Coupling method in the theory of generalized resolvents of symmetric operators

Vladimir Derkach
joint work with

Seppo Hassi, Mark Malamud and Henk de Snoo

- Boundary triplets and Weyl functions
- Classical Weyl-Titchmarsh function
- Canonical and generalized resolvents
- Proof via coupling construction
- Unitary relations in Kreīn spaces
- Boundary relations and Weyl families
- Najmark extensions
- Kreīn formula and admissibility
[1] V. Derkach, S. Hassi, M. Malamud and H. de Snoo, Boundary relations and their Weyl families, Trans.Amer.Math.Soc. 358 (2006), 5351-5400.

Boundary triplets and Weyl functions

Let A be a closed symmetric operator in a Hilbert space \mathfrak{H}. Let A^{*} be the adjoint linear relation

$$
\left\{g, g^{\prime}\right\} \in A^{*} \Longleftrightarrow(A f, g)-\left(f, g^{\prime}\right)=0 \forall f \in \operatorname{dom} A
$$

Definition 1 (A.Kochubej '75, M. Malamud '92)
A triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$, where \mathcal{H} is a Hilbert space and $\Gamma_{i}: A^{*} \rightarrow \mathcal{H}, i=0,1$, is said to be a boundary triplet for A^{*}, if for all $\widehat{f}=\left\{f, f^{\prime}\right\}, \widehat{g}=\left\{g, g^{\prime}\right\} \in A^{*}$;

$$
\begin{equation*}
\left(f^{\prime}, g\right)_{\mathfrak{H}}-\left(f, g^{\prime}\right)_{\mathfrak{H}}=\left(\Gamma_{1} f, \Gamma_{0} g\right)_{\mathcal{H}}-\left(\Gamma_{0} f, \Gamma_{1} g\right)_{\mathcal{H}} \tag{1}
\end{equation*}
$$

and $\Gamma:=\left\{\Gamma_{0}, \Gamma_{1}\right\}: A^{*} \rightarrow \mathcal{H} \oplus \mathcal{H}$ is surjective.

Define a selfadjoint extension A_{0} of A by

$$
A_{0}=\operatorname{ker} \Gamma_{0} .
$$

Definition 2 (DM '85) The abstract Weyl function of A corresponding to the boundary triplet Π

$$
\begin{equation*}
\Gamma_{1} f_{\lambda}=M(\lambda) \Gamma_{0} f_{\lambda}, \quad f_{\lambda} \in \mathfrak{N}_{\lambda}:=\operatorname{ker}\left(A^{*}-\lambda\right), \tag{2}
\end{equation*}
$$

the γ - field

$$
\gamma(\lambda):=\left(\Gamma_{0} \mid \mathfrak{N}_{\lambda}\right)^{-1}: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathfrak{N}_{\lambda} .
$$

Nevanlinna functions

It follows from (1) that $M(\lambda)$ satisfies

$$
M(\lambda)-M(\mu)^{*}=(\lambda-\bar{\mu}) \gamma(\mu)^{*} \gamma(\lambda), \quad \lambda, \mu \in \rho\left(A_{0}\right) .
$$

This implies that $M(\cdot) \in R[\mathcal{H}]$:

1) $M(\cdot): \mathbb{C} \backslash \mathbb{R} \rightarrow[\mathcal{H}]$ is holomorphic;
2) $M(\lambda)^{*}=M(\bar{\lambda})$;
3) $\operatorname{Im} M(\lambda) \operatorname{Im}(\lambda) \geq 0$.

Subclasses of $R[\mathcal{H}]: R^{u}[\mathcal{H}] \subset R^{s}[\mathcal{H}] \subset R[\mathcal{H}]$
$M(\cdot) \in R^{s}[\mathcal{H}] \Longleftrightarrow 0 \notin \sigma_{p}(\operatorname{Im} M(\lambda))$ for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$;
$M(\cdot) \in R^{u}[\mathcal{H}] \Longleftrightarrow 0 \in \rho(\operatorname{Im} M(\lambda))$ for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$.

