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The Standard Free Dirac Operator

To simplify the notation, we assume the mass m = 1 and the light
speed c = 1.
The free Dirac operator is defined in the space H = L2(R3; C4)

identified with C4 ⊗ L2(R3) as the following

H0 =

3∑
j=1

αj ⊗Dj + α0 ⊗ IL2(R3),

where Dj = i∂/∂xj (j = 1, 2, 3), x = (x1, x2, x3) ∈ R3, αj (j =
1, 2, 3, 4) are the Dirac matrices, i.e. 4 × 4 Hermitian matrices which
satisfy the anticommutation relations

αjαk + αkαj = 2δjk, j, k = 0, 1, 2, 3.



In the standard representation, the Dirac matrices αj (j = 0, 1, 2, 3)
are chosen as follows

αj =

(
0 σj
σj 0

)
for j = 1, 2, 3; α0 =

(
σ0 0
0 −σ0

)
where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices (σ0 = I2 designates the 2× 2 identity matrix).

We consider the operator H0 defined on its maximal domain, i.e. on
the Sobolev space Dom(H0) = W 1

2 (R3; C4). It is known that, on this
domain,
• H0 is a self-adjoint operator.
• The spectrum of H0 is (−∞,−1] ∪ [1, +∞).
• H0 has only continuous spectrum.



The Energy Space Representation (Friedrichs)

• Assume A is selfadjoint, A = A∗, and nonnegative, 〈Ax, x〉 ≥ 0
for all x ∈ Dom(A).

Dom(A) −→ Dom(A)/ ker(A) −→ KA

ΠA : Dom(ΠA) = Dom(A) → KA

•A1/2 is nonnegative selfadjoint, Dom(A1/2) ⊇ Dom(A) and Dom(A1/2)

is a core for A1/2.
• 〈Ax, y〉 = 〈A1/2x, A1/2y〉 for all x ∈ Dom(A) and all y ∈

Dom(A1/2.

• The strong topology of KA is given by the semi-norm ‖A1/2 · ‖.



The Energy Space Representation for a Symmetric Operator

Let H be a (complex) Hilbert space, A a densely defined symmetric
operator in H, that is:

A : Dom(A)( dense ⊆ H) → H
〈Ax, y〉 = 〈x, Ay〉, for all x ∈ Dom(A).

A pair (K, Π) is called a Krein space induced by A if:

(i)K is a Krein space;

(ii) Π is a linear operator with Dom(A) ⊆ Dom(Π) ⊆ H and range in
K;

(iii) Π Dom(A) is dense in K;

(iv) [Πx, Πy]K = 〈Ax, y〉H for all x ∈ Dom(A) and all y ∈ Dom(Π).



• The pair (K, Π) is a Krein space induced by A if and only if:

(i)K is a Krein space;
(ii) Π is a linear operator with Dom(A) ⊆ Dom(Π) ⊆ H and range in

K;
(iii) Π Dom(A) is dense in K;
(iv)’ Π]Π ⊇ A, in the sense Π Dom(A) ⊆ Dom(Π]) and Π]Πx = Ax

for all x ∈ Dom(A).

• Without loss of generality, we can assume Π closed.

• A is bounded if Π is bounded, but not the other way.



Existence

Proposition Let A be a densely defined and symmetric operator in
a Hilbert space H. The following assertions are equivalent:

(a) There exists a nonnegative quadratic form q on Dom(A) such that

−q(x) ≤ 〈Ax, x〉 ≤ q(x), x ∈ Dom(A).

(a)’ There exists a nonnegative operator B in H such that Dom(A) ⊆
Dom(B) and −〈Bx, x〉H ≤ 〈Ax, x〉H ≤ 〈Bx, x〉H for all x ∈
Dom(A).

(b) There exists a nonnegative quadratic form q on Dom(A) such that

|〈Ax, y〉|2 ≤ q(x)q(y), x, y ∈ Dom(A).

(b)’ There exists a nonnegative operator B in H such that Dom(A) ⊆
Dom(B) and |〈Ax, y〉| ≤ |〈Bx, x〉|1/2|〈By, y〉|1/2 for all x, y ∈
Dom(A).



