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The Standard Free Dirac Operator

To simplify the notation, we assume the mass m = 1 and the light
speed ¢ = 1.
The free Dirac operator is defined in the space 'H = LQ(Rg;C4)

identified with C* ® Lo(R?) as the following
3

Hy = ZO&j @Dj —I—Oz()®]L2<R3>,
1=1
where D; = i0/0z; (j = 1,2,3), z = (z1,22,23) € R’, a; (j =
1,2,3,4) are the Dirac matrices, i.e. 4 X 4 Hermitian matrices which
satisfy the anticommutation relations

Qo + Qo = 25]'/{7 7,k=0,1,2,3.



In the standard representation, the Dirac matrices o (j = 0,1,2,3)
are chosen as follows

0 o; . og 0O
R J — : —
= (Uj O) for 1 =1,2,3; ag = ( 0 UO)

01 0 —i 1 0
T=\10) 2=\io ) 937 \0=1

are the Pauli matrices (o9 = I designates the 2 x 2 identity matrix).

where

We consider the operator H(y defined on its maximal domain, i.e. on
the Sobolev space Dom(H()) = W%(]Rg; C*Y). It is known that, on this
domain,

e H is a self-adjoint operator.

e The spectrum of Hy is (—oo, —1| U |1, +00).

e [ has only continuous spectrum.



The Energy Space Representation (Friedrichs)

e Assume A is selfadjoint, A = A*, and nonnegative, (Ax,x) > 0
for all x € Dom(A).

Dom(A) — Dom(A)/ ker(A) — K4

[T4: Dom(IT4) = Dom(A) — K4

o Al/2 is nonnegative selfadjoint, Dom(A!/2) D Dom(A) and Dom(A/2)
is a core for AY/2.

o (Az,y) = (A2, AY2y) for all z € Dom(A) and all y €
Dom(AY/2,

e The strong topology of K 4 is given by the semi-norm HAl/Q |



The Energy Space Representation for a Symmetric Operator

Let H be a (complex) Hilbert space, A a densely defined symmetric
operator in H, that is:

A: Dom(A)( dense CH) — H
(Ax,y) = (x, Ay), for all z € Dom(A).
A pair (IC,I1) is called a Krein space induced by A if:

(i) IC is a Krein space;
(i) IT is a linear operator with Dom(A) C Dom(II) C H and range in
K;
(iii) IT Dom(A) is dense in /C;
(iv) Iz, [yl = (Ax, y)g for all x € Dom(A) and all y € Dom(II).



e The pair (IC,II) is a Krein space induced by A if and only if:
(i) IC is a Krein space;
(i) IT is a linear operator with Dom(A) C Dom(Il) C 'H and range in
K;
(iii) IT Dom(A) is dense in /C;
(iv)' TI’T1 D A, in the sense II Dom(A) C Dom(I1%) and II*Ilz = Ax
for all x € Dom(A).

e Without loss of generality, we can assume II closed.

e A is bounded if II is bounded, but not the other way.



Existence

Proposition Let A be a densely defined and symmetric operator in
a Hilbert space H. The following assertions are equivalent:

(a) There exists a nonnegative quadratic form q on Dom(A) such that
—q(r) < (Ax,z) < q(z), x € Dom(A).

(a)’ There exists a nonnegative operator B in H such that Dom(A) C
Dom(B) and —(Bx,x)y < (Azx,z)yy < (Bx,x)y for all x €
Dom(A).

(b) There exists a nonnegative quadratic form q on Dom(A) such that

(A, y)|* < q(x)aly), =,y € Dom(A).
(b)" There exists a nonnegative operator B in 'H such that Dom(A) C
Dom(B) and |(Az,y)| < |(Bz,z)|Y2|(By,y)|'/? for all z,y €
Dom(A).



(c) A C AL — A_ for two nonnegative operators A+ in H, that is,
Dom(A) C Dom(A4+) N Dom(A_) and Ax = Arx — A_x for all
r € Dom(A).

(d) There exists a Krein space induced by A.

Corrolay For any densely defined symmetric operator A that admits
a selfadjoint extension in H, there exists a Krein space induced by A.



Example Let A_ and A be the differential operators on Lo(R)
defined by the differential expressions

d\? d\? . d
A== Ay = — (=) 12— 41
(dx) T (dx) T

where Dom(A) = Dom(A_) is the Sobolev space WZ(R.), with
the Dirichlet boundary conditions at 0. Then both A, and A_ are
nonnegative selfadjoint operators but the operator

A+—A_:2ii+1
dx

is a symmetric operator in Lo(RR) with defect indices (1,0), and hence
does not have selfadjoint extensions.



