
Coupling method in the theory of

generalized resolvents of symmetric

operators

Vladimir Derkach

joint work with

Seppo Hassi, Mark Malamud and Henk de Snoo

1



• Boundary triplets and Weyl functions

• Classical Weyl-Titchmarsh function

• Canonical and generalized resolvents

• Proof via coupling construction

• Unitary relations in Krĕın spaces
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Boundary triplets and Weyl functions

Let A be a closed symmetric operator in a Hilbert

space H. Let A∗ be the adjoint linear relation

{g, g′} ∈ A∗ ⇐⇒ (Af, g)− (f, g′) = 0 ∀f ∈ domA

Definition 1 (A.Kochubej ’75, M. Malamud ’92)

A triplet Π = {H,Γ0,Γ1}, where H is a Hilbert space

and Γi : A∗ → H, i = 0,1, is said to be a boundary

triplet for A∗, if for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗;

(f ′, g)H − (f, g′)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H (1)

and Γ := {Γ0,Γ1} : A∗ →H⊕H is surjective.

Define a selfadjoint extension A0 of A by

A0 = ker Γ0.

Definition 2 (DM ’85) The abstract Weyl function

of A corresponding to the boundary triplet Π

Γ1fλ = M(λ)Γ0fλ, fλ ∈ Nλ := ker (A∗ − λ), (2)

the γ − field

γ(λ) := (Γ0|Nλ
)−1 : C \ R→ Nλ.
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Nevanlinna functions

It follows from (1) that M(λ) satisfies

M(λ)−M(µ)∗ = (λ− µ̄)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0).

This implies that M(·) ∈ R[H]:
1) M(·) : C \ R→ [H] is holomorphic;
2) M(λ)∗ = M(λ̄);
3) Im M(λ)Im (λ) ≥ 0.
Subclasses of R[H]: Ru[H] ⊂ Rs[H] ⊂ R[H]

M(·) ∈ Rs[H] ⇐⇒ 0 /∈ σp(Im M(λ)) for all λ ∈ C \ R;

M(·) ∈ Ru[H] ⇐⇒ 0 ∈ ρ(Im M(λ)) for all λ ∈ C \ R.

It is known (LT ’77, DM ’95), that every uniformly
strict Nevanlinna function is the Weyl function of a
symmetric operator A, corresponding to a boundary
triplet Π.

Nevanlinna families

A family τ(λ) is called a Nevanlinna family and is writ-
ten as τ ∈ R̃(H), if:
1) τ(λ) is a maximal dissipative linear relation for all
λ ∈ C+;
2) τ(λ)∗ = τ(λ̄), λ ∈ C+ ∪ C−;
3) (τ(λ) + i)−1 is holomorphic on C+.
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Classical Weyl-Titchmarsh function

Let the Sturm-Liouville operator ` = −D2 + q on

(0,∞) be in the limit-point case at ∞. If A is a

minimal operator generated by ` in L2(0,∞), then

def A = dimNλ(A) = 1. The boundary triplet is given

by

Γ0f = f(0), Γ1f = f ′(0) f ∈ domA∗

Let u(x, λ), v(x, λ) be solutions of `(f) = λf such that

u(0, λ) = 1, u′(0, λ) = 0;

v(0, λ) = 0, v′(0, λ) = 1.

By Weyl theorem ∃! m(λ) such that

(fλ =)u(x, λ) + m(λ)v(x, λ) ∈ L2(0,∞).

Since Γ0fλ = 1, Γ1fλ = m(λ) one obtains

M(λ) = m(λ).

Canonical selfadjoint extensions of A: Ã = A∗|
dom Ã

dom Ã = {f ∈ domA∗ : y′(0) = θy(0)}, θ ∈ R ∪ {∞}.
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Canonical and generalized resolvents of A

If dimH = 1 s.a. extensions of A are parametrized by

Ãθ = ker (Γ1 + θΓ0) (θ ∈ R), Ã∞ = A0 = ker Γ0.