(c) A ⊆ A+ − A− for two nonnegative operators A± in H, that is,
Dom(A) ⊆ Dom(A+)∩Dom(A−) and Ax = A+x−A−x for all
x ∈ Dom(A).

(d) There exists a Krĕın space induced by A.

Corrolay For any densely defined symmetric operator A that admits
a selfadjoint extension in H, there exists a Krĕın space induced by A.



Example Let A− and A+ be the differential operators on L2(R+)
defined by the differential expressions

A− = −
(

d

dx

)2

, A+ = −
(

d

dx

)2

+ 2i
d

dx
+ 1,

where Dom(A+) = Dom(A−) is the Sobolev space W 2
2 (R+), with

the Dirichlet boundary conditions at 0. Then both A+ and A− are
nonnegative selfadjoint operators but the operator

A+ − A− = 2i
d

dx
+ 1

is a symmetric operator in L2(R+) with defect indices (1, 0), and hence
does not have selfadjoint extensions.



The Induced Krĕın Space (KA, ΠA)

Let A be a selfadjoint operator in the Hilbert space H. We consider
the polar decomposition of A

A = SA|A|, |A| = (A∗A)1/2 = (A2)1/2, SA = sgn(A)

Dom(A) = Dom(|A|), and |A| is a positive selfadjoint operator.

Let KA = K|A|. Recall that Dom(A) ⊆ Dom(|A|1/2) and that

Dom(A) is a core for |A|1/2. ker(SA) = ker(A), SA leaves invariant
Dom(A).

Dom(A) = D+ ⊕ ker(A)⊕D−
where D± = Dom(A) ∩ ker(SA ∓ I).



We complete D± with respect to the norm ‖|A|1/2 · ‖ to K±A,

KA = K+
A ⊕K−A = K+

A[+]K−A
yields a Krĕın space (KA; [·, ·]).

Let ΠA be the operator which is obtained by composing the canon-
ical surjection Dom(A) → Dom(A)/ ker(A) with the embedding of
Dom(A)/ ker(A) into its Hilbert space completion K|A| = KA.

Proposition If A is a selfadjoint operator on the Hilbert space H
then, with the notation as before, (KA, ΠA) is a Krĕın space induced
by A.



The Lifting Theorem

Theorem Let A and B be selfadjoint operators in Hilbert spaces H1
and H2, respectively, and let (KA, ΠA) and (KB, ΠB) be their Krein
spaces induced by A and B, respectively.
Let T ∈ B(H1,H2) and S ∈ B(H2,H1) be such that

[Bx, Ty] = [Sx,Ay], for all x ∈ Dom(B), y ∈ Dom(A).

Then there exist uniquely T̃ ∈ B(KA,KB) and S̃ ∈ B(KB,KA)
such that:

T̃ΠA = ΠBTx for all x ∈ Dom(A)

S̃ΠBy = ΠASy for all y ∈ Dom(B)

[S̃h, k]KB
= [h, T̃ k]KA

for all h ∈ KB, k ∈ KA.



• For all x ∈ Dom(A) we have Tx ∈ Dom(B) and BTx = S∗Ax.



• For all x ∈ Dom(A) we have Tx ∈ Dom(B) and BTx = S∗Ax.

• For all h ∈ Dom(A) and all n ∈ N we have (ST )nh ∈ Dom(A)
and A(ST )nh = (T ∗S∗)nAh.



• For all x ∈ Dom(A) we have Tx ∈ Dom(B) and BTx = S∗Ax.

• For all h ∈ Dom(A) and all n ∈ N we have (ST )nh ∈ Dom(A)
and A(ST )nh = (T ∗S∗)nAh.

• For all x ∈ Dom(A) we have Tx ∈ Dom(B) and

〈BTx, Tx〉 ≤ r(ST )〈Ax, x〉



• For all x ∈ Dom(A) we have Tx ∈ Dom(B) and BTx = S∗Ax.

• For all h ∈ Dom(A) and all n ∈ N we have (ST )nh ∈ Dom(A)
and A(ST )nh = (T ∗S∗)nAh.

