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Sturm–Liouville operator in L2(0, 1) given by

Ty = −y′′ + qy (1)

y(0) = y(1) = 0 (2)

Spectral properties:

• T is self-adjoint in L2 (i.e., (Tu, v) = (u, Tv) ∀ u, v ∈ domT )

• EV’s λ1 < λ2 < · · · real, countably many, tend to +∞

• every EV is geometrically simple (the nullspace of T −λ is of
dim ≤ 1) and algebraically simple (no Jordan blocks of size ≥ 1 ⇐⇒
no solution to (T − λ)y0 = 0, (T − λ)y1 = y0)
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Known results (s-a case)

The inverse spectral theory for SL operators due to Gelfand,
Levitan, Krein, and Marchenko (1950-ies) gave a complete
description of the spectra in the s-a case, e.g.

Theorem A. λ1 < λ2 < · · · and µ1 < µ2 < · · · are Dirichlet resp.
Neumann-Dirichlet spectra of a SL expression (1) with q ∈ L2(0, 1)
iff these sequences interlace (i.e., µn < λn < µn+1, ∀n ∈ N) and obey

λn = π2n2 + A + an, (3)

µn = π2(n− 1
2
)2 + A + bn (4)

with A ∈ R and (an), (bn) ∈ `2.
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Remarks:

• Inverse spectral theory gives an efficient reconstruction
algorithm;

• different A allowed =⇒ µn EV’s for Robin–Dirichlet b.c.
y′(0)− hy(0) = y(1) = 0;

• also for other b.c., e.g., for Robin–Robin ones;

• potentials from W n
2 (0, 1);

• singular potentials: distributions in W−1
2 (0, 1), e.g., δ(· − a) or

1/(· − a)

Que.: What if T is non-self-adjoint, i.e., if q is complex-valued?

Why? PT -symmetric quantum mechanics

Problems: EV’s might be non-real and/or non-simple!
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(ii) λ occurs in Λ m times =⇒ λ is an EV of T of multiplicity m

We repeat every EV according to its multiplicity and number
them s.t. equal EV’s are adjacent and their moduli do not decrease

Cor.: ∀ (λ1, λ2, . . . , λN) ∈ CN s.t. λk = λl for no k, l and
∀ (m1, m2, . . . , mN) ∈ NN ∃ a SL operator (1) s.t. λ1, λ2, . . . , λN are
its Dirichlet EV’s of (algebraic) multiplicities m1, m2, . . . , mN resp.

Neither Thm B nor Cor implies that any complex sequence (λn)
obeying (3) is the spectrum of some SL operator (1)–(2)!
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Our aim is three-fold:

• may the spectrum indeed be arbitrary? (modulo asymptotics)?

• treat potentials in W−1
2 (0, 1)

• give criterion for solubility and reconstruction algorithm
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Singular SL operators

For real-valued q ∈ W−1
2 (0, 1) define the SL operator T by

regularisation method (Shkalikov a.o., 1999):

take σ ∈ L2(0, 1) s. t. q = σ′ and
R

σ = 0 and put

Ty = T (q)y = l(q)(y) := −(y′ − σy)′ − σy′

dom T = {y ∈ W 1
2 | y′ − σy ∈ W 1

1 , l(q)(y) ∈ L2(0, 1)}

In the distributional sense Ty = −y′′ + qy

Example 1: q = αδ(· − 1
2
). Take

σ(x) = 0 for x ≤ 1
2
, σ(x) = α for x > 1

2

then l(q)(y) = −y′′ if x 6= 1
2
and y ∈ dom T means y is continuous at

x = 1
2

and y′(1
2
+)− y′(1

2
−) = αy(1

2
).
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Example 2: q = (x− 1
2
)−1. Restriction-extension theory defines

the corresponding (non-s.a.) operators Tγ, γ ∈ C ∪ {∞} by the
interface conditions y(1

2
+) = y(1

2
−) =: y(1

2
), y′(1

2
+) − y′(1

2
−) = γy(1

2
);

cf. Kurasov (1996), Bodenstorfer a.o. (2000). This corresponds
to

σ(x) =

(
log(1

2
− x) for x ≤ 1

2
,

log(x− 1
2
) + γ for x > 1

2
.
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λn = (πn + λ̃n)
2, (λ̃n) ∈ `2 (5)

Rem.: y′ needn’t be continuous; use the quasi-derivative y[1] :=
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y[1](0)− hy(0) = y(1) = 0
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Spectra of singular non-s-a SL operators

T (q,∞): restriction by the Dirichlet b.c. y(0) = y(1) = 0.