It is known (LT '77, DM '95), that every uniformly strict Nevanlinna function is the Weyl function of a symmetric operator A, corresponding to a boundary triplet Π.

Nevanlinna families

A family $\tau(\lambda)$ is called a Nevanlinna family and is written as $\tau \in \widetilde{R}(\mathcal{H})$, if:

1) $\tau(\lambda)$ is a maximal dissipative linear relation for all $\lambda \in \mathbb{C}_{+}$;
2) $\tau(\lambda)^{*}=\tau(\bar{\lambda}), \lambda \in \mathbb{C}_{+} \cup \mathbb{C}_{-}$;
3) $(\tau(\lambda)+i)^{-1}$ is holomorphic on \mathbb{C}_{+}.

Classical Weyl-Titchmarsh function

Let the Sturm-Liouville operator $\ell=-D^{2}+q$ on $(0, \infty)$ be in the limit-point case at ∞. If A is a minimal operator generated by ℓ in $L_{2}(0, \infty)$, then $\operatorname{def} A=\operatorname{dim} \mathfrak{N}_{\lambda}(A)=1$. The boundary triplet is given by

$$
\Gamma_{0} f=f(0), \Gamma_{1} f=f^{\prime}(0) f \in \operatorname{dom} A^{*}
$$

Let $u(x, \lambda), v(x, \lambda)$ be solutions of $\ell(f)=\lambda f$ such that

$$
\begin{aligned}
u(0, \lambda) & =1,
\end{aligned} \quad u^{\prime}(0, \lambda)=0 ; ~ ; ~=~(0, \lambda)=0, \quad v^{\prime}(0, \lambda)=1 .
$$

By Weyl theorem \exists ! $m(\lambda)$ such that

$$
\left(f_{\lambda}=\right) u(x, \lambda)+m(\lambda) v(x, \lambda) \in L_{2}(0, \infty) .
$$

Since $\Gamma_{0} f_{\lambda}=1, \Gamma_{1} f_{\lambda}=m(\lambda)$ one obtains

$$
M(\lambda)=m(\lambda) .
$$

Canonical selfadjoint extensions of $A: \widetilde{A}=\left.A^{*}\right|_{\operatorname{dom}} \tilde{A}$ $\operatorname{dom} \widetilde{A}=\left\{f \in \operatorname{dom} A^{*}: y^{\prime}(0)=\theta y(0)\right\}, \quad \theta \in \mathbb{R} \cup\{\infty\}$.

Canonical and generalized resolvents of A

If $\operatorname{dim} \mathcal{H}=1$ s.a. extensions of A are parametrized by

$$
\tilde{A}_{\theta}=\operatorname{ker}\left(\Gamma_{1}+\theta \Gamma_{0}\right)(\theta \in \mathbb{R}), \tilde{A}_{\infty}=A_{0}=\operatorname{ker} \Gamma_{0} .
$$

Canonical resolvents of A are parametrized by

$$
\begin{equation*}
\left(\widetilde{A}_{\theta}-\lambda\right)^{-1}=\left(A_{0}-\lambda\right)^{-1}-\gamma(\lambda)(\theta+M(\lambda))^{-1} \gamma(\bar{\lambda})^{*} . \tag{3}
\end{equation*}
$$

Generalized resolvent of A is a compressed resolvent

$$
\mathbf{R}_{\lambda}=\left.P_{\mathfrak{H}}(\widetilde{A}-\lambda)^{-1}\right|_{\mathfrak{H}},
$$

of a selfadjoint extension \widetilde{A} of A in $\widetilde{\mathfrak{H}}(\supset \mathfrak{H})$, $P_{\mathfrak{H}}$ is the orthogonal projection onto \mathfrak{H} in $\tilde{\mathfrak{H}}$. Description of generalized resolvents (M.G. Kreīn '44)

$$
\begin{equation*}
\mathbf{R}_{\lambda}=\left(A_{0}-\lambda\right)^{-1}-\gamma(\lambda)(\tau(\lambda)+M(\lambda))^{-1} \gamma(\bar{\lambda})^{*} \tag{4}
\end{equation*}
$$

where $\tau(\in R)$ is a Nevanlinna function.

