A KREIN SPACE INTERPRETATION OF DIRAC OPERATORS

Aurelian Gheondea — joint work with Petru Cojuhari Berlin, December 14–17, 2006

The Standard Free Dirac Operator

To simplify the notation, we assume the mass m = 1 and the light speed c = 1.

The free Dirac operator is defined in the space $\mathcal{H} = L_2(\mathbb{R}^3; \mathbb{C}^4)$ identified with $\mathbb{C}^4 \otimes L_2(\mathbb{R}^3)$ as the following

3

$$H_0 = \sum_{j=1}^{\circ} \alpha_j \otimes D_j + \alpha_0 \otimes I_{L_2(\mathbb{R}^3)},$$

where $D_j = i\partial/\partial x_j$ (j = 1, 2, 3), $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, α_j (j = 1, 2, 3, 4) are the Dirac matrices, i.e. 4×4 Hermitian matrices which satisfy the anticommutation relations

$$\alpha_j \alpha_k + \alpha_k \alpha_j = 2\delta_{jk}, \quad j,k = 0, 1, 2, 3.$$

In the standard representation, the Dirac matrices $\alpha_j \ (j=0,1,2,3)$ are chosen as follows

$$\alpha_{j} = \begin{pmatrix} 0 & \sigma_{j} \\ \sigma_{j} & 0 \end{pmatrix} \text{ for } j = 1, 2, 3; \ \alpha_{0} = \begin{pmatrix} \sigma_{0} & 0 \\ 0 & -\sigma_{0} \end{pmatrix}$$

where

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

are the Pauli matrices ($\sigma_0 = I_2$ designates the 2×2 identity matrix).

We consider the operator H_0 defined on its maximal domain, i.e. on the Sobolev space $\text{Dom}(H_0) = W_2^1(\mathbb{R}^3; \mathbb{C}^4)$. It is known that, on this domain,

- H_0 is a self-adjoint operator.
- The spectrum of H_0 is $(-\infty, -1] \cup [1, +\infty)$.
- H_0 has only continuous spectrum.

The Energy Space Representation (Friedrichs)

• Assume A is selfadjoint, $A = A^*$, and nonnegative, $\langle Ax, x \rangle \ge 0$ for all $x \in Dom(A)$.

$$\operatorname{Dom}(A) \longrightarrow \operatorname{Dom}(A) / \ker(A) \longrightarrow \mathcal{K}_A$$

$$\Pi_A \colon \operatorname{Dom}(\Pi_A) = \operatorname{Dom}(A) \to \mathcal{K}_A$$

• $A^{1/2}$ is nonnegative selfadjoint, $Dom(A^{1/2}) \supseteq Dom(A)$ and $Dom(A^{1/2})$ is a core for $A^{1/2}$.

• $\langle Ax, y \rangle = \langle A^{1/2}x, A^{1/2}y \rangle$ for all $x \in \text{Dom}(A)$ and all $y \in \text{Dom}(A^{1/2})$.

• The strong topology of \mathcal{K}_A is given by the semi-norm $\|A^{1/2}\cdot\|$.

The Energy Space Representation for a Symmetric Operator

Let \mathcal{H} be a (complex) Hilbert space, A a densely defined symmetric operator in \mathcal{H} , that is:

 $A: \operatorname{Dom}(A)(\text{ dense } \subseteq \mathcal{H}) \to \mathcal{H}$ $\langle Ax, y \rangle = \langle x, Ay \rangle, \text{ for all } x \in \operatorname{Dom}(A).$ A pair (\mathcal{K}, Π) is called a *Krein space induced by* A if:

(i) *K* is a Krein space;
(ii) Π is a linear operator with Dom(*A*) ⊆ Dom(Π) ⊆ *H* and range in *K*;

(iii) $\Pi \operatorname{Dom}(A)$ is dense in \mathcal{K} ;

(iv) $[\Pi x, \Pi y]_{\mathcal{K}} = \langle Ax, y \rangle_{\mathcal{H}}$ for all $x \in \text{Dom}(A)$ and all $y \in \text{Dom}(\Pi)$.

The pair (K, Π) is a Krein space induced by A if and only if:
(i) K is a Krein space;
(ii) Π is a linear operator with Dom(A) ⊆ Dom(Π) ⊆ H and range in K;
(iii) Π Dom(A) is dense in K;
(iv)' Π[‡]Π ⊇ A, in the sense Π Dom(A) ⊆ Dom(Π[‡]) and Π[‡]Πx = Ax for all x ∈ Dom(A).