• For all x ∈ Dom(A) we have Tx ∈ Dom(B) and

〈BTx, Tx〉 ≤ r(ST )〈Ax, x〉
• For all x ∈ Dom(A) we have

‖B1/2Tx‖ ≤
√

r(ST )‖A1/2x‖



• For all x ∈ Dom(A) we have Tx ∈ Dom(B) and BTx = S∗Ax.

• For all h ∈ Dom(A) and all n ∈ N we have (ST )nh ∈ Dom(A)
and A(ST )nh = (T ∗S∗)nAh.

• For all x ∈ Dom(A) we have Tx ∈ Dom(B) and

〈BTx, Tx〉 ≤ r(ST )〈Ax, x〉
• For all x ∈ Dom(A) we have

‖B1/2Tx‖ ≤
√

r(ST )‖A1/2x‖

For all n ≥ 1 and all x ∈ Dom(A)

‖B
1
2Tx‖2 ≤ ‖(ST )2

n
‖

1
2n ‖A

1
2x‖2(1− 1

2n) ‖Ax‖
1

2n ‖x‖
1

2n .



Spectral Preservation

Let A be a nonnegative selfadjoint operator on the Hilbert space H,
and let (KA, ΠA) be the Hilbert space induced by A in the energy
space representation.
Corollary If T ∈ B(H) satisfies the condition

〈Ax, Ty〉 = 〈Tx, Ay〉, x, y ∈ Dom(A)

then T can be lifted to a bounded operator T̃ ∈ B(KA) and

• σ(T̃ ) ⊆ σ(T ).

• If λ belongs to the discrete spectrum of T then λ belongs to the
discrete spectrum of T̃ and their corresponding root subspaces are the
same.

• If T has only discrete spectrum, then T̃ has only discrete spectrum
and σ(T ) = σ(T̃ ).

• If T is compact then T̃ is compact on KA.



Let A be a nonnegative selfadjoint operator on the Hilbert space H,
and let (KA, ΠA) be the Hilbert space induced by A in the energy
space representation.

Corollary Let T be a selfadjoint (unbounded) linear operator in H
such that for all ζ ∈ C \ R and all x ∈ Dom(A) we have

(ζI − T )−1Ax = A(ζI − T )−1x.

Then

• T can be lifted to a linear operator T̃ in KA.

• T̃ is selfadjoint operator in the Hilbert space KA.

• σ(T̃ ) ⊆ σ(T ).



Uniqueness

Theorem Let A be a selfadjoint operator in the Hilbert space H.
The following statements are equivalent:

(i) The Krĕın space induced by A is unique, modulo unitary equiva-
lence.

(ii) A has a lateral spectral gap, that is, there exists an ε > 0 such
that either (0, ε) ⊂ ρ(A) or (−ε, 0) ⊂ ρ(A).

(iii) For some (equivalently, for any) Krĕın space (K, Π) induced by A,
the linear manifold Π Dom(A) contains a maximal uniformly definite
subspace of K.



Representations in Terms of the Canonical Mapping Π

Proposition Let T ∈ C(H,H1), that is, T is a closed linear operator
with domain Dom(T ) dense in the Hilbert space H and range Ran(T )
in the Hilbert space H1 such that for some c > 0 we have

(1) ‖Tu‖H1
≥ c‖u‖H, u ∈ Dom(T ).

Let also J be a symmetry on Ran(T ).
Then, the operator A = T ∗JT is selfadjoint that has a spectral gap

in the neighbourhood of 0, and (Ran(T ), T ) is a Krĕın space induced
by A.



The Free Dirac Operator

The free Dirac operator is defined in the space H = L2(R3; C4)
identified with C4 ⊗ L2(R3) as the following

H0 =

3∑
j=1

αj ⊗Dj + α0 ⊗ IL2(R3),

where Dj = i∂/∂xj (j = 1, 2, 3), x = (x1, x2, x3) ∈ R3, αj (j =
1, 2, 3, 4) are the Dirac matrices, i.e. 4 × 4 Hermitian matrices which
satisfy the anticommutation relations

αjαk + αkαj = 2δjk, j, k = 0, 1, 2, 3.