Proof of Kreīn-Najmark formula. Let $\tau \in R$. Let us construct a s.a. extension \widetilde{A} of A such that (4) holds.

There are a symmetric operator S_{2} in $\mathfrak{H}^{\prime \prime}$ and a boundary triplet $\left\{\mathbb{C}, \Gamma_{0}^{\prime \prime}, \Gamma_{1}^{\prime \prime}\right\}$ for S_{2}^{*} such that the corresponding Weyl function is τ. Let $H\left(\supset S:=A \oplus S_{2}\right)$ be a symmetric operator in $\mathfrak{H} \oplus \mathfrak{H}^{\prime \prime}$ with the adjoint

$$
H^{*}=\left\{\widehat{f}_{1} \oplus \widehat{f}_{2} \in A^{*} \oplus S_{2}^{*}: \Gamma_{0} \hat{f}_{1}-\Gamma_{0}^{\prime \prime} \hat{f}_{2}=0\right\} .
$$

Then $\tau(\lambda)+M(\lambda)$ is a Weyl function for H^{*}, corresponding to the BT $\left\{\mathbb{C}, \Gamma_{0}, \Gamma_{1} \oplus \Gamma_{1}^{\prime \prime}\right\}$. Then $\widetilde{A}=\operatorname{ker}\left(\Gamma_{1} \oplus \Gamma_{1}^{\prime \prime}\right)$ is a selfadjoint extension of H

$$
\tilde{A}=\left\{\widehat{f}_{1} \oplus \widehat{f}_{2} \in S^{*}: \Gamma_{0} \widehat{f}_{1}-\Gamma_{0}^{\prime \prime} \hat{f}_{2}=\Gamma_{1} \widehat{f}_{1}+\Gamma_{1}^{\prime \prime} \hat{f}_{2}=0\right\}
$$

due to (3) its resolvent is given by

$$
\begin{align*}
& (\widetilde{A}-\lambda)^{-1}=\operatorname{diag}\left(\left(\widetilde{A}_{\infty}-\lambda\right)^{-1},\left(\widetilde{A}_{\infty}^{\prime \prime}-\lambda\right)^{-1}\right) \\
& -\binom{\gamma(\lambda)}{\gamma^{\prime \prime}(\lambda)}(\theta+M(\lambda))^{-1}\left(\gamma(\bar{\lambda})^{*} \gamma^{\prime \prime}(\bar{\lambda})^{*}\right) . \tag{5}
\end{align*}
$$

Compression of(5) to \mathfrak{H} gives (4).
Problem Prove the Kreīn-Najmark formula via coupling method for infinite indices.
Difficulties If $\tau \in \widetilde{R}(\mathcal{H}) \backslash R^{u}[\mathcal{H}]$, then either $\tau(\lambda)$ is multivalued, or $\tau(\lambda)$ is unbounded, or $\Im \tau(\lambda)$ is not invertible.
Tools Generalize the notion of boundary triplet in order that arbitrary Nevanlinna family to be realized as the corresponding Weyl family.

Unitary relations in Kreĩn spaces

Let $J_{\mathfrak{H}}, J_{\mathcal{H}}$ be signature operators in \mathfrak{H}^{2} and \mathcal{H}^{2} :
$J_{\mathfrak{H}}:=\left(\begin{array}{cc}0 & -i I_{\mathfrak{H}} \\ i I_{\mathfrak{H}} & 0\end{array}\right), J_{\mathcal{H}}:=\left(\begin{array}{cc}0 & -i I_{\mathcal{H}} \\ i I_{\mathcal{H}} & 0\end{array}\right)$.
$\Gamma:\left(\mathfrak{H}^{2}, J_{\mathfrak{H}}\right) \rightarrow\left(\mathcal{H}^{2}, J_{\mathcal{H}}\right)$ is called a linear relation, iff Γ is a linear subspace of $\mathfrak{H}^{2} \times \mathcal{H}^{2}$. A linear relation Γ is called isometric, if:

