A KREIN SPACE INTERPRETATION OF DIRAC OPERATORS

Aurelian Gheondea - joint work with Petru Cojuhari

Berlin, December 14-17, 2006

The Standard Free Dirac Operator

To simplify the notation, we assume the mass $m=1$ and the light speed $c=1$.
The free Dirac operator is defined in the space $\mathcal{H}=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ identified with $\mathbb{C}^{4} \otimes L_{2}\left(\mathbb{R}^{3}\right)$ as the following

$$
H_{0}=\sum_{j=1}^{3} \alpha_{j} \otimes D_{j}+\alpha_{0} \otimes I_{L_{2}\left(\mathbb{R}^{3}\right)}
$$

where $D_{j}=\mathrm{i} \partial / \partial x_{j}(j=1,2,3), x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, \alpha_{j}(j=$ $1,2,3,4)$ are the Dirac matrices, i.e. 4×4 Hermitian matrices which satisfy the anticommutation relations

$$
\alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=2 \delta_{j k}, \quad j, k=0,1,2,3
$$

In the standard representation, the Dirac matrices $\alpha_{j}(j=0,1,2,3)$ are chosen as follows

$$
\alpha_{j}=\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right) \text { for } j=1,2,3 ; \alpha_{0}=\left(\begin{array}{cc}
\sigma_{0} & 0 \\
0 & -\sigma_{0}
\end{array}\right)
$$

where

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are the Pauli matrices ($\sigma_{0}=I_{2}$ designates the 2×2 identity matrix).
We consider the operator H_{0} defined on its maximal domain, i.e. on the Sobolev space $\operatorname{Dom}\left(H_{0}\right)=W_{2}^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$. It is known that, on this domain,

- H_{0} is a self-adjoint operator.
- The spectrum of H_{0} is $(-\infty,-1] \cup[1,+\infty)$.
- H_{0} has only continuous spectrum.

The Energy Space Representation (Friedrichs)

- Assume A is selfadjoint, $A=A^{*}$, and nonnegative, $\langle A x, x\rangle \geq 0$ for all $x \in \operatorname{Dom}(A)$.

$$
\operatorname{Dom}(A) \longrightarrow \operatorname{Dom}(A) / \operatorname{ker}(A) \longrightarrow \mathcal{K}_{A}
$$

$$
\Pi_{A}: \operatorname{Dom}\left(\Pi_{A}\right)=\operatorname{Dom}(A) \rightarrow \mathcal{K}_{A}
$$

- $A^{1 / 2}$ is nonnegative selfadjoint, $\operatorname{Dom}\left(A^{1 / 2}\right) \supseteq \operatorname{Dom}(A)$ and $\operatorname{Dom}\left(A^{1 / 2}\right)$ is a core for $A^{1 / 2}$.
- $\langle A x, y\rangle=\left\langle A^{1 / 2} x, A^{1 / 2} y\right\rangle$ for all $x \in \operatorname{Dom}(A)$ and all $y \in$ $\operatorname{Dom}\left(A^{1 / 2}\right.$.
- The strong topology of \mathcal{K}_{A} is given by the semi-norm $\left\|A^{1 / 2} \cdot\right\|$.

The Energy Space Representation for a Symmetric Operator

Let \mathcal{H} be a (complex) Hilbert space, A a densely defined symmetric operator in \mathcal{H}, that is:

$$
\begin{gathered}
A: \operatorname{Dom}(A)(\text { dense } \subseteq \mathcal{H}) \rightarrow \mathcal{H} \\
\langle A x, y\rangle=\langle x, A y\rangle, \text { for all } x \in \operatorname{Dom}(A) .
\end{gathered}
$$

A pair (\mathcal{K}, Π) is called a Krein space induced by A if:
(i) \mathcal{K} is a Krein space;
(ii) Π is a linear operator with $\operatorname{Dom}(A) \subseteq \operatorname{Dom}(\Pi) \subseteq \mathcal{H}$ and range in \mathcal{K};
(iii) $\Pi \operatorname{Dom}(A)$ is dense in \mathcal{K};
(iv) $[\Pi x, \Pi y]_{\mathcal{K}}=\langle A x, y\rangle_{\mathcal{H}}$ for all $x \in \operatorname{Dom}(A)$ and all $y \in \operatorname{Dom}(\Pi)$.

