Block Numerical Ranges of Nonnegative Matrices

Niels Hartanto, TU Berlin
joint work with K.-H. Förster

Let A be an $\ell \times \ell$ square matrix.

Let A be an $\ell \times \ell$ square matrix. Denote by $\mathfrak{D}=\left(\mathbb{C}^{k_{1}}, \ldots, \mathbb{C}^{k_{n}}\right), n \leq \ell$ a decomposition of \mathbb{C}^{ℓ}, i.e. $\mathbb{C}^{\ell}=\mathbb{C}^{k_{1}} \times \cdots \times \mathbb{C}^{k_{n}}$

Let A be an $\ell \times \ell$ square matrix. Denote by $\mathfrak{D}=\left(\mathbb{C}^{k_{1}}, \ldots, \mathbb{C}^{k_{n}}\right), n \leq \ell$ a decomposition of \mathbb{C}^{ℓ}, i.e. $\mathbb{C}^{\ell}=\mathbb{C}^{k_{1}} \times \cdots \times \mathbb{C}^{k_{n}}$ and consider the according block partition

$$
A=\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 n} \\
\vdots & & \vdots \\
A_{n 1} & \cdots & A_{n n}
\end{array}\right]
$$

where $A_{r s}$ is a $k_{r} \times k_{s}$ matrix.

Let A be an $\ell \times \ell$ square matrix. Denote by $\mathfrak{D}=\left(\mathbb{C}^{k_{1}}, \ldots, \mathbb{C}^{k_{n}}\right), n \leq \ell$ a decomposition of \mathbb{C}^{ℓ}, i.e. $\mathbb{C}^{\ell}=\mathbb{C}^{k_{1}} \times \cdots \times \mathbb{C}^{k_{n}}$ and consider the according block partition

$$
A=\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 n} \\
\vdots & & \vdots \\
A_{n 1} & \cdots & A_{n n}
\end{array}\right]
$$

where $A_{r s}$ is a $k_{r} \times k_{s}$ matrix.
For $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{C}^{\ell}, x_{j} \in \mathbb{C}^{k_{j}}$ define the $n \times n$ square matrix

Let A be an $\ell \times \ell$ square matrix. Denote by $\mathfrak{D}=\left(\mathbb{C}^{k_{1}}, \ldots, \mathbb{C}^{k_{n}}\right), n \leq \ell$ a decomposition of \mathbb{C}^{ℓ}, i.e. $\mathbb{C}^{\ell}=\mathbb{C}^{k_{1}} \times \cdots \times \mathbb{C}^{k_{n}}$ and consider the according block partition

$$
A=\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 n} \\
\vdots & & \vdots \\
A_{n 1} & \cdots & A_{n n}
\end{array}\right]
$$

where $A_{r s}$ is a $k_{r} \times k_{s}$ matrix.
For $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{C}^{\ell}, x_{j} \in \mathbb{C}^{k_{j}}$ define the $n \times n$ square matrix

$$
A_{x}=\left[\begin{array}{ccc}
\left\langle A_{11} x_{1}, x_{1}\right\rangle & \cdots & \left\langle A_{1 n} x_{n}, x_{1}\right\rangle \\
\vdots & & \vdots \\
\left\langle A_{n 1} x_{1}, x_{n}\right\rangle & \cdots & \left\langle A_{n n} x_{n}, x_{n}\right\rangle
\end{array}\right]=\left(\left\langle A_{r s} x_{s}, x_{r}\right\rangle\right)_{r, s=1, \ldots, n} .
$$

Denote by $S_{\mathfrak{D}}=S_{\mathbb{C}^{k} 1} \times \cdots \times S_{\mathbb{C}^{k n}}$ the product of the according unit spheres.

Denote by $S_{\mathfrak{D}}=S_{\mathbb{C}^{k} 1} \times \cdots \times S_{\mathbb{C}^{k n}}$ the product of the according unit spheres. For \mathfrak{D} define the block numerical range

Denote by $S_{\mathfrak{D}}=S_{\mathbb{C}^{k} 1} \times \cdots \times S_{\mathbb{C}^{k n}}$ the product of the according unit spheres. For \mathfrak{D} define the block numerical range

$$
W_{\mathfrak{D}}(A)=\left\{\lambda \in \mathbb{C}: \exists x \in S_{\mathfrak{D}} \text { s.t. } \lambda \text { is an eigenvalue of } A_{x}\right\}
$$

