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Boundary triplets and Weyl functions

Let A be a closed symmetric operator in a Hilbert
space $. Let A* be the adjoint linear relation

{9,9'} € A* <= (Af,g9) — (f,¢') =0 VfedomA

Definition 1 (A.Kochubej '75, M. Malamud '92)
A triplet N = {H,g,1}, where H is a Hilbert space
and I'; . A* - 'H, « = 0,1, is said to be a boundary
triplet for A*, if for all f ={f,f'},d = {g,q'} € A*;

(9 — (f,9)g=1f,Togd)n— (Tof,T19)x (1)
and I :={lg,M1}: A — H & H is surjective.

Define a selfadjoint extension Ag of A by
AO = ker |_0.

Definition 2 (DM '85) The abstract Weyl function
of A corresponding to the boundary triplet Il

Cifin=MO)Tofn, fre€Myi=ker(A"=X), (2)
the ~ — field

y(A) = (Tolm,) "' : C\R — Ny,



Nevanlinna functions

It follows from (1) that M ()\) satisfies

M) = M(p)" = A= @)y()*y(N), A u e p(Aog).
This implies that M(-) € R[H]:
1) M(-) : C\R — [H] is holomorphic;
2) M(A)* = M(N\);
3) Im M(A)Im () > 0.
Subclasses of R[H]: R“[H] C R’[H] C R[H]

M(-) € R°[H] <= 0 ¢ op(Im M(X)) for all A € C\R;

M() € RY[H] <= 0 € p(Im M(X)) for all A€ C\R.

It is known (LT '77, DM '95), that every uniformly
strict Nevanlinna function is the Weyl function of a
symmetric operator A, corresponding to a boundary
triplet I.

Nevanlinna families

A family 7()) is called a Nevanlinna family and is writ-
ten as 7 € R(H), if:

1) 7(\) is a maximal dissipative linear relation for all
A e Cy,

2) T(AN)*=71(N), e CLUC_;

3) (r(\) +4)~ 1 is holomorphic on C.



Classical Weyl-Titchmarsh function

Let the Sturm-Liouville operator £ = —D? + g on
(0,0) be in the limit-point case at co. If A is a
minimal operator generated by ¢ in L,(0,00), then
def A =dimMN,(A) = 1. The boundary triplet is given

by
Fof = f(0), T1f = f(0) f € dom A*
Let u(x, \), v(x, A) be solutions of £(f) = Af such that

w(0,0) =1, 4/(0,))=0:;
v(0,\) =0, '(0,)\) =1.
By Weyl theorem 3! m(\) such that

(fx =)ulz, A) +m(M)v(z,A) € L(0,00).
Since IN'gfy, =1, M1 f, = m(A) one obtains
M(A) = m(XN).
Canonical selfadjoint extensions of A: A = A% yom i
om A

domA = {f e dom A* : 4/(0) = 6y(0)}, 6 €cRU{cx}.



Canonical and generalized resolvents of A

If dimH = 1 s.a. extensions of A are parametrized by

Ag =ker (1 +60g) (0 €R), Ao = Ag = kerMp.

Canonical resolvents of A are parametrized by

(Ag—N) "1 = (Ag—N) "1y O+MON))Iv()*. (3)

Generalized resolvent of A is a compressed resolvent
R) = Py(A— )1,

of a selfadjoint extension A of A in 5(3 9),
Pg) IS the orthogonal projection onto 9 in $.
Description of generalized resolvents (M.G. Krein '44)

Ry = (Ag — M) =y (TN + M) Iv()*,  (4)

where 7(€ R) is a Nevanlinna function.



Proof of Krein-Najmark formula. Let 7 € R. Let

~

us construct a s.a. extension A of A such that (4)
holds.

There are a symmetric operator Ss in $” and a bound-
ary triplet {C, I, "]} for S5 such that the correspond-
ing Weyl function is 7. Let H(D S := A® S>) be a
symmetric operator in @ H” with the adjoint

H*:{fl@fQEA*@S§3rofl—r6f2=0}-
Then 7(A) + M(M\) is a Weyl function for H*,

corresponding to the BT {C,I'g,'; @ I'f}. Then
A =ker ("' &rY) is a selfadjoint extension of H

A= {fl O faeS :Tofi —Tgfa=T1f1+Tf2= 0}
due to (3) its resolvent is given by
(A— )" =diag((Ao — N) 7L, (A%, — )7 1)
() ) o+ aon (46 1y ),

Compression of(5) to $ gives (4).