$$
\begin{equation*}
\left(J _ { \mathcal { H } } \left\ulcornerf,\ulcorner g)=\left(J_{\mathfrak{H}} f, g\right) \forall f, g \in \operatorname{dom}\ulcorner\right.\right. \tag{6}
\end{equation*}
$$

or, equivalently, $\Gamma^{-1} \subset \Gamma^{[*]}:=J_{\mathfrak{H}} \Gamma^{*} J_{\mathcal{H}}$.
Definition 3 (Shmul'jan, '76) A linear relation Γ : $\left(\mathfrak{H}^{2}, J_{\mathfrak{H}}\right) \rightarrow\left(\mathcal{H}^{2}, J_{\mathcal{H}}\right)$ is called unitary, if $\Gamma^{-1}=\Gamma^{[*]}$.

Proposition 4 Let Γ be a unitary relation from the Kreīn space $\left(\mathfrak{H}, j_{\mathfrak{H}}\right)$ to the Kreīn space $\left(\mathcal{H}, j_{\mathcal{H}}\right)$. Then dom Γ is closed if and only if ran Γ is closed. Moreover,

$$
\operatorname{ker} \Gamma=(\operatorname{dom} \Gamma)^{[\perp]}, \quad \text { mul } \Gamma=(\operatorname{ran} \Gamma)^{[\perp]}
$$

An isometric operator from the Kreīn space $\left(\mathfrak{H}^{2}, J_{\mathfrak{H}}\right)$ to the Kreīn space $\left(\mathcal{H}^{2}, J_{\mathcal{H}}\right)$ is called a standard unitary operator, if dom $\Gamma=\mathfrak{H}^{2}$, $\operatorname{ran} \Gamma=\mathcal{H}^{2}$. Clearly, Γ is a unitary relation if at least one of this conditions holds.

Example 5 If $\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ is a boundary triplet, then $\Gamma:\left(\mathfrak{H}^{2}, J_{\mathfrak{H}}\right) \rightarrow\left(\mathcal{H}^{2}, J_{\mathcal{H}}\right)$ is a unitary relation, since (1) is equivalent to (6) and ran $\Gamma=\mathcal{H}^{2}$.

Boundary relations and Weyl families

Definition 6 (DHMS'06) A linear relation

 $\Gamma:\left(\mathfrak{H}^{2}, J_{\mathfrak{H}}\right) \mapsto\left(\mathcal{H}^{2}, J_{\mathcal{H}}\right)$ is called a boundary relation for S^{*}, if:1) Γ is a unitary relation; 2) $S=\operatorname{ker} \Gamma$.

In general $T:=\operatorname{dom} \Gamma \neq S^{*}$. Let $\mathfrak{N}_{\lambda}(T)=\operatorname{ker}(T-\lambda)$ and $\hat{\mathfrak{N}}_{\lambda}(T)=\left\{\{f, \lambda f\} \in T: f \in \mathfrak{N}_{\lambda}(T)\right\}$.

Definition 7 Weyl family $\tau(\lambda)$ of S corresponding to the boundary relation $\Gamma: \mathfrak{H}^{2} \mapsto \mathcal{H}^{2}$ is defined by

$$
\begin{equation*}
\tau(\lambda):=\Gamma\left(\widehat{\mathfrak{N}}_{\lambda}(T)\right), \quad \lambda \in \mathbb{C} \backslash \mathbb{R} \tag{7}
\end{equation*}
$$

Boundary relation Γ is called minimal, if

$$
\mathfrak{H}=\mathfrak{H}_{\text {min }}:=\operatorname{span}\left\{\mathfrak{N}_{\lambda}(T): \lambda \in \mathbb{C}_{+} \cup \mathbb{C}_{-}\right\}
$$

Theorem 8 (DHMS'06) Let $\Gamma: \mathfrak{H}^{2} \rightarrow \mathcal{H}^{2}$ be a boundary relation for S^{*}. Then the corresponding Weyl family $M(\cdot)$ belongs to the class $\widetilde{R}(\mathcal{H})$.

