What spectra can non-self-adjoint Sturm-Liouville operators have?

Rostyslav Hryniv jointly with S. Albeverio (Bonn) and Ya. Mykytyuk (Lviv)

Institute for Applied Problems of Mechanics and Mathematics 79601 Lviv, Ukraine rhryniv@iapmm.lviv.ua

Berlin, 14 December 2006

Assume that $q \in L_2(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_2(0,1)$ given by

Assume that $q \in L_2(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_2(0,1)$ given by

$$Ty = -y'' + qy$$
 (1)
 $y(0) = y(1) = 0$ (2)

Assume that $q \in L_2(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_2(0,1)$ given by

$$Ty = -y'' + qy$$
 (1)
 $y(0) = y(1) = 0$ (2)

Spectral properties:

Assume that $q \in L_2(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_2(0,1)$ given by

$$Ty = -y'' + qy$$
 (1)
 $y(0) = y(1) = 0$ (2)

Spectral properties:

• T is self-adjoint in L_2 (i.e., $(Tu, v) = (u, Tv) \quad \forall u, v \in \text{dom}T$)

Assume that $q \in L_2(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_2(0,1)$ given by

$$Ty = -y'' + qy$$
 (1)
 $y(0) = y(1) = 0$ (2)

Spectral properties:

- T is self-adjoint in L_2 (i.e., $(Tu, v) = (u, Tv) \quad \forall u, v \in \text{dom}T$)
- EV's $\lambda_1 < \lambda_2 < \cdots$ real, countably many, tend to $+\infty$

Assume that $q \in L_2(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_2(0,1)$ given by

$$Ty = -y'' + qy$$
 (1)
 $y(0) = y(1) = 0$ (2)

Spectral properties:

- T is self-adjoint in L_2 (i.e., $(Tu, v) = (u, Tv) \quad \forall u, v \in \text{dom}T$)
- EV's $\lambda_1 < \lambda_2 < \cdots$ real, countably many, tend to $+\infty$

• every EV is geometrically simple (the nullspace of $T-\lambda$ is of dim $\leq 1)$

Assume that $q \in L_2(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_2(0,1)$ given by

$$Ty = -y'' + qy$$
 (1)
 $y(0) = y(1) = 0$ (2)

Spectral properties:

- T is self-adjoint in L_2 (i.e., $(Tu, v) = (u, Tv) \quad \forall u, v \in \text{dom}T$)
- EV's $\lambda_1 < \lambda_2 < \cdots$ real, countably many, tend to $+\infty$

• every EV is geometrically simple (the nullspace of $T - \lambda$ is of dim ≤ 1) and algebraically simple (no Jordan blocks of size $\geq 1 \iff$ no solution to $(T - \lambda)y_0 = 0$, $(T - \lambda)y_1 = y_0$)

The inverse spectral theory for SL operators due to Gelfand, Levitan, Krein, and Marchenko (1950-ies) gave a complete description of the spectra in the s-a case, e.g.

The inverse spectral theory for SL operators due to Gelfand, Levitan, Krein, and Marchenko (1950-ies) gave a complete description of the spectra in the s-a case, e.g.

Theorem A. $\lambda_1 < \lambda_2 < \cdots$ and $\mu_1 < \mu_2 < \cdots$ are Dirichlet resp. Neumann-Dirichlet spectra of a SL expression (1) with $q \in L_2(0,1)$ iff these sequences interlace (i.e., $\mu_n < \lambda_n < \mu_{n+1}$, $\forall n \in \mathbb{N}$) and obey

$$\lambda_n = \pi^2 n^2 + A + a_n, \tag{3}$$

$$\mu_n = \pi^2 (n - \frac{1}{2})^2 + A + b_n \tag{4}$$

with $A \in \mathbb{R}$ and $(a_n), (b_n) \in \ell_2$.

Inverse spectral theory gives an efficient reconstruction algorithm;

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\implies \mu_n \text{ EV's for Robin-Dirichlet b.c.}$ y'(0) - hy(0) = y(1) = 0;

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\implies \mu_n \text{ EV's for Robin-Dirichlet b.c.}$ y'(0) - hy(0) = y(1) = 0;
- also for other b.c., e.g., for Robin-Robin ones;

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\implies \mu_n \text{ EV's for Robin-Dirichlet b.c.}$ y'(0) - hy(0) = y(1) = 0;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_2^n(0,1)$;

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\implies \mu_n \text{ EV's for Robin-Dirichlet b.c.}$ y'(0) - hy(0) = y(1) = 0;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_2^n(0,1)$;
- singular potentials: distributions in $W_2^{-1}(0,1),$ e.g., $\delta(\cdot-a)$ or $1/(\cdot-a)$

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\implies \mu_n \text{ EV's for Robin-Dirichlet b.c.}$ y'(0) - hy(0) = y(1) = 0;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_2^n(0,1)$;
- \bullet singular potentials: distributions in $W_2^{-1}(0,1),$ e.g., $\delta(\cdot-a)$ or $1/(\cdot-a)$

Que.: What if T is non-self-adjoint, i.e., if q is complex-valued?