- The pair (\mathcal{K}, Π) is a Krein space induced by A if and only if:
(i) \mathcal{K} is a Krein space;
(ii) Π is a linear operator with $\operatorname{Dom}(A) \subseteq \operatorname{Dom}(\Pi) \subseteq \mathcal{H}$ and range in \mathcal{K};
(iii) $\Pi \operatorname{Dom}(A)$ is dense in \mathcal{K};
(iv)' $\Pi^{\sharp} \Pi \supseteq A$, in the sense $\Pi \operatorname{Dom}(A) \subseteq \operatorname{Dom}\left(\Pi^{\sharp}\right)$ and $\Pi^{\sharp} \Pi x=A x$ for all $x \in \operatorname{Dom}(A)$.
- Without loss of generality, we can assume Π closed.
- A is bounded if Π is bounded, but not the other way.

Existence

Proposition Let A be a densely defined and symmetric operator in a Hilbert space \mathcal{H}. The following assertions are equivalent:
(a) There exists a nonnegative quadratic form q on $\operatorname{Dom}(A)$ such that

$$
-q(x) \leq\langle A x, x\rangle \leq q(x), \quad x \in \operatorname{Dom}(A)
$$

(a)' There exists a nonnegative operator B in \mathcal{H} such that $\operatorname{Dom}(A) \subseteq$ $\operatorname{Dom}(B)$ and $-\langle B x, x\rangle_{\mathcal{H}} \leq\langle A x, x\rangle_{\mathcal{H}} \leq\langle B x, x\rangle_{\mathcal{H}}$ for all $x \in$ $\operatorname{Dom}(A)$.
(b) There exists a nonnegative quadratic form q on $\operatorname{Dom}(A)$ such that

$$
|\langle A x, y\rangle|^{2} \leq q(x) q(y), \quad x, y \in \operatorname{Dom}(A)
$$

(b)' There exists a nonnegative operator B in \mathcal{H} such that $\operatorname{Dom}(A) \subseteq$ $\operatorname{Dom}(B)$ and $|\langle A x, y\rangle| \leq|\langle B x, x\rangle|^{1 / 2}|\langle B y, y\rangle|^{1 / 2}$ for all $x, y \in$ $\operatorname{Dom}(A)$.
(c) $A \subseteq A_{+}-A_{-}$for two nonnegative operators $A_{ \pm}$in \mathcal{H}, that is, $\operatorname{Dom}(A) \subseteq \operatorname{Dom}\left(A_{+}\right) \cap \operatorname{Dom}\left(A_{-}\right)$and $A x=A_{+} x-A_{-} x$ for all $x \in \operatorname{Dom}(A)$.
(d) There exists a Kreĭn space induced by A.

Corrolay For any densely defined symmetric operator A that admits a selfadjoint extension in \mathcal{H}, there exists a Krě̆n space induced by A.

Example Let A_{-}and A_{+}be the differential operators on $L_{2}\left(\mathbb{R}_{+}\right)$ defined by the differential expressions

$$
A_{-}=-\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2}, \quad A_{+}=-\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{2}+2 \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}+1
$$

where $\operatorname{Dom}\left(A_{+}\right)=\operatorname{Dom}\left(A_{-}\right)$is the Sobolev space $W_{2}^{2}\left(\mathbb{R}_{+}\right)$, with the Dirichlet boundary conditions at 0 . Then both A_{+}and A_{-}are nonnegative selfadjoint operators but the operator

$$
A_{+}-A_{-}=2 \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}+1
$$

is a symmetric operator in $L_{2}\left(\mathbb{R}_{+}\right)$with defect indices $(1,0)$, and hence does not have selfadjoint extensions.

The Induced Kreĭn Space $\left(\mathcal{K}_{A}, \Pi_{A}\right)$

Let A be a selfadjoint operator in the Hilbert space \mathcal{H}. We consider the polar decomposition of A

$$
A=S_{A}|A|, \quad|A|=\left(A^{*} A\right)^{1 / 2}=\left(A^{2}\right)^{1 / 2}, \quad S_{A}=\operatorname{sgn}(A)
$$

$\operatorname{Dom}(A)=\operatorname{Dom}(|A|)$, and $|A|$ is a positive selfadjoint operator.