Denote by $S_{\mathfrak{D}}=S_{\mathbb{C}^{k} 1} \times \cdots \times S_{\mathbb{C}^{k n}}$ the product of the according unit spheres. For \mathfrak{D} define the block numerical range

$$
\begin{aligned}
W_{\mathfrak{D}}(A) & =\left\{\lambda \in \mathbb{C}: \exists x \in S_{\mathfrak{D}} \text { s.t. } \lambda \text { is an eigenvalue of } A_{x}\right\} \\
& =\bigcup_{x \in S_{\mathfrak{O}}} \sigma\left(A_{x}\right) .
\end{aligned}
$$

Denote by $S_{\mathfrak{D}}=S_{\mathbb{C}^{k} 1} \times \cdots \times S_{\mathbb{C}^{k n}}$ the product of the according unit spheres. For \mathfrak{D} define the block numerical range

$$
\begin{aligned}
W_{\mathfrak{D}}(A) & =\left\{\lambda \in \mathbb{C}: \exists x \in S_{\mathfrak{D}} \text { s.t. } \lambda \text { is an eigenvalue of } A_{x}\right\} \\
& =\bigcup_{x \in S_{\mathfrak{O}}} \sigma\left(A_{x}\right) .
\end{aligned}
$$

It has been investigated by H. Langer, A.S. Markus, V.I. Matsaev, C. Tretter, M. Wagenhofer.

Denote by $S_{\mathfrak{D}}=S_{\mathbb{C}^{k} 1} \times \cdots \times S_{\mathbb{C}^{k n}}$ the product of the according unit spheres. For \mathfrak{D} define the block numerical range

$$
\begin{aligned}
W_{\mathfrak{D}}(A) & =\left\{\lambda \in \mathbb{C}: \exists x \in S_{\mathfrak{D}} \text { s.t. } \lambda \text { is an eigenvalue of } A_{x}\right\} \\
& =\bigcup_{x \in S_{\mathfrak{D}}} \sigma\left(A_{x}\right) .
\end{aligned}
$$

It has been investigated by H. Langer, A.S. Markus, V.I. Matsaev, C. Tretter, M. Wagenhofer.

The block numerical radius

Denote by $S_{\mathfrak{D}}=S_{\mathbb{C}^{k} 1} \times \cdots \times S_{\mathbb{C}^{k n}}$ the product of the according unit spheres. For \mathfrak{D} define the block numerical range

$$
\begin{aligned}
W_{\mathfrak{D}}(A) & =\left\{\lambda \in \mathbb{C}: \exists x \in S_{\mathfrak{D}} \text { s.t. } \lambda \text { is an eigenvalue of } A_{x}\right\} \\
& =\bigcup_{x \in S_{\mathfrak{D}}} \sigma\left(A_{x}\right) .
\end{aligned}
$$

It has been investigated by H. Langer, A.S. Markus, V.I. Matsaev, C. Tretter, M. Wagenhofer.

The block numerical radius is defined as the real number

$$
w_{\mathfrak{D}}(A)=\max \left\{|\lambda|: \lambda \in W_{\mathfrak{D}}(A)\right\}
$$

Denote by $S_{\mathfrak{D}}=S_{\mathbb{C}^{k} 1} \times \cdots \times S_{\mathbb{C}^{k n}}$ the product of the according unit spheres. For \mathfrak{D} define the block numerical range

$$
\begin{aligned}
W_{\mathfrak{D}}(A) & =\left\{\lambda \in \mathbb{C}: \exists x \in S_{\mathfrak{D}} \text { s.t. } \lambda \text { is an eigenvalue of } A_{x}\right\} \\
& =\bigcup_{x \in S_{\mathfrak{D}}} \sigma\left(A_{x}\right) .
\end{aligned}
$$

It has been investigated by H. Langer, A.S. Markus, V.I. Matsaev, C. Tretter, M. Wagenhofer.

The block numerical radius is defined as the real number

$$
\begin{aligned}
w_{\mathfrak{D}}(A) & =\max \left\{|\lambda|: \lambda \in W_{\mathfrak{D}}(A)\right\} \\
& =\max \left\{r\left(A_{x}\right): x \in S_{\mathfrak{D}}\right\} .
\end{aligned}
$$

Note that

$$
W_{\left(\mathbb{C}^{\ell}\right)}(A)=W(A)
$$

Note that

$$
\begin{aligned}
W_{(\mathbb{C})}(A) & =W(A), \\
W_{(\mathbb{C}, \ldots, \mathbb{C})}(A) & =\sigma(A)
\end{aligned}
$$