(5)

Problem Prove the Krein-Najmark formula via cou-
pling method for infinite indices.

Difficulties If - € R(H) \ R“[H], then either 7(}\) is
multivalued, or 7(\) is unbounded, or &7(A) is not in-
vertible.

Tools Generalize the notion of boundary triplet in or-
der that arbitrary Nevanlinna family to be realized as
the corresponding Weyl family.



Unitary relations in Krein spaces

Let Jg, Jy be signature operators in $H2 and H?:

_ (0 —ilg _ (0 —ily
T = (ifﬁ 0 )'JH'_ (iIH 0 )

M (92, Jg) — (H2,Jy) is called a linear relation, iff I
is a linear subspace of $2 x H2. A linear relation I is
called isometric, if:

(I f,Tg) = (Jgf,g9) Vf,g € domT; (6)
or, equivalently, I—1 ¢ rixl .= Jg)I‘*JH.

Definition 3 (Shmul’jan, '76) A linear relation I :
(92, Jg) — (M2, Jy) is called unitary, if T=1 =l

Proposition 4 Let I be a unitary relation from the
Krein space ($),jg) to the Krein space (H,jy). Then
dom [ is closed if and only ifranl is closed. Moreover,

kerr = (dom I‘)[l], mul ™ = (ran I‘)[l].

An isometric operator from the Krein space (ﬁQ,Jﬁ)
to the Kreln space (H?, Jx) is called a standard unitary
operator, if domlm = $2, ranl” = H2. Clearly, I is a
unitary relation if at least one of this conditions holds.

Example 5 If {H,o,1} is a boundary triplet, then
M (92, Jq) — (H?,Jy) is a unitary relation, since (1)
is equivalent to (6) and ran = H?2.



Boundary relations and Weyl families

Definition 6 (DHMS'06) A linear relation
M (92,Jg) — (H2,Jy) is called a boundary relation
for S*, if:

1) I is a unitary relation;, 2) S = kerTI .

In general T':=domT[ # S*. Let M (T) = ker (T — \)
and M\(T) = {{f,\f} €T : f €M) }.

Definition 7 Wey! family (\) of S corresponding to
the boundary relation T : $2 — H2 is defined by

r(\) =T (O (T)), MeC\R. (7)

Boundary relation [ is called minimal, if

HnH = f)mzn .= Span{m)\(T) A E C_l_ JC_ }

Theorem 8 (DHMS'06) LetT : $H2 — H?2 be a bound-
ary relation for S*. Then the corresponding Weyl fam-
ily M(-) belongs to the class R(H).

Conversely, if M(-) belongs to the class R(H) then
there exists a unique (up to unitary equivalence) min-
imal boundary relation whose Weyl function coincides
with M(-).



Induced Boundary Relation

Let ﬁNbe a selfadjoint linear relation in the orthogonal
sum = H1 b Ho and let

- P. -
S; = An§H?, Tj={<P;§,>:(;f,>eA}. (8)

A is called a minimal selfadjoint extension of Sy, if

~

S=span{H1+(A-N) "9 Aep(D ). (9)

Theorem 9 1) Let A be a symmetric operator in $1,
let M = {H, o, 1} be an ordinary BT for A*. If A =
A* is @ minimal selfadjoint exit space extension of A
in = $H1 D H> and S», To are defined by (8), then
the linear relation T : §3 — H? defined by

AN

= "N fafhed fiem, e
~T1f1
(10)

is @ minimal boundary relation for S5.

2) Conversely, if So is a simple symmetric operator in
95 and " : 93 — H? is a minimal boundary relation
for SQ, then the linear relation A defined by

1= {seheras (o (7))

is a minimal selfadjoint extension of A which satisfies
AN ﬁ% = So>. Moreover, the compressed resolvent of
A is calculated by the Krein-Najmark formula.
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Najmark extensions

Definition 10 (Najmark) Let A be a densely defined
symmetric operator in $ and let A be a minimal exit
space extension of A acting in $ (D $H). Then

(i) A€ Naj1(A) ifdomAN$H =dom A;

(ii) A € Najr(A) ifdomAN$H =domA;

(iii) A € Najo(A) ifdomA S domAN$H S domA.