Let $\mathcal{K}_{A}=\mathcal{K}_{|A|}$. Recall that $\operatorname{Dom}(A) \subseteq \operatorname{Dom}\left(|A|^{1 / 2}\right)$ and that $\operatorname{Dom}(A)$ is a core for $|A|^{1 / 2} . \operatorname{ker}\left(S_{A}\right)=\operatorname{ker}(A), S_{A}$ leaves invariant $\operatorname{Dom}(A)$.

$$
\operatorname{Dom}(A)=\mathcal{D}_{+} \oplus \operatorname{ker}(A) \oplus \mathcal{D}_{-}
$$

where $\mathcal{D}_{ \pm}=\operatorname{Dom}(A) \cap \operatorname{ker}\left(S_{A} \mp I\right)$.

We complete $\mathcal{D}_{ \pm}$with respect to the norm $\left\||A|^{1 / 2} \cdot\right\|$ to $\mathcal{K}_{A}^{ \pm}$,

$$
\mathcal{K}_{A}=\mathcal{K}_{A}^{+} \oplus \mathcal{K}_{A}^{-}=\mathcal{K}_{A}^{+}[+] \mathcal{K}_{A}^{-}
$$

yields a Krě̆n space $\left(\mathcal{K}_{A} ;[\cdot, \cdot]\right)$.

Let Π_{A} be the operator which is obtained by composing the canonical surjection $\operatorname{Dom}(A) \rightarrow \operatorname{Dom}(A) / \operatorname{ker}(A)$ with the embedding of $\operatorname{Dom}(A) / \operatorname{ker}(A)$ into its Hilbert space completion $\mathcal{K}_{|A|}=\mathcal{K}_{A}$.

Proposition If A is a selfadjoint operator on the Hilbert space \mathcal{H} then, with the notation as before, $\left(\mathcal{K}_{A}, \Pi_{A}\right)$ is a Krěn space induced by A.

The Lifting Theorem

Theorem Let A and B be selfadjoint operators in Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, respectively, and let $\left(\mathcal{K}_{A}, \Pi_{A}\right)$ and $\left(\mathcal{K}_{B}, \Pi_{B}\right)$ be their Krein spaces induced by A and B, respectively.
Let $T \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ and $S \in \mathcal{B}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$ be such that

$$
[B x, T y]=[S x, A y], \text { for all } x \in \operatorname{Dom}(B), y \in \operatorname{Dom}(A)
$$

Then there exist uniquely $\widetilde{T} \in \mathcal{B}\left(\mathcal{K}_{A}, \mathcal{K}_{B}\right)$ and $\widetilde{S} \in \mathcal{B}\left(\mathcal{K}_{B}, \mathcal{K}_{A}\right)$ such that:

$$
\begin{gathered}
\widetilde{T} \Pi_{A}=\Pi_{B} T x \text { for all } x \in \operatorname{Dom}(A) \\
\widetilde{S} \Pi_{B} y=\Pi_{A} S y \text { for all } y \in \operatorname{Dom}(B) \\
{[\widetilde{S} h, k]_{\mathcal{K}_{B}}=[h, \widetilde{T} k]_{\mathcal{K}_{A}} \text { for all } h \in \mathcal{K}_{B}, k \in \mathcal{K}_{A} .}
\end{gathered}
$$

- For all $x \in \operatorname{Dom}(A)$ we have $T x \in \operatorname{Dom}(B)$ and $B T x=S^{*} A x$.
- For all $x \in \operatorname{Dom}(A)$ we have $T x \in \operatorname{Dom}(B)$ and $B T x=S^{*} A x$.
- For all $h \in \operatorname{Dom}(A)$ and all $n \in \mathbb{N}$ we have $(S T)^{n} h \in \operatorname{Dom}(A)$ and $A(S T)^{n} h=\left(T^{*} S^{*}\right)^{n} A h$.
- For all $x \in \operatorname{Dom}(A)$ we have $T x \in \operatorname{Dom}(B)$ and $B T x=S^{*} A x$.
- For all $h \in \operatorname{Dom}(A)$ and all $n \in \mathbb{N}$ we have $(S T)^{n} h \in \operatorname{Dom}(A)$ and $A(S T)^{n} h=\left(T^{*} S^{*}\right)^{n} A h$.
- For all $x \in \operatorname{Dom}(A)$ we have $T x \in \operatorname{Dom}(B)$ and