Note that

$$
\begin{aligned}
W_{(\mathbb{C})}(A) & =W(A), \\
W_{(\mathbb{C}, \ldots, \mathbb{C})}(A) & =\sigma(A)
\end{aligned}
$$

and we have

$$
\sigma(A) \subset W_{\mathfrak{D}}(A) \subset W(A) .
$$

Note that

$$
\begin{aligned}
W_{\left(\mathbb{C}^{\ell}\right)}(A) & =W(A), \\
W_{(\mathbb{C}, \ldots, \mathbb{C})}(A) & =\sigma(A)
\end{aligned}
$$

and we have

$$
\sigma(A) \subset W_{\mathfrak{D}}(A) \subset W(A) .
$$

The main result of this talk is the following:

Note that

$$
\begin{aligned}
W_{\left(\mathbb{C}^{\ell}\right)}(A) & =W(A), \\
W_{(\mathbb{C}, \ldots, \mathbb{C})}(A) & =\sigma(A)
\end{aligned}
$$

and we have

$$
\sigma(A) \subset W_{\mathfrak{D}}(A) \subset W(A) .
$$

The main result of this talk is the following:

For a nonnegative matrix A with index of imprimitivity m we have

$$
\left\{\lambda \in W_{\mathfrak{D}}(A):|\lambda|=w_{\mathfrak{D}}(A)\right\}=\left\{w_{\mathfrak{D}}(A) e^{2 k \pi i / m}, k=0,1, \ldots, m-1\right\}
$$

We say $A=\left(a_{i j}\right)_{i, j=1, \ldots, \ell}$ to be nonnegative $(A \geq 0)$,

We say $A=\left(a_{i j}\right)_{i, j=1, \ldots, \ell}$ to be nonnegative $(A \geq 0)$, if

$$
a_{i j} \geq 0 \quad \text { for all } i, j=1, \ldots, \ell
$$

We say $A=\left(a_{i j}\right)_{i, j=1, \ldots, \ell}$ to be nonnegative $(A \geq 0)$, if

$$
a_{i j} \geq 0 \quad \text { for all } i, j=1, \ldots, \ell
$$

Theorem 1. Let $A \geq 0$.

We say $A=\left(a_{i j}\right)_{i, j=1, \ldots, \ell}$ to be nonnegative $(A \geq 0)$, if

$$
a_{i j} \geq 0 \quad \text { for all } i, j=1, \ldots, \ell
$$

Theorem 1. Let $A \geq 0$. Then

1. $w_{\mathfrak{D}}(A)=\max \left\{r\left(A_{x}\right): x \in S_{\mathfrak{D}}, x \geq 0\right\}$

We say $A=\left(a_{i j}\right)_{i, j=1, \ldots, \ell}$ to be nonnegative $(A \geq 0)$, if

$$
a_{i j} \geq 0 \quad \text { for all } i, j=1, \ldots, \ell
$$

Theorem 1. Let $A \geq 0$. Then

1. $w_{\mathfrak{D}}(A)=\max \left\{r\left(A_{x}\right): x \in S_{\mathfrak{D}}, x \geq 0\right\}$
2. $w_{\mathfrak{D}}(A) \in W_{\mathfrak{D}}(A)$.

We call the matrix A irreducible

We call the matrix A irreducible if there is no permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
B & C \\
0 & D
\end{array}\right]
$$

where B and D are square matrices.

We call the matrix A irreducible if there is no permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
B & C \\
0 & D
\end{array}\right]
$$

where B and D are square matrices.

Lemma 2. Let $A \geq 0$ be irreducible.

We call the matrix A irreducible if there is no permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
B & C \\
0 & D
\end{array}\right]
$$

where B and D are square matrices.

Lemma 2. Let $A \geq 0$ be irreducible. Then

$$
\text { 1. } w_{\mathfrak{D}}(A)=r\left(A_{x}\right) \Rightarrow x>0 \quad \text { (} x \text { is strictly positive } \text {) }
$$

We call the matrix A irreducible if there is no permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
B & C \\
0 & D
\end{array}\right]
$$

where B and D are square matrices.

Lemma 2. Let $A \geq 0$ be irreducible. Then

$$
\begin{aligned}
& \text { 1. } w_{\mathfrak{D}}(A)=r\left(A_{x}\right) \Rightarrow x>0 \quad \text { (} x \text { is strictly positive) } \\
& \text { 2. } x>0 \Rightarrow A_{x} \text { is irreducible. }
\end{aligned}
$$

For $C=\left(c_{i j}\right)_{i, j=1, \ldots, \ell}$ denote by $|C|$ the matrix $\left(\left|c_{i j}\right|\right)_{i, j=1, \ldots, \ell}$.