• Without loss of generality, we can assume Π closed.

• A is bounded if Π is bounded, but not the other way.

Existence

Proposition Let A be a densely defined and symmetric operator in a Hilbert space \mathcal{H} . The following assertions are equivalent:

(a) There exists a nonnegative quadratic form q on Dom(A) such that

 $-q(x) \leq \langle Ax, x \rangle \leq q(x), \quad x \in \mathrm{Dom}(A).$

- (a)' There exists a nonnegative operator B in \mathcal{H} such that $Dom(A) \subseteq Dom(B)$ and $-\langle Bx, x \rangle_{\mathcal{H}} \leq \langle Ax, x \rangle_{\mathcal{H}} \leq \langle Bx, x \rangle_{\mathcal{H}}$ for all $x \in Dom(A)$.
- (b) There exists a nonnegative quadratic form q on Dom(A) such that $|\langle Ax, y \rangle|^2 \le q(x)q(y), \quad x, y \in Dom(A).$
- (b)' There exists a nonnegative operator B in \mathcal{H} such that $Dom(A) \subseteq Dom(B)$ and $|\langle Ax, y \rangle| \leq |\langle Bx, x \rangle|^{1/2} |\langle By, y \rangle|^{1/2}$ for all $x, y \in Dom(A)$.

(c) A ⊆ A₊ - A₋ for two nonnegative operators A_± in H, that is, Dom(A) ⊆ Dom(A₊) ∩ Dom(A₋) and Ax = A₊x - A₋x for all x ∈ Dom(A).

(d) There exists a Kreĭn space induced by A.

Corrolay For any densely defined symmetric operator A that admits a selfadjoint extension in \mathcal{H} , there exists a Kreĭn space induced by A.

Example Let A_- and A_+ be the differential operators on $L_2(\mathbb{R}_+)$ defined by the differential expressions

$$A_{-} = -\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2, \quad A_{+} = -\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 + 2\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}x} + 1,$$

where $Dom(A_+) = Dom(A_-)$ is the Sobolev space $W_2^2(\mathbb{R}_+)$, with the Dirichlet boundary conditions at 0. Then both A_+ and A_- are nonnegative selfadjoint operators but the operator

$$A_+ - A_- = 2\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}x} + 1$$

is a symmetric operator in $L_2(\mathbb{R}_+)$ with defect indices (1,0), and hence does not have selfadjoint extensions.

The Induced Krein Space (\mathcal{K}_A, Π_A)

Let A be a selfadjoint operator in the Hilbert space \mathcal{H} . We consider the polar decomposition of A

 $A = S_A |A|, \quad |A| = (A^*A)^{1/2} = (A^2)^{1/2}, \quad S_A = \operatorname{sgn}(A)$ $\operatorname{Dom}(A) = \operatorname{Dom}(|A|), \text{ and } |A| \text{ is a positive selfadjoint operator.}$

Let $\mathcal{K}_A = \mathcal{K}_{|A|}$. Recall that $\text{Dom}(A) \subseteq \text{Dom}(|A|^{1/2})$ and that Dom(A) is a core for $|A|^{1/2}$. $\ker(S_A) = \ker(A)$, S_A leaves invariant Dom(A).

 $\operatorname{Dom}(A) = \mathcal{D}_+ \oplus \ker(A) \oplus \mathcal{D}_$ where $\mathcal{D}_{\pm} = \operatorname{Dom}(A) \cap \ker(S_A \mp I).$ We complete \mathcal{D}_{\pm} with respect to the norm $||A|^{1/2} \cdot ||$ to \mathcal{K}_{A}^{\pm} , $\mathcal{K}_{A} = \mathcal{K}_{A}^{+} \oplus \mathcal{K}_{A}^{-} = \mathcal{K}_{A}^{+}[+]\mathcal{K}_{A}^{-}$ yields a Kreĭn space $(\mathcal{K}_{A}; [\cdot, \cdot])$.

Let Π_A be the operator which is obtained by composing the canonical surjection $Dom(A) \to Dom(A)/\ker(A)$ with the embedding of $Dom(A)/\ker(A)$ into its Hilbert space completion $\mathcal{K}_{|A|} = \mathcal{K}_A$.

Proposition If A is a selfadjoint operator on the Hilbert space \mathcal{H} then, with the notation as before, (\mathcal{K}_A, Π_A) is a Kreĭn space induced by A.