Conversely, if $M(\cdot)$ belongs to the class $\widetilde{R}(\mathcal{H})$ then there exists a unique (up to unitary equivalence) minimal boundary relation whose Weyl function coincides with $M(\cdot)$.

Induced Boundary Relation

Let \widetilde{A} be a selfadjoint linear relation in the orthogonal sum $\tilde{\mathfrak{H}}=\mathfrak{H}_{1} \oplus \mathfrak{H}_{2}$ and let

$$
\begin{equation*}
S_{j}=\tilde{A} \cap \mathfrak{H}_{j}^{2}, \quad T_{j}=\left\{\binom{P_{j} \varphi}{P_{j} \varphi^{\prime}}:\binom{\varphi}{\varphi^{\prime}} \in \tilde{A}\right\} . \tag{8}
\end{equation*}
$$

\widetilde{A} is called a minimal selfadjoint extension of S_{1}, if

$$
\begin{equation*}
\widetilde{\mathfrak{H}}=\overline{\operatorname{span}}\left\{\mathfrak{H}_{1}+(\widetilde{A}-\lambda)^{-1} \mathfrak{H}_{1}: \lambda \in \rho(\widetilde{A})\right\} . \tag{9}
\end{equation*}
$$

Theorem 9 1) Let A be a symmetric operator in \mathfrak{H}_{1}, let $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be an ordinary $B T$ for A^{*}. If $\widetilde{A}=$ \widetilde{A}^{*} is a minimal selfadjoint exit space extension of A in $\tilde{\mathfrak{H}}=\mathfrak{H}_{1} \oplus \mathfrak{H}_{2}$ and S_{2}, T_{2} are defined by (8), then the linear relation $\Gamma^{\prime \prime}: \mathfrak{H}_{2}^{2} \rightarrow \mathcal{H}^{2}$ defined by

$$
\begin{equation*}
\Gamma^{\prime \prime}=\left\{\left\{\widehat{f}_{2},\binom{\Gamma_{0} \hat{f}_{1}}{-\Gamma_{1} \hat{f}_{1}}\right\}: \widehat{f}_{1} \oplus \widehat{f}_{2} \in \widetilde{A}, \widehat{f}_{1} \in T_{1}, \widehat{f}_{2} \in T_{2}\right\} \tag{10}
\end{equation*}
$$

is a minimal boundary relation for S_{2}^{*}.
2) Conversely, if S_{2} is a simple symmetric operator in \mathfrak{H}_{2} and $\Gamma^{\prime \prime}: \mathfrak{H}_{2}^{2} \rightarrow \mathcal{H}^{2}$ is a minimal boundary relation for S_{2}^{*}, then the linear relation \widetilde{A} defined by

$$
\begin{equation*}
\widetilde{A}=\left\{\widehat{f}_{1} \oplus \widehat{f}_{2} \in A^{*} \oplus S_{2}^{*}:\left\{\widehat{f}_{2},\binom{\Gamma_{0} \hat{f}_{1}}{-\Gamma_{1} \hat{f}_{1}}\right\} \in \Gamma^{\prime \prime}\right\} \tag{11}
\end{equation*}
$$

is a minimal selfadjoint extension of A which satisfies $\tilde{A} \cap \mathfrak{H}_{2}^{2}=S_{2}$. Moreover, the compressed resolvent of \widetilde{A} is calculated by the Kreīn-Najmark formula.

Najmark extensions

Definition 10 (Najmark) Let A be a densely defined symmetric operator in \mathfrak{H} and let \widetilde{A} be a minimal exit space extension of A acting in $\tilde{\mathfrak{H}}(\supset \mathfrak{H})$. Then
(i) $\widetilde{A} \in N a j_{1}(A)$ if $\operatorname{dom} \widetilde{A} \cap \mathfrak{H}=\operatorname{dom} \widetilde{A}$;
(ii) $\widetilde{A} \in \operatorname{Naj}_{2}(A)$ if $\operatorname{dom} \widetilde{A} \cap \mathfrak{H}=\operatorname{dom} A$;
(iii) $\widetilde{A} \in \operatorname{Naj}_{2}(A)$ if $\operatorname{dom} A \varsubsetneqq \operatorname{dom} \widetilde{A} \cap \mathfrak{H} \varsubsetneqq \operatorname{dom} \widetilde{A}$.