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\implies \mu_n \text{ EV's for Robin-Dirichlet b.c.}$ y'(0) - hy(0) = y(1) = 0;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_2^n(0,1)$;
- \bullet singular potentials: distributions in $W_2^{-1}(0,1),$ e.g., $\delta(\cdot-a)$ or $1/(\cdot-a)$

Que.: What if T is non-self-adjoint, i.e., if q is complex-valued? **Why?** \mathcal{PT} -symmetric quantum mechanics

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\implies \mu_n \text{ EV's for Robin-Dirichlet b.c.}$ y'(0) - hy(0) = y(1) = 0;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_2^n(0,1)$;
- \bullet singular potentials: distributions in $W_2^{-1}(0,1),$ e.g., $\delta(\cdot-a)$ or $1/(\cdot-a)$

Que.: What if T is non-self-adjoint, i.e., if q is complex-valued?

Why? \mathcal{PT} -symmetric quantum mechanics

Problems: EV's might be non-real and/or non-simple!

Less studied; the strongest result by Tkachenko (2002):

Less studied; the strongest result by Tkachenko (2002):

Theorem B. Let $\Lambda := (\lambda_n)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $(a_n) \in \ell_2$. Then $\exists q \in L_2(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

Less studied; the strongest result by Tkachenko (2002):

Theorem B. Let $\Lambda := (\lambda_n)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $(a_n) \in \ell_2$. Then $\exists q \in L_2(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda = (\lambda_n)$ is the spectrum of T if

Less studied; the strongest result by Tkachenko (2002):

Theorem B. Let $\Lambda := (\lambda_n)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $(a_n) \in \ell_2$. Then $\exists q \in L_2(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda = (\lambda_n)$ is the spectrum of T if (i) $\lambda \in Sp(T) \implies \lambda \in \Lambda$;

Less studied; the strongest result by Tkachenko (2002):

Theorem B. Let $\Lambda := (\lambda_n)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $(a_n) \in \ell_2$. Then $\exists q \in L_2(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda = (\lambda_n)$ is the spectrum of T if (i) $\lambda \in Sp(T) \implies \lambda \in \Lambda$; (ii) λ occurs in Λ m times $\implies \lambda$ is an EV of T of multiplicity m

Less studied; the strongest result by Tkachenko (2002):

Theorem B. Let $\Lambda := (\lambda_n)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $(a_n) \in \ell_2$. Then $\exists q \in L_2(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda = (\lambda_n)$ is the spectrum of T if (i) $\lambda \in Sp(T) \implies \lambda \in \Lambda$; (ii) λ occurs in Λ m times $\implies \lambda$ is an EV of T of multiplicity m

We repeat every EV according to its multiplicity and number them s.t. equal EV's are adjacent and their moduli do not decrease

Less studied; the strongest result by Tkachenko (2002):

Theorem B. Let $\Lambda := (\lambda_n)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $(a_n) \in \ell_2$. Then $\exists q \in L_2(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda = (\lambda_n)$ is the spectrum of T if (i) $\lambda \in Sp(T) \implies \lambda \in \Lambda$; (ii) λ occurs in Λ m times $\implies \lambda$ is an EV of T of multiplicity m

We repeat every EV according to its multiplicity and number them s.t. equal EV's are adjacent and their moduli do not decrease

Cor.: $\forall (\lambda_1, \lambda_2, \dots, \lambda_N) \in \mathbb{C}^N$ s.t. $\lambda_k = \lambda_l$ for no k, l and $\forall (m_1, m_2, \dots, m_N) \in \mathbb{N}^N \exists$ a SL operator (1) s.t. $\lambda_1, \lambda_2, \dots, \lambda_N$ are its Dirichlet EV's of (algebraic) multiplicities m_1, m_2, \dots, m_N resp.