Known: T (q,∞) has a discrete spectrum (λn) and

λn = (πn + λ̃n)
2, (λ̃n) ∈ `2 (5)

Rem.: y′ needn’t be continuous; use the quasi-derivative y[1] :=
y′ − σy instead

T (q, h): restriction by the Robin–Dirichlet b.c.

y[1](0)− hy(0) = y(1) = 0

has a discrete spectrum (µn) with

µn =
`
π(n− 1

2
) + λ̃n

´2
, (λ̃n) ∈ `2 (6)
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Theorem 1. For any sequence (λn)n∈N of complex numbers
satisfying (5) ∃q ∈ W−1

2 (0, 1) s.t. the spectrum of the SL operator
T (q,∞) coincides with (λn).
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Theorem 1. For any sequence (λn)n∈N of complex numbers
satisfying (5) ∃q ∈ W−1

2 (0, 1) s.t. the spectrum of the SL operator
T (q,∞) coincides with (λn).

Similarly, for any sequence (µn)n∈N of complex numbers
satisfying (6) ∃q ∈ W−1

2 (0, 1) and h ∈ C s.t. the spectrum of T (q, h)
coincides with (µn).
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Reconstruction from two spectra

In the non-self-adjoint case there is no simple analogue of
Marchenko’s Theorem A!

Although there are necessary and sufficient conditions for two
sequences to be the Dirichlet and Robin–Dirichlet spectra of a
SL operator, they cannot be formulated in terms of geometric
properties of the very sequences alone.

Theorem 2. Assume that sequences (λn)n∈N and (µn)n∈N of
complex numbers verify (5) and (6) respectively.

Then for every ε > 0 there is a sequence (µ̂n)n∈N such that

(a) the index set I := {n ∈ N | µn 6= µ̂n} is finite and
P

|µ̂n − µn|2 < ε;

(b) there are q ∈ W−1
2 (0, 1) and h ∈ C such that the sequences (λn)n∈N

and (µ̂n)n∈N are spectra of the Sturm–Liouville operators T (q,∞)
and T (q, h) respectively.
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We remark that this theorem does not answer the question
whether for any two disjoint finite sequences in C there are q ∈
W−1

2 (0, 1) and h ∈ C such that the first sequence is in the spectrum
of T (q,∞) and the second in that of T (q, h).
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Reconstruction from norming constants

In the s-a case, the norming constants are

αn :=

Z 1

0

|y(x, λn)|2 dx,

where y(·, λ) solves l(q)y = λy with the initial conditions y(0) =
0, y[1] =

√
λ if h = ∞ and y(0) = 1, y[1](0) = h otherwise.
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+ α̃n, (αn) ∈ `2 (7)

Theorem C. For any sequences of real numbers (λn)n∈N and
(αn)n∈N s.t. λn strictly increase and obey (5) and αn are positive
and obey (7), there is a real-valued q ∈ W−1

2 (0, 1) s.t. λn and αn are
resp. the EV’s and norming constants of the SL operator T (q,∞).

Similarly, if in the above assumptions (λn) is replaced by a
sequence (µn) obeying (6) instead of (5), then the conclusion
holds with a SL operator T (q, h) for some q ∈ W−1

2 (0, 1) and h ∈ R.
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• In the non-s-a case, non-simple EV’s are possible; what are
norming constants then?
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Questions:

• In the non-s-a case, non-simple EV’s are possible; what are
norming constants then?

• Can one reconstruct a SL operator from the spectrum and
norming constants?
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Norming constants in the non-s-a case

Assume that λ is an eigenvalue of T (q, h) of algebraic multiplicity
m; then λ = λn = λn+1 = · · · = λn+m−1 for some n ∈ N. Introduce
the functions yn, . . . , yn+m−1 via

yn+j(x) :=
1

j!