Note that a first type extension \tilde{A} is just a canonical extension of A, acting in $\tilde{\mathfrak{H}}=\mathfrak{H}$.

Theorem $11 \tilde{A} \in \operatorname{Naj}_{2}(A) \Leftrightarrow S_{1}=A \& m u l T_{2}=\{0\}$
Proposition 12 Let $n_{ \pm}(A)=n<\infty$.
Then $\widetilde{A} \in \operatorname{Naj}_{2}(A)$ iff $\tau(\cdot) \in R^{u}[\mathcal{H}]$ and

$$
\begin{equation*}
\lim _{y \downarrow \infty} y^{-1} \tau(i y)=0, \tag{12}
\end{equation*}
$$

$\lim _{y \downarrow \infty} y \cdot \operatorname{Im}(\tau(i y) h, h)=\infty, \quad h \in \mathcal{H} \backslash\{0\}$.

Theorem 13 Let $n_{ \pm}(A)=\infty$. Then $\tilde{A} \in \operatorname{Naj}_{2}(A)$ iff $\tau(\cdot) \in R^{s}(\mathcal{H})$ and the function

$$
\tau^{(1)}(\lambda)=-(\tau(\lambda)-1 / \lambda)^{-1}
$$

satisfies the limit conditions in (12), (13).

Najmark extensions of nondensely defined operator

Definition 14 Let A be a nondensely defined symmetric operator in \mathfrak{H} and let \widetilde{A} be a minimal exit space extension of A acting in $\tilde{\mathfrak{H}}(\supset \mathfrak{H})$. Define the Straus extension

$$
T(\infty)=\left\{\left\{f_{1}, f_{1}^{\prime}\right\}:\left\{\binom{f_{1}}{0},\binom{f_{1}^{\prime}}{f_{2}^{\prime}}\right\} \in \tilde{A}, f_{2}^{\prime} \in \mathfrak{H}_{2}\right\}
$$

Let us say:
(i) $\tilde{A} \in N a j_{1}(A)$ if $T(\infty)=\widetilde{A}$;
(ii) $\widetilde{A} \in \operatorname{Naj}_{2}(A)$ if $T(\infty)=A$;
(iii) $\widetilde{A} \in \operatorname{Naj}_{2}(A)$ if $A \neq T(\infty) \neq \widetilde{A}$.

Theorem $15 \tilde{A} \in \operatorname{Naj}_{2}(A) \Leftrightarrow S_{1}=A \& m u l T_{2}=\{0\}$
Theorem 16 Let $n_{ \pm}(A)=\infty$. Then $\tilde{A} \in \operatorname{Naj}_{2}(A)$ iff $\tau(\cdot) \in R^{s}(\mathcal{H})$ and the function

$$
\tau^{(1)}(\lambda)=-(\tau(\lambda)-1 / \lambda)^{-1}
$$

satisfies the limit conditions in

$$
\begin{equation*}
\lim _{y \downarrow \infty} y^{-1} \tau(i y)=0, \tag{14}
\end{equation*}
$$

$\lim _{y \downarrow \infty} y \cdot \operatorname{Im}(\tau(i y) h, h)=\infty, \quad h \in \mathcal{H} \backslash\{0\}$.