Less studied; the strongest result by Tkachenko (2002):

Theorem B. Let $\Lambda := (\lambda_n)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $(a_n) \in \ell_2$. Then $\exists q \in L_2(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda = (\lambda_n)$ is the spectrum of T if (i) $\lambda \in Sp(T) \implies \lambda \in \Lambda$; (ii) λ occurs in Λ m times $\implies \lambda$ is an EV of T of multiplicity m

We repeat every EV according to its multiplicity and number them s.t. equal EV's are adjacent and their moduli do not decrease

Cor.: $\forall (\lambda_1, \lambda_2, \dots, \lambda_N) \in \mathbb{C}^N$ s.t. $\lambda_k = \lambda_l$ for no k, l and $\forall (m_1, m_2, \dots, m_N) \in \mathbb{N}^N \exists$ a SL operator (1) s.t. $\lambda_1, \lambda_2, \dots, \lambda_N$ are its Dirichlet EV's of (algebraic) multiplicities m_1, m_2, \dots, m_N resp.

Neither Thm B nor Cor implies that **any** complex sequence (λ_n) obeying (3) is the spectrum of some SL operator (1)-(2)!

Our aim is three-fold:

• may the spectrum indeed be arbitrary? (modulo asymptotics)?

Our aim is three-fold:

- may the spectrum indeed be arbitrary? (modulo asymptotics)?
- treat potentials in $W_2^{-1}(0,1)$

Our aim is three-fold:

- may the spectrum indeed be arbitrary? (modulo asymptotics)?
- treat potentials in $W_2^{-1}(0,1)$
- give criterion for solubility and reconstruction algorithm

For real-valued $q \in W_2^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):

For real-valued $q \in W_2^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):

take $\sigma \in L_2(0,1)$ s. t. $q = \sigma'$ and $\int \sigma = 0$ and put

For real-valued $q \in W_2^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):

take $\sigma \in L_2(0,1)$ s. t. $q = \sigma'$ and $\int \sigma = 0$ and put

$$Ty = T(q)y = l(q)(y) := -(y' - \sigma y)' - \sigma y'$$

dom $T = \{y \in W_2^1 \mid y' - \sigma y \in W_1^1, \ l(q)(y) \in L_2(0, 1)\}$

For real-valued $q \in W_2^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):

take $\sigma \in L_2(0,1)$ s. t. $q = \sigma'$ and $\int \sigma = 0$ and put

$$Ty = T(q)y = l(q)(y) := -(y' - \sigma y)' - \sigma y'$$

dom $T = \{y \in W_2^1 \mid y' - \sigma y \in W_1^1, \ l(q)(y) \in L_2(0, 1)\}$

In the distributional sense Ty = -y'' + qy

For real-valued $q \in W_2^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):

take $\sigma \in L_2(0,1)$ s. t. $q = \sigma'$ and $\int \sigma = 0$ and put

$$Ty = T(q)y = l(q)(y) := -(y' - \sigma y)' - \sigma y'$$

dom $T = \{y \in W_2^1 \mid y' - \sigma y \in W_1^1, \ l(q)(y) \in L_2(0, 1)\}$

In the distributional sense Ty = -y'' + qy

Example 1: $q = \alpha \delta(\cdot - \frac{1}{2})$. Take

$$\sigma(x) = 0$$
 for $x \leq \frac{1}{2}$, $\sigma(x) = \alpha$ for $x > \frac{1}{2}$

then l(q)(y) = -y'' if $x \neq \frac{1}{2}$ and $y \in \text{dom } T$ means y is continuous at $x = \frac{1}{2}$ and $y'(\frac{1}{2}+) - y'(\frac{1}{2}-) = \alpha y(\frac{1}{2})$.

Example 2: $q = (x - \frac{1}{2})^{-1}$. Restriction-extension theory defines the corresponding (non-s.a.) operators T_{γ} , $\gamma \in \mathbb{C} \cup \{\infty\}$ by the interface conditions $y(\frac{1}{2}+) = y(\frac{1}{2}-) =: y(\frac{1}{2}), y'(\frac{1}{2}+) - y'(\frac{1}{2}-) = \gamma y(\frac{1}{2});$ cf. Kurasov (1996), Bodenstorfer a.o. (2000). This corresponds to

$$\sigma(x) = \begin{cases} \log(\frac{1}{2} - x) & \text{for } x \leq \frac{1}{2}, \\ \log(x - \frac{1}{2}) + \gamma & \text{for } x > \frac{1}{2}. \end{cases}$$

Spectra of singular non-s-a SL operators

 $T(q,\infty)$: restriction by the Dirichlet b.c. y(0) = y(1) = 0.