$$
\langle B T x, T x\rangle \leq r(S T)\langle A x, x\rangle
$$

- For all $x \in \operatorname{Dom}(A)$ we have $T x \in \operatorname{Dom}(B)$ and $B T x=S^{*} A x$.
- For all $h \in \operatorname{Dom}(A)$ and all $n \in \mathbb{N}$ we have $(S T)^{n} h \in \operatorname{Dom}(A)$ and $A(S T)^{n} h=\left(T^{*} S^{*}\right)^{n} A h$.
- For all $x \in \operatorname{Dom}(A)$ we have $T x \in \operatorname{Dom}(B)$ and

$$
\langle B T x, T x\rangle \leq r(S T)\langle A x, x\rangle
$$

- For all $x \in \operatorname{Dom}(A)$ we have

$$
\left\|B^{1 / 2} T x\right\| \leq \sqrt{r(S T)}\left\|A^{1 / 2} x\right\|
$$

- For all $x \in \operatorname{Dom}(A)$ we have $T x \in \operatorname{Dom}(B)$ and $B T x=S^{*} A x$.
- For all $h \in \operatorname{Dom}(A)$ and all $n \in \mathbb{N}$ we have $(S T)^{n} h \in \operatorname{Dom}(A)$ and $A(S T)^{n} h=\left(T^{*} S^{*}\right)^{n} A h$.
- For all $x \in \operatorname{Dom}(A)$ we have $T x \in \operatorname{Dom}(B)$ and

$$
\langle B T x, T x\rangle \leq r(S T)\langle A x, x\rangle
$$

- For all $x \in \operatorname{Dom}(A)$ we have

$$
\left\|B^{1 / 2} T x\right\| \leq \sqrt{r(S T)}\left\|A^{1 / 2} x\right\|
$$

For all $n \geq 1$ and all $x \in \operatorname{Dom}(A)$

$$
\left\|B^{\frac{1}{2}} T x\right\|^{2} \leq\left\|(S T)^{2^{n}}\right\|^{\frac{1}{2^{n}}}\left\|A^{\frac{1}{2}} x\right\|^{2\left(1-\frac{1}{2^{n}}\right)}\|A x\|^{\frac{1}{2^{n}}}\|x\|^{\frac{1}{2^{n}}} .
$$

Spectral Preservation

Let A be a nonnegative selfadjoint operator on the Hilbert space \mathcal{H}, and let $\left(\mathcal{K}_{A}, \Pi_{A}\right)$ be the Hilbert space induced by A in the energy space representation.
Corollary If $T \in \mathcal{B}(\mathcal{H})$ satisfies the condition

$$
\langle A x, T y\rangle=\langle T x, A y\rangle, \quad x, y \in \operatorname{Dom}(A)
$$

then T can be lifted to a bounded operator $\widetilde{T} \in \mathcal{B}\left(\mathcal{K}_{A}\right)$ and

- $\sigma(\widetilde{T}) \subseteq \sigma(T)$.
- If λ belongs to the discrete spectrum of T then λ belongs to the discrete spectrum of \widetilde{T} and their corresponding root subspaces are the same.
- If T has only discrete spectrum, then \widetilde{T} has only discrete spectrum and $\sigma(T)=\sigma(\widetilde{T})$.
- If T is compact then \widetilde{T} is compact on \mathcal{K}_{A}.

Let A be a nonnegative selfadjoint operator on the Hilbert space \mathcal{H}, and let $\left(\mathcal{K}_{A}, \Pi_{A}\right)$ be the Hilbert space induced by A in the energy space representation.

Corollary Let T be a selfadjoint (unbounded) linear operator in \mathcal{H} such that for all $\zeta \in \mathbb{C} \backslash \mathbb{R}$ and all $x \in \operatorname{Dom}(A)$ we have

$$
(\zeta I-T)^{-1} A x=A(\zeta I-T)^{-1} x
$$

Then

- T can be lifted to a linear operator \widetilde{T} in \mathcal{K}_{A}.
- \widetilde{T} is selfadjoint operator in the Hilbert space \mathcal{K}_{A}.
- $\sigma(\widetilde{T}) \subseteq \sigma(T)$.