The Induced Krein Space (K 4,114)

Let A be a selfadjoint operator in the Hilbert space H. We consider
the polar decomposition of A

A=S4Al |Al=(A*A)? = (412 8, = sgn(A)
Dom(A) = Dom(|A]), and |A| is a positive selfadjoint operator.

Let K4 = K4 Recall that Dom(A) C Dom(|A|'/?) and that
Dom(A) is a core for |A|'/2. ker(S,) = ker(A), S4 leaves invariant
Dom(A).

Dom(A) =Dy @ ker(A) & D_
where D+ = Dom(A) Nker(S4 F I).



We complete D~ with respect to the norm ||| A|1/2 || to le,
Ka=K}aK,=Ki+K,
yields a Krein space (KC4; [+, ]).

Let 11 4 be the operator which is obtained by composing the canon-
ical surjection Dom(A) — Dom(A)/ ker(A) with the embedding of
Dom(A)/ ker(A) into its Hilbert space completion k| 4 = K 4.

Proposition If A is a selfadjoint operator on the Hilbert space 'H
then, with the notation as before, (K 4,114) is a Krein space induced

by A.



The Lifting Theorem

Theorem Let A and B be selfadjoint operators in Hilbert spaces H{
and Ho, respectively, and let (K 4,114) and (Xp,I13) be their Krein
spaces induced by A and B, respectively.

Let T € B(H1, Ho) and S € B(Ho, H1) be such that
Bz, Ty| = |Sz, Ay|, for all x € Dom(B), y € Dom(A).

Then there exist uniquely T € B(K4,Kg) and S € B(Kg,K4)
such that:

TNTIA = [15Tx for all x € Dom(A)
gHBy = [14Sy for all y € Dom(B)
[Sh, ki, = [h, Tkl forall h € K, k € K.



e For all z € Dom(A) we have Tx € Dom(B) and BTz = S*Ax.



e For all z € Dom(A) we have Tx € Dom(B) and BTz = S*Ax.

e For all h € Dom(A) and all n € N we have (ST)""h € Dom(A)
and A(ST)"h = (T*S5*)" Ah.



e For all z € Dom(A) we have Tx € Dom(B) and BTz = S*Ax.

e For all h € Dom(A) and all n € N we have (ST)""h € Dom(A)
and A(ST)"h = (T*S5*)" Ah.

e For all x € Dom(A) we have Tz € Dom(B) and
(BTx, Tx) <r(ST)(Ax, x)



e For all z € Dom(A) we have Tx € Dom(B) and BTz = S*Ax.

e For all h € Dom(A) and all n € N we have (ST)""h € Dom(A)
and A(ST)"h = (T*S5*)" Ah.

e For all x € Dom(A) we have Tz € Dom(B) and
(BTx, Tx) <r(ST)(Ax,x)
e For all x € Dom(A) we have

|BY2Ta|| < \/r(ST)| AY x|



e For all z € Dom(A) we have Tx € Dom(B) and BTz = S*Ax.

e For all h € Dom(A) and all n € N we have (ST)""h € Dom(A)
and A(ST)"h = (T*S5*)" Ah.

e For all x € Dom(A) we have Tz € Dom(B) and
(BTx, Tx) <r(ST)(Ax,x)
e For all x € Dom(A) we have

|BY2Te|| < \/r(ST)|AY x|

For all n > 1 and all x € Dom(A)

1 9 ony Lo L T
| BTz |)> < |[(ST)?" |27 || A2z ||P—27) || Az |2 ||| 2",



Spectral Preservation

Let A be a nonnegative selfadjoint operator on the Hilbert space H,
and let (K 4,114) be the Hilbert space induced by A in the energy
space representation.

Corollary If T' € B('H) satisfies the condition

(Ax, Ty) = (Tx, Ay), x,y € Dom(A)
then 7" can be lifted to a bounded operator T e B(K 4) and
o o(T) Co(T).

e If A\ belongs to the discrete spectrum of T then A belongs to the
discrete spectrum of 1" and their corresponding root subspaces are the
same.

e I T" has only discrete spectrum, then T has only discrete spectrum

and o(T) = o(T).
e |f T" is compact then T is compact on K 4.



Let A be a nonnegative selfadjoint operator on the Hilbert space H,
and let (XC4,114) be the Hilbert space induced by A in the energy
space representation.

Corollary Let T be a selfadjoint (unbounded) linear operator in H
such that for all € C\ R and all x € Dom(A) we have

(CI—T) 'Azx = AT —T) 'a.
Then

e I" can be lifted to a linear operator T in IC 4.
o Tis selfadjoint operator in the Hilbert space C 4.

~

e o(T) Co(T).



Uniqueness

Theorem Let A be a selfadjoint operator in the Hilbert space H.
The following statements are equivalent:

(i) The Krein space induced by A is unique, modulo unitary equiva-
lence.

