Spectral functions for some product of selfajoint operators

Mikhail Denisov

December , 2006

Let \mathcal{H} be a Hilbert space with a scalar product.

Linear operator $G : \mathcal{H} \to \mathcal{H}$ is selfajoint and continuous. Let number 0 is not an eigenvalue of the operator G, $(0 \notin \sigma_p(G))$.

We consider a form $[x, y] := (Gx, y) x, y \in \mathcal{H}$.

Hilbert space \mathcal{H} with the form [x, y] is a singular *G*-space, if 0 is a point of continuous spectrum of operator *G*.

Hilbert space \mathcal{H} with the form [x, y] is a regular G-space, if 0 is a regular point of operator G.

Definition. 1. Linear continuous operator A: $\mathcal{H} \to \mathcal{H}$ is G-selfajoint, if [Ax, y] = [x, Ay] for any $x, y \in \mathcal{H}$. Let ring \Re is generated by some intervals real axis, ring \Re including the interval $(-\infty, +\infty)$.

Let *E* is the homomorphism, mapping the ring \mathfrak{R} to set of *G*-selfajoint projectors $\{E(\Delta)\}$. Any projectors from this set $\{E(\Delta)\}$ satisfy the following conditions :

• $E(\emptyset) = 0, E((-\infty, +\infty)) = I.$

•
$$E(\triangle \cap \triangle') = E(\triangle)E(\triangle').$$

• $E(\triangle \cup \triangle') = E(\triangle) + E(\triangle')$ if $\triangle \cap \triangle' = \varnothing$, where $\triangle, \triangle' \in \Re$.

Denote $\sigma(E)$ the support of this homomorphism.

Denote \mathfrak{P}^+ (\mathfrak{P}^-) the set of linear manifolds L, which satisfy the condition: for any $x \in L$: $[x, x] \ge 0$ ($[x, x] \le 0$).

 $\lambda \in \sigma(E)$ is the point of positive (negative) type, if there is an interval $\Delta \in \mathfrak{R}$, which contain λ , and $E(\Delta)\mathcal{H} \in \mathfrak{P}^+$ ($E(\Delta)\mathcal{H} \in \mathfrak{P}^-$).

Symbols $\sigma_+(E)$ and $\sigma_-(E)$ denote the set of points of positive and negative types.

Let $s = \{a_j\}_{j=1}^n$ be finite set of real points. Ring $\Re(s)$ generated by intervals, for which points from s are not bounds points.

Definition. 2. Homomorphism E, defined on $\Re(s)$, is *G*-spectral function with the set s(E) of the critical points, if from the conditions $\lambda_0, \mu_0 \notin s(E), \ \mu_0 < \lambda_0 \text{ and } \mu \downarrow \mu_0, \text{ follows that the sequence operators } {E((\mu, \lambda_0])} converge in the strong operators topology and the limit coincide with <math>E((\mu_0, \lambda_0])$:

 $s - \lim_{\mu \downarrow \mu_0} \left(E((\mu, \lambda_0]) \right) = E((\mu_0, \lambda_0])$

Definition. 3. Point $a \in s(E)$ is the regular critical point of the *G*-spectral function, if the limits:

- $s \lim_{\lambda \uparrow a} E((-\infty, \lambda])$
- $s \lim_{\lambda \downarrow a} E((\lambda, +\infty))$

exist in the strong operators topology, otherwise point a is the singular critical point.

If set s(E) does not contain the singular critical points, then E is regular G-spectral function.

Definition. 4. *G*-spectral function *E* is the eigen *G*-spectral function of the *G*-selfajoint operators *A*, if:

- $AE(\triangle) = E(\triangle)A$
- $\sigma(A|E(\triangle)\mathcal{H})\subset\overline{\bigtriangleup}$
- if $\Delta \in \mathfrak{R}$ and $\Delta \cap s(E) = \emptyset$ then: $AE(\Delta) = \int_{\Delta} t dE_t$

If the set \triangle is bounded, then the integral converg in norm, , if the set \triangle is unbounded, then the integral converge in the strong operators topology.