Uniqueness

Theorem Let A be a selfadjoint operator in the Hilbert space \mathcal{H}. The following statements are equivalent:
(i) The Kreĭn space induced by A is unique, modulo unitary equivalence.
(ii) A has a lateral spectral gap, that is, there exists an $\epsilon>0$ such that either $(0, \epsilon) \subset \rho(A)$ or $(-\epsilon, 0) \subset \rho(A)$.
(iii) For some (equivalently, for any) Krein space (\mathcal{K}, Π) induced by A, the linear manifold $\Pi \operatorname{Dom}(A)$ contains a maximal uniformly definite subspace of \mathcal{K}.

Representations in Terms of the Canonical Mapping Π

Proposition Let $T \in \mathcal{C}\left(\mathcal{H}, \mathcal{H}_{1}\right)$, that is, T is a closed linear operator with domain $\operatorname{Dom}(T)$ dense in the Hilbert space \mathcal{H} and range $\operatorname{Ran}(T)$ in the Hilbert space \mathcal{H}_{1} such that for some $c>0$ we have

$$
\begin{equation*}
\|T u\|_{\mathcal{H}_{1}} \geq c\|u\|_{\mathcal{H}}, \quad u \in \operatorname{Dom}(T) \tag{1}
\end{equation*}
$$

Let also J be a symmetry on $\operatorname{Ran}(T)$.
Then, the operator $A=T^{*} J T$ is selfadjoint that has a spectral gap in the neighbourhood of 0 , and $(\operatorname{Ran}(T), T)$ is a Kreĭn space induced by A.

The Free Dirac Operator

The free Dirac operator is defined in the space $\mathcal{H}=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ identified with $\mathbb{C}^{4} \otimes L_{2}\left(\mathbb{R}^{3}\right)$ as the following

$$
H_{0}=\sum_{j=1}^{3} \alpha_{j} \otimes D_{j}+\alpha_{0} \otimes I_{L_{2}\left(\mathbb{R}^{3}\right)}
$$

where $D_{j}=\mathrm{i} \partial / \partial x_{j}(j=1,2,3), x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, \alpha_{j}(j=$ $1,2,3,4)$ are the Dirac matrices, i.e. 4×4 Hermitian matrices which satisfy the anticommutation relations

$$
\alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=2 \delta_{j k}, \quad j, k=0,1,2,3
$$

In the standard representation, the Dirac matrices $\alpha_{j}(j=0,1,2,3)$ are chosen as follows

$$
\alpha_{j}=\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right) \text { for } j=1,2,3 ; \alpha_{0}=\left(\begin{array}{cc}
\sigma_{0} & 0 \\
0 & -\sigma_{0}
\end{array}\right)
$$

where

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are the Pauli matrices ($\sigma_{0}=I_{2}$ designates the 2×2 identity matrix).

Note that by applying the Fourier transformation to the elements of the space $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ the operator H_{0} is transformed (in the momentum space) into a multiplication operator by the following matrix-valued function

$$
h_{0}(\xi)=\left[\begin{array}{cc}
\sigma_{0} & \sigma(\xi) \\
\sigma(\xi) & -\sigma_{0}
\end{array}\right]
$$

where

$$
\sigma(\xi)=\xi_{1} \sigma_{1}+\xi_{2} \sigma_{2}+\xi_{3} \sigma_{3}, \xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}
$$

The Fourier transformation is defined by the formula

$$
\hat{u}(\xi)=(F u)(\xi)=\frac{1}{(2 \pi)^{3 / 2}} \int u(x) e^{\mathrm{i}\langle x, \xi\rangle} \mathrm{d} x, u \in L_{2}\left(\mathbb{R}^{3}\right)
$$

in which $\langle x, \xi\rangle$ designates the scalar product of the elements $x, \xi \in \mathbb{R}^{3}$ (here and in what follows $\int:=\int_{\mathbb{R}^{3}}$).

