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max {r(Ax) L x € S@}.
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2. wp(A)e Wp(A).



We call the matrix A irreducible



We call the matrix A irreducible if there is no permutation matrix

P such that
PAPL =

B C
O D |’

where B and D are square matrices.



We call the matrix A irreducible if there is no permutation matrix

P such that
PAPL =

B C
O D |’

where B and D are square matrices.

Lemma 2. Let A > 0 be irreducible.



We call the matrix A irreducible if there is no permutation matrix

P such that
PAPL =

B C
O D |’

where B and D are square matrices.

Lemma 2. Let A >0 be irreducible. Then

1. wp(A) =r(Az) = x>0 (x Is strictly positive)



We call the matrix A irreducible if there is no permutation matrix

P such that
PAPL =

B C
O D |’

where B and D are square matrices.

Lemma 2. Let A >0 be irreducible. Then

1. wp(A) =1r(Az) = x>0 (x is strictly positive)

2. x>0= A, is irreducible.
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For C = (Cij)z',jzl,...,£ denote by ’C| the matrix (|Cij|)i,j:1,...,€-

Theorem 3. Let A, C be ¢ x ¥ square matrices, where A > 0.

Suppose |C| < A., i.e. A—|C| is nonnegative. Then
wp(C) < wp(A).

Suppose in addition that A is irreducible and wy(C) = wo(A). Then
for all ( € C, || = 1, such that (wo(A) € Wxp(C) we have

C =(DAD™!

for some ¢ x £ square matrix D with |D| = 1.
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T hen

{XeWa(A) 1 A\ = wo(A)} = {wo(A)e*™/m k=0,1,...,m — 1},



