Krein
space (H, -, ]) The following statements are equivalent.

(a) A is similar to a (self-adjoint) operator.

(b) There exists a fundamental symmetry J; on (H,[-,-])
such that J;A = AJ;.

(c) 0 and oo are not singular critical points of A.

(d) The following two statements hold.

(c0) d p > 0 and a [positive] homomorphism W on H
such that W dom((JA)*) C dom((JA)*).

(0) 3 v >0 and a [positive] homomorphism X on H
such that X ran((AJ)") C ran((AJ)").

The operators from Theorem 1 we denote by [p]s<sa>.
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Examples of [p]s(sa) operators.
1-2. The Hilbert space is L*(R; w) with w(z) = |z]|%, o > —1,
and J s either one of the operators

(Jf)(x) = (sgnz)f(x) or (Jf)(z)=f(-z), zcR

With p(x) = |z|°, B <1, set

oA )

a = 3 =0 C&Najman, Karabash,
Karabash&Kostenko more general weights
8 =0,a > —1 Fleige&Najman, Kostenko,

Faddeev& Shterenberg more general weights
Higher order C&Najman, Karabash
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The operators on this slide are good candidates for [p]s(sa).

d2
4= J( dxz)

Examples ?-?. The Hilbert space is L*(R), dom(A) = W4(R),
and J is the multiplication operator by

sgn(z® — 1), or sgn(sinz), = €R.

Examples ?-?. The Hilbert space is LZ(R+)
dom {f c W2 (R+ — O}

J is the multlpllcatlon operator by

sgn(x — 1), or sgn(x—1)(x—2), or sgn(sinz), x € R,.
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More examples of [p]s(sa) operators.

3-4. The Hilbert space is L*(R™), n > 1, and J is either one
of the operators

(J)(x) = (sgnayn) f(z) or (Jf)(x)=f(Mz), zeR.

Here M = M~! is an n x n generalized permutation matrix
whose nonzero entries are either 1 or —1. For example

_O 1 0 there are
M= (1 0 0O 20 such
0 0 —1 3 X 3 matrices

Then A= —-JA is [p]s(sa). (C&Najman)
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Form bounded perturbations.

Theorem 2.(C&Najman, Jonas) (H,[-,-]) is a Krein space;

A is [p]s(sa) operator; a is the closure of the form [A-, -].

Let v be a closed symmetric form in ‘H such that:
e dom(a) C dom(v).

) c_a(x) <v(x) <c,alz), z¢cdom(a),
where —1 <c_ and 0<c,.

Let A; be the operator associated with the form
a + v in the Krein space (H, - ,])

Then A; is [p]s(sa).
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Applications to Examples 1-2.

The Hilbert space is L*(R;w) with w(z) = |z|% a > —1
and J s either one of the operators

(Jf)(z) = (sgnz)f(z) or (Jf)(z)=f(-z), zek

1 d?
A=Jg— (L)
JmQ(MQ

Let ¢ € Lioc(R) be a real-valued function.

m.mzwi(—£+g ls(sa) ?

|z

Faddeev&Shterenberg, Karabash&Malamud, Karabash&Kostenko
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To use Theorem 2, look for
c_,c, €R and ¢ suchthat —1<c_, 0<ec,,
and for all f € Cg°(R)

e [ 1@< [ a@)f@Pis <c, [ 1f@)Pd

The bad news is: | don't know of any ¢ that satisfies this
inequality. In fact, if ¢>0 or ¢ <0 a.e. on R, then

the above inequality & ¢ =0 a.e.
But, ...
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There is a good news for Examples 3-4.
In Maz'ya&Verbitsky Acta Math. (2002) there is a
characterization of all potentials ¢ for which, with n > 3,

| a@ls)Pds

Hence, for all such potentials,

Rn

with sufficiently small £ > 0 the operator,
A, =J(-A+kq) is [p]s(sa).
An example (Kato): n =3, a; € R3, ¢; >0,

u 1
and < .
Z 5’3_“.7‘2 i 1) ¢

< const. IV f(x)]?dz, f € CP(R™).

12



The class of operators ([p]S<Sa>)OOP

Definition.

Let A be a [self-adjoint] operator in a Krein space (H,[-,]).

A is ([p]s(sa)) s

that is A is [positive] and similar to (self-adjoint)
inE,={z¢€C:|z| >p}if

o H = H0[+]HOO
e Ho and H., are invariant under A.
o Ay = Ay, is bounded and o(Ap) C {z € C: |z| < p}.

o Ao = Alxn_ is [p]s(sa).

13
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If A is ([p]s<sa>)00’p then
e 0(A)CRU{zeC:|z| <p}

e A has a projection-valued spectral function E defined for
all bounded intervals 2, 7 C (—o0, —p) U (p, +00)

e I is bounded:
sup{IE@)|| : 1 C (—o0,—p) U (p, +00)} < +c0.

e If 1 C (p,+00), then (E(¢)H,[-,-]) is a Hilbert space.
If + C (=00, —p), then (E(2)H, —[-,-]) is a Hilbert space.
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Theorem 3.(C&Jonas) Assume
o A is [p]s(sa).
e B is [self-adjoint] and bounded.

Then A+ B is ([p]s(sa)) , for some p > 0.

We also give an estimate for p.

15
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Theorem 3 applies to a wide class of differential operators.

For example,

p,q and w are real functions defined on an interval : C R and
such that p, |lw| > 0 a.e. on 2 and 1/p,q,w € Lioc(1).

Here the Hilbert spaceis  H = L%(s; |w])
and  (Jf)(z) = (sgnw(z))f(z).

Under these conditions (self-adjoint) operators in H can be
associated with the expression

Ly,
lw| \ dx Paz) 71
Let S be such an operator in the Hilbert space 'H = L?(2; |w]).
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Theorem 4. (C&Jonas) Assume:

e w has a finite number of turning points.

e in a neighborhood of each turning point, w satisfies a Beals
type condition (Beals(1985), C&Langer(1989), Fleige(1995),
Volkmer(1996), Parfenov(2003), C&Binding(2006)).

e The operator S is (bounded) from below in H = L?(2; |w]).

Then A=JS is ([p]s<sa>)oojp.

Here p might be hard to calculate.
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For the special case =R, p=1, ¢ € L*(R)

and w(x) =sgnx we calculated that

p < 7.903 ||l oo

For example:
d2
A = (sgnx) (—@ — sin x)

oc(A) CRU{z e C:|z] < 7.903}
and

(—o0, —7.903] are spectral points of negative type and
7.903, +00) are spectral points of positive type.
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The end



Maz'ya&Verbitsky

The following statements are equivalent

<C (/R\u’(a;)\de+/Ryu(x)\2dx)

¢ s [ (TP + @) de < +0

reR

/R o(z) [u(z)2da

where
D(¢) = / sen(e— e g(t)de, (€)= / o6ty ()t

20