Let s(A) be the set of the critical points of eigen G-spectral functions of operator A. It is easy to check that, if the linear operator $A : \mathcal{H} \to \mathcal{H}$ is continuous and selfajoint, then the linear operator AG is G-selfajoint in the G-space \mathcal{H} .

The existence of eigen *G*-spectral function of the continuous *G*-selfajoint operators *T* in *G*space for case of regular *G*-space (when $0 \notin \sigma(G)$) was shown by H.Langer. Therefore, we study the case of the singular *G*-space (when $0 \in \sigma_c(G)$).

In this work, in case of singular *G*-space, we show existence of eigen *G*-spectral function of continuous *G*-selfajoint operators *T*, where T = AG. The linear continuous operator *A* : $\mathcal{H} \to \mathcal{H}$ is selfajoint and nonnegative: $A \ge 0$.

The main result of our work is the theorem 1 and 2. In the proof of the theorem 1 we follow J.Bognar.

Theorem. 1. Let the linear operators $A : \mathcal{H} \to \mathcal{H}$, $G : \mathcal{H} \to \mathcal{H}$ are continuous and selfajoint. If the operator A is nonnegative and $0 \notin \sigma_p(G)$, then for any real number $\lambda \neq 0$ there is the unique G-selfajoint projector E_{λ} , and the function $\lambda \to E_{\lambda}$ satisfy the following conditions:

- 1. If $\lambda \leq \mu$, then $E_{\lambda}E_{\mu} = E_{\mu}E_{\lambda} = E_{\lambda}$.
- 2. If $\lambda < \mu < 0$, then $[E_{\lambda}x, x] \ge [E_{\mu}x, x]$, and if $\mu > \lambda > 0$, then $[E_{\mu}x, x] \ge [E_{\lambda}x, x]$ for any $x \in \mathcal{H}$.
- 3. If $\lambda < -\|A\| \|G\|$, then $E_{\lambda} = 0$, and if $\lambda > \|A\| \|G\|$, and $E_{\lambda} = I$.

- 4. If $\lambda \neq 0$, then exist the limit in the strongly operator topology s - $\lim_{\mu \downarrow \lambda} E_{\mu} = E_{\lambda+0}$ and his coincide with E_{λ} .
- 5. If T is the linear bounded operator and T commutating with the operator AG, then $TE_{\lambda} = E_{\lambda}T$.
- 6. $\sigma(AG|E_{\lambda}\mathcal{H}) \subset (-\infty, \lambda]$, and $\sigma(AG|(I - E_{\lambda})\mathcal{H}) \subset [\lambda, +\infty).$

An integral $\int \nu dE_{\nu}$ is the convergent integral $-\|A\|\|G\|$ in the strongly operator topology with the singular point $\lambda = 0$. Consider the polar representation of the operator G, G = |G|J. If G is the selfajoint operator and $0 \in \sigma_c(G)$, then J is the unitary and selfajoint operator.

Introduce the operator B := JAJ. The operator A is nonnegative, then operator $B \ge 0$, therefore there exist the operator $B^{1/2}$.

Introduce the selfajoint operator \boldsymbol{C} such that

$$C := B^{1/2} G B^{1/2}$$

Let $\{F_{\lambda}\}_{-\infty}^{+\infty}$ be the right continuous spectral function for the operator C.