The Lifting Theorem

Theorem Let A and B be selfadjoint operators in Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , respectively, and let (\mathcal{K}_A, Π_A) and (\mathcal{K}_B, Π_B) be their Krein spaces induced by A and B, respectively. Let $T \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$ and $S \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$ be such that $[R_T, T_Y] = [S_T, \mathcal{A}_Y]$ for all $T \in Dom(B)$, $u \in Dom(A)$

 $[Bx, Ty] = [Sx, Ay], \text{ for all } x \in \text{Dom}(B), y \in \text{Dom}(A).$

Then there exist uniquely $\widetilde{T} \in \mathcal{B}(\mathcal{K}_A, \mathcal{K}_B)$ and $\widetilde{S} \in \mathcal{B}(\mathcal{K}_B, \mathcal{K}_A)$ such that:

 $\widetilde{T}\Pi_{A} = \Pi_{B}Tx \text{ for all } x \in \text{Dom}(A)$ $\widetilde{S}\Pi_{B}y = \Pi_{A}Sy \text{ for all } y \in \text{Dom}(B)$ $[\widetilde{S}h, k]_{\mathcal{K}_{B}} = [h, \widetilde{T}k]_{\mathcal{K}_{A}} \text{ for all } h \in \mathcal{K}_{B}, \ k \in \mathcal{K}_{A}.$

• For all $h \in Dom(A)$ and all $n \in \mathbb{N}$ we have $(ST)^n h \in Dom(A)$ and $A(ST)^n h = (T^*S^*)^n Ah$.

• For all $h \in Dom(A)$ and all $n \in \mathbb{N}$ we have $(ST)^n h \in Dom(A)$ and $A(ST)^n h = (T^*S^*)^n Ah$.

• For all $x \in Dom(A)$ we have $Tx \in Dom(B)$ and $\langle BTx, Tx \rangle \leq r(ST) \langle Ax, x \rangle$

• For all $h \in Dom(A)$ and all $n \in \mathbb{N}$ we have $(ST)^n h \in Dom(A)$ and $A(ST)^n h = (T^*S^*)^n Ah$.

- For all $x \in Dom(A)$ we have $Tx \in Dom(B)$ and $\langle BTx, Tx \rangle \leq r(ST) \langle Ax, x \rangle$
- For all $x \in Dom(A)$ we have

 $||B^{1/2}Tx|| \le \sqrt{r(ST)} ||A^{1/2}x||$

• For all $h \in Dom(A)$ and all $n \in \mathbb{N}$ we have $(ST)^n h \in Dom(A)$ and $A(ST)^n h = (T^*S^*)^n Ah$.

- For all $x \in Dom(A)$ we have $Tx \in Dom(B)$ and $\langle BTx, Tx \rangle \leq r(ST) \langle Ax, x \rangle$
- \bullet For all $x\in {\rm Dom}(A)$ we have $\|B^{1/2}Tx\|\leq \sqrt{r(ST)}\|A^{1/2}x\|$

For all $n \ge 1$ and all $x \in Dom(A)$

 $||B^{\frac{1}{2}}Tx||^{2} \le ||(ST)^{2^{n}}||^{\frac{1}{2^{n}}} ||A^{\frac{1}{2}}x||^{2(1-\frac{1}{2^{n}})} ||Ax||^{\frac{1}{2^{n}}} ||x||^{\frac{1}{2^{n}}}.$

Spectral Preservation

Let A be a nonnegative selfadjoint operator on the Hilbert space \mathcal{H} , and let (\mathcal{K}_A, Π_A) be the Hilbert space induced by A in the energy space representation.

Corollary If $T \in \mathcal{B}(\mathcal{H})$ satisfies the condition

 $\langle Ax, Ty \rangle = \langle Tx, Ay \rangle, \quad x, y \in \text{Dom}(A)$

then T can be lifted to a bounded operator $\widetilde{T} \in \mathcal{B}(\mathcal{K}_A)$ and • $\sigma(\widetilde{T}) \subseteq \sigma(T)$.

• If λ belongs to the discrete spectrum of T then λ belongs to the discrete spectrum of \widetilde{T} and their corresponding root subspaces are the same.

• If T has only discrete spectrum, then \widetilde{T} has only discrete spectrum and $\sigma(T)=\sigma(\widetilde{T}).$

• If T is compact then \widetilde{T} is compact on \mathcal{K}_A .

Let A be a nonnegative selfadjoint operator on the Hilbert space \mathcal{H} , and let (\mathcal{K}_A, Π_A) be the Hilbert space induced by A in the energy space representation.