Note that a first type extension A is just a canonical
extension of A, acting in H = 9.

Theorem 11 A € Najy(A) & S = A&mul T, = {0}

Proposition 12 Let ni(A) = n < .
Then A € Naj>(A) iff () € RY[H] and

lim y~17(iy) = 0, (12)
yloo
limy-Im (r(iy)h,h) =00, h e H\ {0} (13)

yloo

Theorem 13 Let ’nj:(A) — oo. [ hen g c NGQQ(A) ifF
r(-) € R5(H) and the function

T =-(0) -1/

satisfies the limit conditions in (12), (13).
11



Najmark extensions of nondensely defined operator

Definition 14 Let A be a nondensely defined sym-
metric operator in $H and let A be a minimal exit space
extension of A acting in $ (D $). Define the Straus
extension

T(®)={{f1,fi}3{<‘]8>»<%>} € A, f§€552}

et us say:

(i) A€ Naji(A) if T(c0) = A;

(i) A € Najr(A) if T(c0) = A;

(iii) A € Najo(A) if A# T(c0) # A.

Theorem 15 A € Najy(A) & S; = A&mul T, = {0}
T heorem 16 Let nj:(A) — oo. [ hen j c NCLJQ(A) ifF
7(:) € R°*(H) and the function

) = -(r(\) —1/0)7!
satisfies the limit conditions in

lim vy~ 7 (iy) = 0, (14)
yloo

“lm y-Im (7(iy)h,h) = oo, h € H\ {0}. (15)
yloo
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Example

Let A be a minimal differential operator in L»[0, 1]
associated with the differential expression —D? with
the domain

{f e W2[0,1] : f(O+) = f'(04+) = f(1) = f'(1) = O}
Let the boundary triplet {C,I'g,[1} be defined by

f(0+) f'(0+)
Mof = , Tif = .
o/ < 7(1) =)
Let A be a selfadjoint operator in L>[—1, 1] associated
with —D? and the periodic boundary conditions

f(1)=f(=1), f1)=f(1).

Then S5 is a minimal differential operator generated
by —D? on the interval [—1,0] and the induced bound-
ary triplet {C,{, ]} takes the form

e f(0_> " e _f,(o_)
"o/ = (f(—1)> T = < F1(-1) )

Then A € Najo(A) since S = A and mul T, = {0}.
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Let A be a selfadjoint extension of A in Lo(—o0, 1]
associated with —D? and the boundary condition

f'(1) = hf(1).

Then S> is a minimal differential operator generated in
L>(—00,1) by —D? and the induced boundary relation
. S% — C? takes the form

" = {{F,col (f(0-),¢,~f(0-),hc)} : J€ S5, ceC}.

Then A € Najz(A) since S; # A. This fact can be
illustrated also analitically, since the Weyl function,
corresponding to " takes the form

iV 0
0

T</\>=( >

and is not strict.
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Admissibility

Corollary 17 Given a a boundary triplet M = {H, 9,1}
the Krein resolvent formula

Po(A=2)"19 = (Ag—2) 1=\ (M) +7(N) (D)’

establishes a one-to-one correspondence between the
set of Nevanlinna families 7(-) € R(H) and the set of
minimal exit space selfadjoint extensions A = AT of
S.

Let A be densely defined. A family 7 = {¢(N\),v(N\)} €
R[H] is called M-admissible, if A(T) is singlevalued.

Theorem 18 Let A be a (nondensely defined) closed
symmetric operator in $ with equal defect numbers
ny(A) =n_(A) < oo, let M ={H,g,l"1} be a bound-
ary triplet for A* with Weyl function M()\), and let
{op(N), (M)} be a Nevanlinna pair in H. Then the pair
{op(N), (M)} is M-admissible if and only if the following
two conditions are satisfied:

(V) (Y (iy) + M(iy)p(\) 1 _

w— lim 0 (16)
yToo (7]
and
o tim Y@@ + MESONTIMO) _ o 44y

yloo Y
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