Canonical resolvents of A are parametrized by

(Ãθ−λ)−1 = (A0−λ)−1−γ(λ)(θ+M(λ))−1γ(λ̄)∗. (3)

Generalized resolvent of A is a compressed resolvent

Rλ = PH(Ã− λ)−1|H,

of a selfadjoint extension Ã of A in H̃(⊃ H),

PH is the orthogonal projection onto H in H̃.

Description of generalized resolvents (M.G. Krĕın ’44)

Rλ = (A0 − λ)−1 − γ(λ)(τ(λ) + M(λ))−1γ(λ̄)∗, (4)

where τ(∈ R) is a Nevanlinna function.
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Proof of Krĕın-Najmark formula. Let τ ∈ R. Let
us construct a s.a. extension Ã of A such that (4)
holds.

There are a symmetric operator S2 in H′′ and a bound-
ary triplet {C,Γ′′0,Γ′′1} for S∗2 such that the correspond-
ing Weyl function is τ . Let H(⊃ S := A ⊕ S2) be a
symmetric operator in H⊕ H′′ with the adjoint

H∗ =
{
f̂1 ⊕ f̂2 ∈ A∗ ⊕ S∗2 : Γ0f̂1 − Γ′′0f̂2 = 0

}
.

Then τ(λ) + M(λ) is a Weyl function for H∗,
corresponding to the BT {C,Γ0,Γ1 ⊕ Γ′′1}. Then
Ã = ker (Γ1 ⊕ Γ′′1) is a selfadjoint extension of H

Ã =
{
f̂1 ⊕ f̂2 ∈ S∗ : Γ0f̂1 − Γ′′0f̂2 = Γ1f̂1 + Γ′′1f̂2 = 0

}

due to (3) its resolvent is given by

(Ã− λ)−1 = diag((Ã∞ − λ)−1, (Ã′′∞ − λ)−1)

−
(

γ(λ)
γ′′(λ)

)
(θ + M(λ))−1

(
γ(λ̄)∗ γ′′(λ̄)∗

)
.

(5)

Compression of(5) to H gives (4).

Problem Prove the Krĕın-Najmark formula via cou-
pling method for infinite indices.
Difficulties If τ ∈ R̃(H) \ Ru[H], then either τ(λ) is
multivalued, or τ(λ) is unbounded, or =τ(λ) is not in-
vertible.
Tools Generalize the notion of boundary triplet in or-
der that arbitrary Nevanlinna family to be realized as
the corresponding Weyl family.
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Unitary relations in Krĕın spaces

Let JH, JH be signature operators in H2 and H2:

JH :=

(
0 −iIH

iIH 0

)
, JH :=

(
0 −iIH

iIH 0

)
.

Γ : (H2, JH) → (H2, JH) is called a linear relation, iff Γ
is a linear subspace of H2 ×H2. A linear relation Γ is
called isometric, if:

(JHΓf,Γg) = (JHf, g) ∀f, g ∈ domΓ; (6)

or, equivalently, Γ−1 ⊂ Γ[∗] := JHΓ∗JH.

Definition 3 (Shmul’jan, ’76) A linear relation Γ :
(H2, JH) → (H2, JH) is called unitary, if Γ−1 = Γ[∗].

Proposition 4 Let Γ be a unitary relation from the
Krĕın space (H, jH) to the Krĕın space (H, jH). Then
domΓ is closed if and only if ranΓ is closed. Moreover,

ker Γ = (domΓ)[⊥], mulΓ = (ranΓ)[⊥].

An isometric operator from the Krĕın space (H2, JH)
to the Krĕın space (H2, JH) is called a standard unitary
operator, if domΓ = H2, ranΓ = H2. Clearly, Γ is a
unitary relation if at least one of this conditions holds.

Example 5 If {H,Γ0,Γ1} is a boundary triplet, then
Γ : (H2, JH) → (H2, JH) is a unitary relation, since (1)
is equivalent to (6) and ranΓ = H2.
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Boundary relations and Weyl families

Definition 6 (DHMS’06) A linear relation

Γ : (H2, JH) 7→ (H2, JH) is called a boundary relation

for S∗, if:

1) Γ is a unitary relation; 2) S = ker Γ.