Introduce the operator C_{λ} :

$$C_{\lambda} = \begin{cases} C|F_{\lambda}, & \text{if } \lambda < 0; \\ C|(I - F_{\lambda}), & \text{if} \lambda > 0. \end{cases}$$

Introduce the function E_{λ} such that:

$$E_{\lambda} = \begin{cases} JB^{1/2}C_{\lambda}^{-1}F_{\lambda}B^{1/2}|G|, & \text{if } \lambda < 0; \\ I - JB^{1/2}C_{\lambda}^{-1}(I - F_{\lambda})B^{1/2}|G|, & \text{if } \lambda > 0. \end{cases}$$

Theorem. 2. If $A : \mathcal{H} \to \mathcal{H}$ and $G : \mathcal{H} \to \mathcal{H}$ is continuous selfajoint operators, A is the nonnegative and $0 \notin \sigma_p(G)$. Then the operator $AG : \mathcal{H} \to \mathcal{H}$ have the eigen G-spectral functions E with critical point $\lambda = 0$. And the next statements is hold:

- $\sigma(E) \setminus \{0\} = \sigma_+(E) \cup \sigma_-(E)$
- $\sigma_+(E) = (0, +\infty) \cap \sigma(E)$
- $\sigma_{-}(E) = (-\infty, 0) \cap \sigma(E)$

If $\Delta = (\alpha, \beta]$ (or $[\alpha, \beta), (\alpha, \beta), [\alpha, \beta]$) and $\alpha \neq 0$, $\beta \neq 0$, then $E(\Delta) := E_{\beta} - E_{\alpha}$. The mapping $\Delta \rightarrow E(\Delta)$ is define the proper *G*-spectral functions *E* with critical point $\lambda = 0$ for the operator *AG*. In the general case, when $T : \mathcal{H} \to \mathcal{H}$ is continuous *G*-selfajoint and *G*-nonnegative operator, *T* does not have the representation T = AG, where *A* and *G* is satisfy the condition of theorem 1, operator *T* may not have *G*-spectral function.

Further we are show an example of the continuous G-selfajoint and G-nonnegative operator T, which has no G-spectral function.

Example: Let $T : Dom(T) \to \mathcal{H}$ be hermitian, uniformly positive operator, $\overline{Dom(T)} = \mathcal{H}$, and his defects indexes equal (1, 1).

Introduce the operator $G := |T|^{-1}$. The operator G continuous and selfajoint, and at the same time $0 \in \sigma_c(|T|^{-1}) = \sigma_c(G)$.

As $Ran(|T|^{-1}) = Dom(T) \neq \mathcal{H}$ and $\overline{Dom(T)} = \mathcal{H}$, therefore $0 \in \sigma_c(|T|^{-1})$.

If the defects indexes of the operator T coincide, then the operator T can be extended to selfajoint, uniformly positive operator \tilde{T} . Denote $A := \tilde{T}$. The operator AG is the continuous G-selfajoint and G-nonnegative.

As $AG = \tilde{T}|T|^{-1}$, $\tilde{T}|DomT = T$ and $Ran(|T|^{-1}) = Dom(T) \subset Dom(\tilde{T})$, we have:

$$AG = \widetilde{T}|T|^{-1} = T|T|^{-1}$$

Consider the polar representation of operator T: T = V|T| whence $V = T|T|^{-1} = AG$. If T is hermitian operator, then V — semi-unitary operator, therefore:

$$\sigma(AG) = \sigma(V) = \{\lambda : \lambda \in \mathbb{C}, |\lambda| \le 1\}$$

Assuming the contrary: the operator AG have the proper G-spectral function E. Hence $\sigma(AG) =$ $= \sigma(AG|E((-\infty, +\infty))\mathcal{H}) \subset \mathbb{R}$, as $\sigma(AG) =$ $= \{\lambda : \lambda \in \mathbb{C}, |\lambda| \leq 1\}$, we have contradiction.

- 1. Azizov T.Y., Ioxvidov I.S Theory of the linear operators in spaces with indefinite metric. M. Nauka 1986. 352 p.
- J.Bognar A proof of the spectral theorem for J-positive operators. Acta sci. math., 1983, 15, 1-2, p.75-80.
- Langer.H Specrtralfunctionen einer Klasse J-selbstadjungierter Operatoren. — Math. Nachr., 1967, 33, 1-2, S. 107-120.
- 4. A.I. Plesner *The spectral theory of the linear* operators. *M.*, 1965. 624 p.