Corollary Let T be a selfadjoint (unbounded) linear operator in \mathcal{H} such that for all $\zeta \in \mathbb{C} \setminus \mathbb{R}$ and all $x \in \text{Dom}(A)$ we have

$$(\zeta I - T)^{-1}Ax = A(\zeta I - T)^{-1}x.$$

Then

- T can be lifted to a linear operator \widetilde{T} in \mathcal{K}_A .
- \widetilde{T} is selfadjoint operator in the Hilbert space \mathcal{K}_A .
- $\sigma(\widetilde{T}) \subseteq \sigma(T)$.

Uniqueness

Theorem Let A be a selfadjoint operator in the Hilbert space \mathcal{H} . The following statements are equivalent:

(i) The Kreı̆n space induced by A is unique, modulo unitary equivalence.

(ii) A has a lateral spectral gap, that is, there exists an $\epsilon > 0$ such that either $(0, \epsilon) \subset \rho(A)$ or $(-\epsilon, 0) \subset \rho(A)$.

(iii) For some (equivalently, for any) Kreĭn space (\mathcal{K}, Π) induced by A, the linear manifold $\Pi \operatorname{Dom}(A)$ contains a maximal uniformly definite subspace of \mathcal{K} .

Representations in Terms of the Canonical Mapping Π

Proposition Let $T \in C(\mathcal{H}, \mathcal{H}_1)$, that is, T is a closed linear operator with domain Dom(T) dense in the Hilbert space \mathcal{H} and range Ran(T)in the Hilbert space \mathcal{H}_1 such that for some c > 0 we have (1) $||Tu||_{\mathcal{H}_1} \ge c||u||_{\mathcal{H}}, \quad u \in Dom(T).$ Let also J be a symmetry on Ran(T).

Then, the operator $A = T^*JT$ is selfadjoint that has a spectral gap in the neighbourhood of 0, and (Ran(T), T) is a Kreĭn space induced by A.

The Free Dirac Operator

The free Dirac operator is defined in the space $\mathcal{H} = L_2(\mathbb{R}^3; \mathbb{C}^4)$ identified with $\mathbb{C}^4 \otimes L_2(\mathbb{R}^3)$ as the following

0

$$H_0 = \sum_{j=1}^{3} \alpha_j \otimes D_j + \alpha_0 \otimes I_{L_2(\mathbb{R}^3)},$$

where $D_j = i\partial/\partial x_j$ (j = 1, 2, 3), $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, α_j (j = 1, 2, 3, 4) are the Dirac matrices, i.e. 4×4 Hermitian matrices which satisfy the anticommutation relations

$$\alpha_j \alpha_k + \alpha_k \alpha_j = 2\delta_{jk}, \quad j, k = 0, 1, 2, 3.$$

In the standard representation, the Dirac matrices α_j (j = 0, 1, 2, 3) are chosen as follows

$$\alpha_{j} = \begin{pmatrix} 0 & \sigma_{j} \\ \sigma_{j} & 0 \end{pmatrix} \text{ for } j = 1, 2, 3; \ \alpha_{0} = \begin{pmatrix} \sigma_{0} & 0 \\ 0 & -\sigma_{0} \end{pmatrix}$$

where

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

are the Pauli matrices ($\sigma_0 = I_2$ designates the 2×2 identity matrix).

Note that by applying the Fourier transformation to the elements of the space $L_2(\mathbb{R}^3; \mathbb{C}^4)$ the operator H_0 is transformed (in the momentum space) into a multiplication operator by the following matrix-valued function

$$h_0(\xi) = \begin{bmatrix} \sigma_0 & \sigma(\xi) \\ \sigma(\xi) & -\sigma_0 \end{bmatrix}$$

where

$$\sigma(\xi) = \xi_1 \sigma_1 + \xi_2 \sigma_2 + \xi_3 \sigma_3, \ \xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3.$$

The Fourier transformation is defined by the formula

$$\hat{u}(\xi) = (Fu)(\xi) = \frac{1}{(2\pi)^{3/2}} \int u(x) e^{i\langle x,\xi\rangle} dx, \ u \in L_2(\mathbb{R}^3)$$

in which $\langle x, \xi \rangle$ designates the scalar product of the elements $x, \xi \in \mathbb{R}^3$ (here and in what follows $\int := \int_{\mathbb{R}^3}$). The matrix $h_0(\xi)$ is the symbol of the operator H_0 considered as a matrix differential operator with constant coefficients. This matrix has the following eigenvalues

$$\lambda_1(\xi) = \lambda_2(\xi) = r(\xi), \ \lambda_3(\xi) = \lambda_4(\xi) = -r(\xi),$$

where $r(\xi) = (1 + |\xi|^2)^{1/2}$.