In general T := domΓ 6= S∗. Let Nλ(T ) = ker (T − λ)

and N̂λ(T ) = { {f, λf} ∈ T : f ∈ Nλ(T ) }.

Definition 7 Weyl family τ(λ) of S corresponding to

the boundary relation Γ : H2 7→ H2 is defined by

τ(λ) := Γ(N̂λ(T )), λ ∈ C \ R. (7)

Boundary relation Γ is called minimal, if

H = Hmin := span{Nλ(T ) : λ ∈ C+ ∪ C− }.

Theorem 8 (DHMS’06) Let Γ : H2 →H2 be a bound-

ary relation for S∗. Then the corresponding Weyl fam-

ily M(·) belongs to the class R̃(H).

Conversely, if M(·) belongs to the class R̃(H) then

there exists a unique (up to unitary equivalence) min-

imal boundary relation whose Weyl function coincides

with M(·).
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Induced Boundary Relation

Let Ã be a selfadjoint linear relation in the orthogonal
sum H̃ = H1 ⊕ H2 and let

Sj = Ã ∩ H2
j , Tj =

{ (
Pjϕ
Pjϕ

′
)

:

(
ϕ
ϕ′

)
∈ Ã

}
. (8)

Ã is called a minimal selfadjoint extension of S1, if

H̃ = span
{

H1 + (Ã− λ)−1H1 : λ ∈ ρ(Ã)
}

. (9)

Theorem 9 1) Let A be a symmetric operator in H1,
let Π = {H,Γ0,Γ1} be an ordinary BT for A∗. If Ã =
Ã∗ is a minimal selfadjoint exit space extension of A
in H̃ = H1 ⊕ H2 and S2, T2 are defined by (8), then
the linear relation Γ′′ : H2

2 →H2 defined by

Γ′′ =
{{

f̂2,

(
Γ0f̂1
−Γ1f̂1

)}
: f̂1 ⊕ f̂2 ∈ Ã, f̂1 ∈ T1, f̂2 ∈ T2

}

(10)
is a minimal boundary relation for S∗2.
2) Conversely, if S2 is a simple symmetric operator in
H2 and Γ′′ : H2

2 → H2 is a minimal boundary relation
for S∗2, then the linear relation Ã defined by

Ã =

{
f̂1 ⊕ f̂2 ∈ A∗ ⊕ S∗2 :

{
f̂2,

(
Γ0f̂1
−Γ1f̂1

)}
∈ Γ′′

}
(11)

is a minimal selfadjoint extension of A which satisfies
Ã ∩ H2

2 = S2. Moreover, the compressed resolvent of
Ã is calculated by the Krĕın-Najmark formula.
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Najmark extensions

Definition 10 (Najmark) Let A be a densely defined

symmetric operator in H and let Ã be a minimal exit

space extension of A acting in H̃ (⊃ H). Then

(i) Ã ∈ Naj1(A) if dom Ã ∩ H = dom Ã;

(ii) Ã ∈ Naj2(A) if dom Ã ∩ H = domA;

(iii) Ã ∈ Naj2(A) if domA $ dom Ã ∩ H $ dom Ã.

Note that a first type extension Ã is just a canonical

extension of A, acting in H̃ = H.

Theorem 11 Ã ∈ Naj2(A) ⇔ S1 = A&mulT2 = {0}

Proposition 12 Let n±(A) = n < ∞.

Then Ã ∈ Naj2(A) iff τ(·) ∈ Ru[H] and

lim
y↓∞

y−1τ(iy) = 0, (12)

lim
y↓∞

y · Im (τ(iy)h, h) = ∞, h ∈ H \ {0}. (13)

Theorem 13 Let n±(A) = ∞. Then Ã ∈ Naj2(A) iff

τ(·) ∈ Rs(H) and the function

τ(1)(λ) = −(τ(λ)− 1/λ)−1

satisfies the limit conditions in (12), (13).
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Najmark extensions of nondensely defined operator

Definition 14 Let A be a nondensely defined sym-

metric operator in H and let Ã be a minimal exit space

extension of A acting in H̃ (⊃ H). Define the Straus

extension

T (∞) =

{
{f1, f ′1} :

{(
f1
0

)
,

(
f ′1
f ′2

)}
∈ Ã, f ′2 ∈ H2

}

Let us say:

(i) Ã ∈ Naj1(A) if T (∞) = Ã;

(ii) Ã ∈ Naj2(A) if T (∞) = A;

(iii) Ã ∈ Naj2(A) if A 6= T (∞) 6= Ã.