(ii) A has a lateral spectral gap, that is, there exists an ¢ > 0 such
that either (0,¢) C p(A) or (—e¢,0) C p(A).

(iii) For some (equivalently, for any) Krein space (/C, I1) induced by A,
the linear manifold I Dom(A) contains a maximal uniformly definite
subspace of /C.



Representations in Terms of the Canonical Mapping 1]

Proposition Let T' € C(H,'Hy), that is, T is a closed linear operator
with domain Dom(T") dense in the Hilbert space H and range Ran(T)
in the Hilbert space H1 such that for some ¢ > 0 we have

(1) 1 Tull#, = cllully, v e Dom(T).
Let also J be a symmetry on Ran(T).
Then, the operator A = T*JT is selfadjoint that has a spectral gap

in the neighbourhood of 0, and (Ran(T'),T) is a Krein space induced
by A.



The Free Dirac Operator

The free Dirac operator is defined in the space H = Lo(R3; CH

identified with C* ® Lo(R?) as the following
3

Hy = Z()éj X Dj + ap & ]LQ(R3>7
1=1
where D; = i0/0x; (7 = 1,2,3), x = (x1,29,23) € R, aj (j =
1,2,3,4) are the Dirac matrices, i.e. 4 X 4 Hermitian matrices which
satisfy the anticommutation relations

Qo + Qo = 25]’/{7 7,k=0,1,2,3.



In the standard representation, the Dirac matrices o (j = 0,1,2,3)
are chosen as follows

0 o; ogp 0
_ ] _ : _ y
Q; (Uj O) for 1 =1,2,3; ap (O UO)

01 0 —i 1 0
1=\10)/) 27 \io ) 927 \0-1

are the Pauli matrices (o9 = I designates the 2 x 2 identity matrix).

where



Note that by applying the Fourier transformation to the elements of
the space Lo(R3: C*%) the operator Hy is transformed (in the momen-
tum space) into a multiplication operator by the following matrix-valued

function ©
o) O
h p—
O(f) [O(f> —UO]

where

0(§) = &1o1 + &09 + &303, £ = (61,6, 83) €R®,
The Fourier transformation is defined by the formula

1 |

w(€) = (Fu)(§) = w(z)e T8 e, u € Ly(R?
€)= (Fu)©) = g [ v (R
in which (x, £) designates the scalar product of the elements z, ¢ € R?
(here and in what follows [ := [g3).




The matrix hg(§) is the symbol of the operator H() considered as a
matrix differential operator with constant coefficients. This matrix has

the following eigenvalues

AL(&) = Aa(&) = (&), A3(&) = Au(&) = —r(&),
where 7(€) = (1 + |€]?)1/2.
The unitary transformation U (&) which brings hy(&) to the diagonal
form is given explicitly by

[ a©L ~b)o(s)
TO= | beee) ey |

where a(€) = (3(1+7(€)) ™)/ and b(€) = a(&)(1 +(¢))~". Thus

we have

U(§)ho(&)U (&)™ = agr(§).



Now, we let

1
T(€) = r(§)2U(&),
and denote by T' = T'(D) the pseudodifferential operator corresponding
to its symbol T'(£). The operator T is defined in the space H =
L(R%; C*) by
1 .
(Tu)(z) = —— / T()a(€)e T8¢, v e R,
(2m)2
on the domain Dom(7T) = {u € Lo(R3; C*) : T(&)0(€) € Lo(R3; CH}.

Obviously, u € Dom(T) if and only if & € Lo, (R%C?), where

ngr(RS; C*) stands for the space weighted by 7(£) = (1 + \5\2)%, i.e.
the space all functions f € Lo(R3 C%) such that rf € Lo(R3; CH).
Note that F*L27T(R3; CH = W%(RB; C%) (the Fourier transformation
in the space Lo(IR3; C*) is again denoted by F).



It follows that the factorization
HO = T*(OK() X [LQ(R3>>T'

Since
[rul? = [ 1raerds = [ r@a©Ra > [ 1) Pag =
for all w € Dom(T), the condition from Proposition is fulfilled. In

particular, the range Ran(T) is closed in the space Lo(R%: C%), and so
we have the Hilbert space

Gr = (Ran(T), || - ||, m3.c))-



On the space H = LQ(RB; (C4) we consider the symmetry given by
(2) Ju=ay® I, gnu, u€ Lo(R"),
and hence the Hilbert space G7 equipped with the indefinite scalar

product defined by J becomes a Krein space that we denote by . We
have the decomposition

K=Ki®K_,
where the orthogonal projection operators from K onto K4 are given
by

1

Py = 5([ + o) ® ]L2<RT>'

We conclude that the pair (IC,II), where II = T (recall that T is
the pseudodifferential operator defined in the space Ly(R3: C%)) is a
Krein space induced by the free Dirac operator H), by the previous

Proposition.