∂jy(x, z)

∂zj

˛̨̨
z=λn

, j = 0, 1, . . . , m− 1.
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Then yn is an EF of T (q, h) corresponding to the EV λn, yn+j ∈
dom T (q, h), and

T (q,∞)yn+j = λnyn+j + yn+j−1,

for j = 1, . . . , m − 1, i.e., the sequence yn, yn+1, . . . , yn+m−1 forms a
chain of eigen- and associated functions of T (q, h) corresponding
to the eigenvalue λn. (Correspond to a Jordan block in a Jordan
basis!)
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Norming constants in the non-s-a case

Assume that λ is an eigenvalue of T (q, h) of algebraic multiplicity
m; then λ = λn = λn+1 = · · · = λn+m−1 for some n ∈ N. Introduce
the functions yn, . . . , yn+m−1 via

yn+j(x) :=
1

j!

∂jy(x, z)

∂zj

˛̨̨
z=λn

, j = 0, 1, . . . , m− 1.

Then yn is an EF of T (q, h) corresponding to the EV λn, yn+j ∈
dom T (q, h), and

T (q,∞)yn+j = λnyn+j + yn+j−1,

for j = 1, . . . , m − 1, i.e., the sequence yn, yn+1, . . . , yn+m−1 forms a
chain of eigen- and associated functions of T (q, h) corresponding
to the eigenvalue λn. (Correspond to a Jordan block in a Jordan
basis!)

In this way we construct the sequence (yk)k∈N, in which yk is
an eigen- or associated function of T (q, h) corresponding to the
eigenvalue λk.
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Norming constants (cont’d)

Put
akl := 〈yk, yl〉,

where 〈 ·, · 〉 is the bilinear (not sesquilinear!) form 〈f, g〉 =R 1

0 f(t)g(t) dt
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Observe that αn 6= 0, as otherwise the function yn would be
orthogonal to yl for all l ∈ N; thus this Hankel matrix is non-
singular.
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Then the Gram matrix A = (akl) has a block-diagonal form,
namely akl = 0 if λk 6= λl. Moreover, the sub-matrix on the diagonal
corresponding to an EV λn = λn+1 = · · · = λn+m−1 of multiplicity m
is a Hankel lower-triangular matrix of size m, i.e.,

akl =

(
0, k, l = n, . . . , n + m− 1, k + l < 2n + m− 1,

αk+l−(n+m−1), k, l = n, . . . , n + m− 1, k + l ≥ 2n + m− 1.

Observe that αn 6= 0, as otherwise the function yn would be
orthogonal to yl for all l ∈ N; thus this Hankel matrix is non-
singular.

We call the number αk, k ∈ N, the norming constant
corresponding to the eigenvalue λk.
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Reconstruction from norming constants

If λk is a simple eigenvalue, then αk =
R 1

0 y2
k(x) dx, which agrees

with the above definition in the self-adjoint case.
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analogue, it still holds generically.

Theorem 3. Assume that complex sequences (λn)n∈N and (αn)n∈N
satisfy the asymptotics of (5) and (7) resp.

Fix an arbitrary ε > 0. Then finitely many numbers αn can be
changed at most by ε so that (λn) is the spectrum and the sequence
of changed αn is the sequence of the corresponding norming
constants, of a SL operator T (q,∞) with some q ∈ W−1

2 (0, 1).

A similar statement holds if instead of the asymptotics (5) that
of (6) is assumed, resulting in a SL operator T (q, h) with some
q ∈ W−1

2 (0, 1) and h ∈ C.
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Regular potentials

Combining the above statements with the criterion on solubility
of the inverse spectral problem for Sturm–Liouville operators with
complex-valued potentials in the space L2(0, 1) [Tkachenko’02], we
get
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Combining the above statements with the criterion on solubility
of the inverse spectral problem for Sturm–Liouville operators with
complex-valued potentials in the space L2(0, 1) [Tkachenko’02], we
get

Corollary. Assume that sequences (λn)n∈N, (µn)n∈N, and (αn)n∈N of
complex numbers are such that

λn = π2n2 + A + λ̃n,

µn = π2(n− 1
2
)2 + B + µ̃n,

αn =
1

2
+

α̃n

n

for some complex A and B and some complex `2-sequences (λ̃n),
(µ̃n), and (α̃n). Then the conclusions of Theorems 1–3 hold true
with a complex-valued q ∈ L2(0, 1).
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Thank you!
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