In the standard representation, the Dirac matrices αj (j = 0, 1, 2, 3)
are chosen as follows

αj =

(
0 σj
σj 0

)
for j = 1, 2, 3; α0 =

(
σ0 0
0 −σ0

)
where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices (σ0 = I2 designates the 2× 2 identity matrix).



Note that by applying the Fourier transformation to the elements of
the space L2(R3; C4) the operator H0 is transformed (in the momen-
tum space) into a multiplication operator by the following matrix-valued
function

h0(ξ) =

[
σ0 σ(ξ)

σ(ξ) −σ0

]
where

σ(ξ) = ξ1σ1 + ξ2σ2 + ξ3σ3, ξ = (ξ1, ξ2, ξ3) ∈ R3.

The Fourier transformation is defined by the formula

û(ξ) = (Fu)(ξ) =
1

(2π)3/2

∫
u(x)ei〈x,ξ〉dx, u ∈ L2(R3)

in which 〈x, ξ〉 designates the scalar product of the elements x, ξ ∈ R3

(here and in what follows
∫

:=
∫
R3).



The matrix h0(ξ) is the symbol of the operator H0 considered as a
matrix differential operator with constant coefficients. This matrix has
the following eigenvalues

λ1(ξ) = λ2(ξ) = r(ξ), λ3(ξ) = λ4(ξ) = −r(ξ),

where r(ξ) = (1 + |ξ|2)1/2.
The unitary transformation U(ξ) which brings h0(ξ) to the diagonal

form is given explicitly by

U(ξ) =

[
a(ξ)I2 −b(ξ)σ(ξ)

b(ξ)σ(ξ) −a(ξ)I2

]
,

where a(ξ) = (1
2(1 + r(ξ))−1)1/2 and b(ξ) = a(ξ)(1 + γ(ξ))−1. Thus,

we have
U(ξ)h0(ξ)U(ξ)∗ = α0r(ξ).



Now, we let

T (ξ) = r(ξ)
1
2U(ξ),

and denote by T = T (D) the pseudodifferential operator corresponding
to its symbol T (ξ). The operator T is defined in the space H =
L2(R3; C4) by

(Tu)(x) =
1

(2π)
3
2

∫
T (ξ)û(ξ)e−i〈x,ξ〉dξ, x ∈ Rn,

on the domain Dom(T ) = {u ∈ L2(R3; C4) : T (ξ)û(ξ) ∈ L2(R3; C4)}.

Obviously, u ∈ Dom(T ) if and only if û ∈ L2,r(R3; C4), where

L2,r(R3; C4) stands for the space weighted by r(ξ) = (1 + |ξ|2)
1
2, i.e.

the space all functions f ∈ L2(R3; C4) such that rf ∈ L2(R3; C4).
Note that F ∗L2,r(R3; C4) = W 1

2 (R3; C4) (the Fourier transformation

in the space L2(R3; C4) is again denoted by F ).



It follows that the factorization

H0 = T ∗(α0 ⊗ IL2(R3))T.

Since

‖Tu‖2 =

∫
|T (ξ)û(ξ)|2dξ =

∫
r(ξ)|û(ξ)|2dξ ≥

∫
|û(ξ)|2dξ = ‖u‖

for all u ∈ Dom(T ), the condition from Proposition is fulfilled. In
particular, the range Ran(T ) is closed in the space L2(R3; C4), and so
we have the Hilbert space

GT = (Ran(T ), ‖ · ‖L2(R3;C4)).



On the space H = L2(R3; C4) we consider the symmetry given by

(2) Ju = α0 ⊗ IL2(Rr)u, u ∈ L2(Rr),

and hence the Hilbert space GT equipped with the indefinite scalar
product defined by J becomes a Krĕın space that we denote by K. We
have the decomposition

K = K+ ⊕K−,

where the orthogonal projection operators from K onto K± are given
by

P± =
1

2
(I ± α0)⊗ IL2(Rr).

We conclude that the pair (K, Π), where Π = T (recall that T is
the pseudodifferential operator defined in the space L2(R3; C4)) is a
Krĕın space induced by the free Dirac operator H0, by the previous
Proposition.