Theorem 15 Ã ∈ Naj2(A) ⇔ S1 = A&mulT2 = {0}

Theorem 16 Let n±(A) = ∞. Then Ã ∈ Naj2(A) iff

τ(·) ∈ Rs(H) and the function

τ(1)(λ) = −(τ(λ)− 1/λ)−1

satisfies the limit conditions in

lim
y↓∞

y−1τ(iy) = 0, (14)

lim
y↓∞

y · Im (τ(iy)h, h) = ∞, h ∈ H \ {0}. (15)
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Example

Let A be a minimal differential operator in L2[0,1]

associated with the differential expression −D2 with

the domain

{f ∈ W2
2 [0,1] : f(0+) = f ′(0+) = f(1) = f ′(1) = 0}.

Let the boundary triplet {C,Γ0,Γ1} be defined by

Γ0f =

(
f(0+)
f(1)

)
, Γ1f =

(
f ′(0+)
−f ′(1)

)
.

Let Ã be a selfadjoint operator in L2[−1,1] associated

with −D2 and the periodic boundary conditions

f(1) = f(−1), f ′(1) = f ′(−1).

Then S2 is a minimal differential operator generated

by −D2 on the interval [−1,0] and the induced bound-

ary triplet {C,Γ′′0,Γ′′1} takes the form

Γ′′0f =

(
f(0−)
f(−1)

)
, Γ′′1f =

(
−f ′(0−)
f ′(−1)

)
.

Then Ã ∈ Naj2(A) since S1 = A and mulT2 = {0}.
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Let Ã be a selfadjoint extension of A in L2(−∞,1]

associated with −D2 and the boundary condition

f ′(1) = hf(1).

Then S2 is a minimal differential operator generated in

L2(−∞,1) by −D2 and the induced boundary relation

Γ′′ : S∗2 → C2 takes the form

Γ′′ =
{{

f̂ , col (f(0−), c,−f ′(0−), hc)
}

: f̂ ∈ S∗2, c ∈ C
}

.

Then Ã ∈ Naj3(A) since S1 6= A. This fact can be

illustrated also analitically, since the Weyl function,

corresponding to Γ′′ takes the form

τ(λ) =

(
i
√

λ 0
0 h

)

and is not strict.
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Admissibility

Corollary 17 Given a a boundary triplet Π = {H,Γ0,Γ1}
the Krĕın resolvent formula

PH(Ã−λ)−1dH = (A0−λ)−1−γ(λ)
(
M(λ)+τ(λ)

)−1
γ(λ)∗

establishes a one-to-one correspondence between the
set of Nevanlinna families τ(·) ∈ R̃(H) and the set of
minimal exit space selfadjoint extensions Ã = Ã(τ) of
S.

Let A be densely defined. A family τ = {φ(λ), ψ(λ)} ∈
R[H] is called Π-admissible, if Ã(τ) is singlevalued.

Theorem 18 Let A be a (nondensely defined) closed
symmetric operator in H with equal defect numbers
n+(A) = n−(A) ≤ ∞, let Π = {H,Γ0,Γ1} be a bound-
ary triplet for A∗ with Weyl function M(λ), and let
{φ(λ), ψ(λ)} be a Nevanlinna pair in H. Then the pair
{φ(λ), ψ(λ)} is Π-admissible if and only if the following
two conditions are satisfied:

w − lim
y↑∞

φ(λ)(ψ(iy) + M(iy)φ(λ))−1

y
= 0 (16)

and

w − lim
y↑∞

ψ(λ)(ψ(iy) + M(iy)φ(λ))−1M(λ)

y
= 0. (17)
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