For $C=\left(c_{i j}\right)_{i, j=1, \ldots, \ell}$ denote by $|C|$ the matrix $\left(\left|c_{i j}\right|\right)_{i, j=1, \ldots, \ell}$.

Theorem 3. Let A, C be $\ell \times \ell$ square matrices, where $A \geq 0$.

For $C=\left(c_{i j}\right)_{i, j=1, \ldots, \ell}$ denote by $|C|$ the matrix $\left(\left|c_{i j}\right|\right)_{i, j=1, \ldots, \ell}$.

Theorem 3. Let A, C be $\ell \times \ell$ square matrices, where $A \geq 0$.
Suppose $|C| \leq A$., i.e. $A-|C|$ is nonnegative.

For $C=\left(c_{i j}\right)_{i, j=1, \ldots, \ell}$ denote by $|C|$ the matrix $\left(\left|c_{i j}\right|\right)_{i, j=1, \ldots, \ell}$.

Theorem 3. Let A, C be $\ell \times \ell$ square matrices, where $A \geq 0$.
Suppose $|C| \leq A$., i.e. $A-|C|$ is nonnegative. Then

$$
w_{\mathfrak{D}}(C) \leq w_{\mathfrak{D}}(A)
$$

For $C=\left(c_{i j}\right)_{i, j=1, \ldots, \ell}$ denote by $|C|$ the matrix $\left(\left|c_{i j}\right|\right)_{i, j=1, \ldots, \ell}$.

Theorem 3. Let A, C be $\ell \times \ell$ square matrices, where $A \geq 0$.
Suppose $|C| \leq A$., i.e. $A-|C|$ is nonnegative. Then

$$
w_{\mathfrak{D}}(C) \leq w_{\mathfrak{D}}(A)
$$

Suppose in addition that A is irreducible and $w_{\mathfrak{D}}(C)=w_{\mathfrak{D}}(A)$.

For $C=\left(c_{i j}\right)_{i, j=1, \ldots, \ell}$ denote by $|C|$ the matrix $\left(\left|c_{i j}\right|\right)_{i, j=1, \ldots, \ell}$.

Theorem 3. Let A, C be $\ell \times \ell$ square matrices, where $A \geq 0$.
Suppose $|C| \leq A$., i.e. $A-|C|$ is nonnegative. Then

$$
w_{\mathfrak{D}}(C) \leq w_{\mathfrak{D}}(A)
$$

Suppose in addition that A is irreducible and $w_{\mathfrak{D}}(C)=w_{\mathfrak{D}}(A)$. Then for all $\zeta \in \mathbb{C},|\zeta|=1$, such that $\zeta w_{\mathfrak{D}}(A) \in W_{\mathfrak{D}}(C)$

For $C=\left(c_{i j}\right)_{i, j=1, \ldots, \ell}$ denote by $|C|$ the matrix $\left(\left|c_{i j}\right|\right)_{i, j=1, \ldots, \ell}$.

Theorem 3. Let A, C be $\ell \times \ell$ square matrices, where $A \geq 0$.
Suppose $|C| \leq A$., i.e. $A-|C|$ is nonnegative. Then

$$
w_{\mathfrak{D}}(C) \leq w_{\mathfrak{D}}(A)
$$

Suppose in addition that A is irreducible and $w_{\mathfrak{D}}(C)=w_{\mathfrak{D}}(A)$. Then for all $\zeta \in \mathbb{C},|\zeta|=1$, such that $\zeta w_{\mathfrak{D}}(A) \in W_{\mathfrak{D}}(C)$ we have

$$
C=\zeta D A D^{-1}
$$

for some $\ell \times \ell$ square matrix D with $|D|=\mathbf{I}_{\mathbb{C}}$.

The index of imprimitivity m of a nonnegative irreducible matrix A

The index of imprimitivity m of a nonnegative irreducible matrix A is defined as the number of peripheral eigenvalues of A.

The index of imprimitivity m of a nonnegative irreducible matrix A is defined as the number of peripheral eigenvalues of A.

Theorem 4. Let $A \geq 0$ be irreducible with index of imprimitivity m.

The index of imprimitivity m of a nonnegative irreducible matrix A is defined as the number of peripheral eigenvalues of A.

Theorem 4. Let $A \geq 0$ be irreducible with index of imprimitivity m.
Then

$$
\left\{\lambda \in W_{\mathfrak{D}}(A):|\lambda|=w_{\mathfrak{D}}(A)\right\}=\left\{w_{\mathfrak{D}}(A) e^{2 k \pi i / m}, k=0,1, \ldots, m-1\right\}
$$