The matrix $h_{0}(\xi)$ is the symbol of the operator H_{0} considered as a matrix differential operator with constant coefficients. This matrix has the following eigenvalues

$$
\lambda_{1}(\xi)=\lambda_{2}(\xi)=r(\xi), \lambda_{3}(\xi)=\lambda_{4}(\xi)=-r(\xi)
$$

where $r(\xi)=\left(1+|\xi|^{2}\right)^{1 / 2}$.
The unitary transformation $U(\xi)$ which brings $h_{0}(\xi)$ to the diagonal form is given explicitly by

$$
U(\xi)=\left[\begin{array}{cc}
a(\xi) I_{2} & -b(\xi) \sigma(\xi) \\
b(\xi) \sigma(\xi) & -a(\xi) I_{2}
\end{array}\right]
$$

where $a(\xi)=\left(\frac{1}{2}(1+r(\xi))^{-1}\right)^{1 / 2}$ and $b(\xi)=a(\xi)(1+\gamma(\xi))^{-1}$. Thus, we have

$$
U(\xi) h_{0}(\xi) U(\xi)^{*}=\alpha_{0} r(\xi)
$$

Now, we let

$$
T(\xi)=r(\xi)^{\frac{1}{2}} U(\xi)
$$

and denote by $T=T(D)$ the pseudodifferential operator corresponding to its symbol $T(\xi)$. The operator T is defined in the space $\mathcal{H}=$ $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ by

$$
(T u)(x)=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int T(\xi) \hat{u}(\xi) e^{-i\langle x, \xi\rangle} \mathrm{d} \xi, x \in \mathbb{R}^{n}
$$

on the domain $\operatorname{Dom}(T)=\left\{u \in L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right): T(\xi) \hat{u}(\xi) \in L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)\right\}$.
Obviously, $u \in \operatorname{Dom}(T)$ if and only if $\hat{u} \in L_{2, r}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$, where $L_{2, r}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ stands for the space weighted by $r(\xi)=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$, i.e. the space all functions $f \in L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ such that $r f \in L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$. Note that $F^{*} L_{2, r}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)=W_{2}^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ (the Fourier transformation in the space $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ is again denoted by $\left.F\right)$.

It follows that the factorization

$$
H_{0}=T^{*}\left(\alpha_{0} \otimes I_{L_{2}\left(\mathbb{R}^{3}\right)}\right) T
$$

Since
$\|T u\|^{2}=\int|T(\xi) \hat{u}(\xi)|^{2} \mathrm{~d} \xi=\int r(\xi)|\hat{u}(\xi)|^{2} \mathrm{~d} \xi \geq \int|\hat{u}(\xi)|^{2} \mathrm{~d} \xi=\|u\|$ for all $u \in \operatorname{Dom}(T)$, the condition from Proposition is fulfilled. In particular, the range $\operatorname{Ran}(T)$ is closed in the space $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$, and so we have the Hilbert space

$$
\mathcal{G}_{T}=\left(\operatorname{Ran}(T),\|\cdot\|_{L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)}\right)
$$

On the space $\mathcal{H}=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ we consider the symmetry given by

$$
\begin{equation*}
J u=\alpha_{0} \otimes I_{L_{2}\left(\mathbb{R}^{r}\right)} u, \quad u \in \mathcal{L}_{2}\left(\mathbb{R}^{r}\right) \tag{2}
\end{equation*}
$$

and hence the Hilbert space \mathcal{G}_{T} equipped with the indefinite scalar product defined by J becomes a Kreĭn space that we denote by \mathcal{K}. We have the decomposition

$$
\mathcal{K}=\mathcal{K}_{+} \oplus \mathcal{K}_{-},
$$

where the orthogonal projection operators from \mathcal{K} onto $\mathcal{K}_{ \pm}$are given by

$$
P_{ \pm}=\frac{1}{2}\left(I \pm \alpha_{0}\right) \otimes I_{L_{2}\left(\mathbb{R}^{r}\right)}
$$

We conclude that the pair (\mathcal{K}, Π), where $\Pi=T$ (recall that T is the pseudodifferential operator defined in the space $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$) is a Krein space induced by the free Dirac operator H_{0}, by the previous Proposition.