The unitary transformation $U(\xi)$ which brings $h_0(\xi)$ to the diagonal form is given explicitly by

$$U(\xi) = \begin{bmatrix} a(\xi)I_2 & -b(\xi)\sigma(\xi) \\ b(\xi)\sigma(\xi) & -a(\xi)I_2 \end{bmatrix},$$
 where $a(\xi) = (\frac{1}{2}(1+r(\xi))^{-1})^{1/2}$ and $b(\xi) = a(\xi)(1+\gamma(\xi))^{-1}$. Thus, we have

 $U(\xi)h_0(\xi)U(\xi)^* = \alpha_0 r(\xi).$

Now, we let

$$T(\xi) = r(\xi)^{\frac{1}{2}}U(\xi),$$

and denote by T = T(D) the pseudodifferential operator corresponding to its symbol $T(\xi)$. The operator T is defined in the space $\mathcal{H} = L_2(\mathbb{R}^3; \mathbb{C}^4)$ by

$$(Tu)(x) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int T(\xi) \hat{u}(\xi) e^{-i\langle x,\xi\rangle} \mathrm{d}\xi, \ x \in \mathbb{R}^n,$$

on the domain $\text{Dom}(T) = \{ u \in L_2(\mathbb{R}^3; \mathbb{C}^4) : T(\xi)\hat{u}(\xi) \in L_2(\mathbb{R}^3; \mathbb{C}^4) \}.$

Obviously, $u \in \text{Dom}(T)$ if and only if $\hat{u} \in L_{2,r}(\mathbb{R}^3; \mathbb{C}^4)$, where $L_{2,r}(\mathbb{R}^3; \mathbb{C}^4)$ stands for the space weighted by $r(\xi) = (1 + |\xi|^2)^{\frac{1}{2}}$, i.e. the space all functions $f \in L_2(\mathbb{R}^3; \mathbb{C}^4)$ such that $rf \in L_2(\mathbb{R}^3; \mathbb{C}^4)$. Note that $F^*L_{2,r}(\mathbb{R}^3; \mathbb{C}^4) = W_2^1(\mathbb{R}^3; \mathbb{C}^4)$ (the Fourier transformation in the space $L_2(\mathbb{R}^3; \mathbb{C}^4)$ is again denoted by F). It follows that the factorization

$$H_0 = T^*(\alpha_0 \otimes I_{L_2(\mathbb{R}^3)})T.$$

Since

$$\|Tu\|^{2} = \int |T(\xi)\hat{u}(\xi)|^{2} \mathrm{d}\xi = \int r(\xi)|\hat{u}(\xi)|^{2} \mathrm{d}\xi \ge \int |\hat{u}(\xi)|^{2} \mathrm{d}\xi = \|u\|$$

for all $u \in \text{Dom}(T)$, the condition from Proposition is fulfilled. In particular, the range Ran(T) is closed in the space $L_2(\mathbb{R}^3; \mathbb{C}^4)$, and so we have the Hilbert space

$$\mathcal{G}_T = (\operatorname{Ran}(T), \|\cdot\|_{L_2(\mathbb{R}^3; \mathbb{C}^4)}).$$

On the space $\mathcal{H} = L_2(\mathbb{R}^3; \mathbb{C}^4)$ we consider the symmetry given by (2) $Ju = \alpha_0 \otimes I_{L_2(\mathbb{R}^r)}u, \quad u \in \mathcal{L}_2(\mathbb{R}^r),$ and hence the Hilbert space \mathcal{G}_T equipped with the indefinite scalar product defined by J becomes a Kreĭn space that we denote by \mathcal{K} . We have the decomposition

$$\mathcal{K} = \mathcal{K}_+ \oplus \mathcal{K}_-$$

where the orthogonal projection operators from ${\cal K}$ onto ${\cal K}_\pm$ are given by

$$P_{\pm} = \frac{1}{2} (I \pm \alpha_0) \otimes I_{L_2(\mathbb{R}^r)}.$$

We conclude that the pair (\mathcal{K}, Π) , where $\Pi = T$ (recall that T is the pseudodifferential operator defined in the space $L_2(\mathbb{R}^3; \mathbb{C}^4)$) is a Kreĭn space induced by the free Dirac operator H_0 , by the previous Proposition.