Example

Let A be a minimal differential operator in $L_{2}[0,1]$ associated with the differential expression $-D^{2}$ with the domain

$$
\left\{f \in W_{2}^{2}[0,1]: f(0+)=f^{\prime}(0+)=f(1)=f^{\prime}(1)=0\right\} .
$$

Let the boundary triplet $\left\{\mathbb{C}, \Gamma_{0}, \Gamma_{1}\right\}$ be defined by

$$
\Gamma_{0} f=\binom{f(0+)}{f(1)}, \quad \Gamma_{1} f=\binom{f^{\prime}(0+)}{-f^{\prime}(1)} .
$$

Let \widetilde{A} be a selfadjoint operator in $L_{2}[-1,1]$ associated with $-D^{2}$ and the periodic boundary conditions

$$
f(1)=f(-1), \quad f^{\prime}(1)=f^{\prime}(-1) .
$$

Then S_{2} is a minimal differential operator generated by $-D^{2}$ on the interval $[-1,0]$ and the induced boundary triplet $\left\{\mathbb{C}, \Gamma_{0}^{\prime \prime}, \Gamma_{1}^{\prime \prime}\right\}$ takes the form

$$
\Gamma_{0}^{\prime \prime} f=\binom{f(0-)}{f(-1)}, \quad \Gamma_{1}^{\prime \prime} f=\binom{-f^{\prime}(0-)}{f^{\prime}(-1)} .
$$

Then $\tilde{A} \in \operatorname{Naj}_{2}(A)$ since $S_{1}=A$ and $\operatorname{mul} T_{2}=\{0\}$.

Let \widetilde{A} be a selfadjoint extension of A in $L_{2}(-\infty, 1]$ associated with $-D^{2}$ and the boundary condition

$$
f^{\prime}(1)=h f(1)
$$

Then S_{2} is a minimal differential operator generated in $L_{2}(-\infty, 1)$ by $-D^{2}$ and the induced boundary relation $\Gamma^{\prime \prime}: S_{2}^{*} \rightarrow \mathbb{C}^{2}$ takes the form
$\Gamma^{\prime \prime}=\left\{\left\{\hat{f}, \operatorname{col}\left(f(0-), c,-f^{\prime}(0-), h c\right)\right\}: \widehat{f} \in S_{2}^{*}, c \in \mathbb{C}\right\}$.
Then $\widetilde{A} \in N a j_{3}(A)$ since $S_{1} \neq A$. This fact can be illustrated also analitically, since the Weyl function, corresponding to $\Gamma^{\prime \prime}$ takes the form

$$
\tau(\lambda)=\left(\begin{array}{cc}
i \sqrt{\lambda} & 0 \\
0 & h
\end{array}\right)
$$

and is not strict.

Admissibility

Corollary 17 Given a a boundary triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ the Kreīn resolvent formula
$P_{\mathfrak{H}}(\tilde{A}-\lambda)^{-1}\left\lceil\mathfrak{H}=\left(A_{0}-\lambda\right)^{-1}-\gamma(\lambda)(M(\lambda)+\tau(\lambda))^{-1} \gamma(\bar{\lambda})^{*}\right.$
establishes a one-to-one correspondence between the set of Nevanlinna families $\tau(\cdot) \in \widetilde{R}(\mathcal{H})$ and the set of minimal exit space selfadjoint extensions $\widetilde{A}=\widetilde{A}(\tau)$ of S.

Let A be densely defined. A family $\tau=\{\phi(\lambda), \psi(\lambda)\} \in$ $R[\mathcal{H}]$ is called Π-admissible, if $\widetilde{A}^{(\tau)}$ is singlevalued.

Theorem 18 Let A be a (nondensely defined) closed symmetric operator in \mathfrak{H} with equal defect numbers $n_{+}(A)=n_{-}(A) \leq \infty$, let $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triplet for A^{*} with Weyl function $M(\lambda)$, and let $\{\phi(\lambda), \psi(\lambda)\}$ be a Nevanlinna pair in \mathcal{H}. Then the pair $\{\phi(\lambda), \psi(\lambda)\}$ is Π-admissible if and only if the following two conditions are satisfied:

$$
\begin{equation*}
w-\lim _{y \uparrow \infty} \frac{\phi(\lambda)(\psi(i y)+M(i y) \phi(\lambda))^{-1}}{y}=0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
w-\lim _{y \uparrow \infty} \frac{\psi(\lambda)(\psi(i y)+M(i y) \phi(\lambda))^{-1} M(\lambda)}{y}=0 . \tag{17}
\end{equation*}
$$