 $T(q,\infty)$: restriction by the Dirichlet b.c. y(0) = y(1) = 0. Known: $T(q,\infty)$ has a discrete spectrum (λ_n) and

$$\lambda_n = (\pi n + \tilde{\lambda}_n)^2, \qquad (\tilde{\lambda}_n) \in \ell_2$$
 (5)

 $T(q,\infty)$: restriction by the Dirichlet b.c. y(0) = y(1) = 0. Known: $T(q,\infty)$ has a discrete spectrum (λ_n) and

$$\lambda_n = (\pi n + \tilde{\lambda}_n)^2, \qquad (\tilde{\lambda}_n) \in \ell_2$$
 (5)

Rem.: y' needn't be continuous; use the quasi-derivative $y^{[1]} := y' - \sigma y$ instead

 $T(q,\infty)$: restriction by the Dirichlet b.c. y(0) = y(1) = 0. Known: $T(q,\infty)$ has a discrete spectrum (λ_n) and

$$\lambda_n = (\pi n + \tilde{\lambda}_n)^2, \qquad (\tilde{\lambda}_n) \in \ell_2$$
 (5)

Rem.: y' needn't be continuous; use the quasi-derivative $y^{[1]} := y' - \sigma y$ instead

T(q,h): restriction by the Robin–Dirichlet b.c.

 $y^{[1]}(0) - hy(0) = y(1) = 0$

 $T(q,\infty)$: restriction by the Dirichlet b.c. y(0) = y(1) = 0. Known: $T(q,\infty)$ has a discrete spectrum (λ_n) and

$$\lambda_n = (\pi n + \tilde{\lambda}_n)^2, \qquad (\tilde{\lambda}_n) \in \ell_2$$
 (5)

Rem.: y' needn't be continuous; use the quasi-derivative $y^{[1]} := y' - \sigma y$ instead

T(q,h): restriction by the Robin–Dirichlet b.c.

$$y^{[1]}(0) - hy(0) = y(1) = 0$$

has a discrete spectrum (μ_n) with

$$\mu_n = \left(\pi(n - \frac{1}{2}) + \tilde{\lambda}_n\right)^2, \qquad (\tilde{\lambda}_n) \in \ell_2 \tag{6}$$

Theorem 1. For any sequence $(\lambda_n)_{n \in \mathbb{N}}$ of complex numbers satisfying (5) $\exists q \in W_2^{-1}(0,1)$ s.t. the spectrum of the SL operator $T(q,\infty)$ coincides with (λ_n) .

Theorem 1. For any sequence $(\lambda_n)_{n \in \mathbb{N}}$ of complex numbers satisfying (5) $\exists q \in W_2^{-1}(0,1)$ s.t. the spectrum of the SL operator $T(q,\infty)$ coincides with (λ_n) .

Similarly, for any sequence $(\mu_n)_{n\in\mathbb{N}}$ of complex numbers satisfying (6) $\exists q \in W_2^{-1}(0,1)$ and $h \in \mathbb{C}$ s.t. the spectrum of T(q,h) coincides with (μ_n) .

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin–Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin–Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Theorem 2. Assume that sequences $(\lambda_n)_{n \in \mathbb{N}}$ and $(\mu_n)_{n \in \mathbb{N}}$ of complex numbers verify (5) and (6) respectively.

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin–Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Theorem 2. Assume that sequences $(\lambda_n)_{n \in \mathbb{N}}$ and $(\mu_n)_{n \in \mathbb{N}}$ of complex numbers verify (5) and (6) respectively.

Then for every $\varepsilon > 0$ there is a sequence $(\hat{\mu}_n)_{n \in \mathbb{N}}$ such that

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin–Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Theorem 2. Assume that sequences $(\lambda_n)_{n \in \mathbb{N}}$ and $(\mu_n)_{n \in \mathbb{N}}$ of complex numbers verify (5) and (6) respectively.

Then for every $\varepsilon > 0$ there is a sequence $(\hat{\mu}_n)_{n \in \mathbb{N}}$ such that

(a) the index set $\mathcal{I} := \{n \in \mathbb{N} \mid \mu_n \neq \hat{\mu}_n\}$ is finite and $\sum |\hat{\mu}_n - \mu_n|^2 < \varepsilon$;

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin–Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Theorem 2. Assume that sequences $(\lambda_n)_{n \in \mathbb{N}}$ and $(\mu_n)_{n \in \mathbb{N}}$ of complex numbers verify (5) and (6) respectively.

Then for every $\varepsilon > 0$ there is a sequence $(\hat{\mu}_n)_{n \in \mathbb{N}}$ such that

(a) the index set $\mathcal{I} := \{n \in \mathbb{N} \mid \mu_n \neq \hat{\mu}_n\}$ is finite and $\sum |\hat{\mu}_n - \mu_n|^2 < \varepsilon$;

(b) there are $q \in W_2^{-1}(0,1)$ and $h \in \mathbb{C}$ such that the sequences $(\lambda_n)_{n \in \mathbb{N}}$ and $(\hat{\mu}_n)_{n \in \mathbb{N}}$ are spectra of the Sturm–Liouville operators $T(q,\infty)$ and T(q,h) respectively. We remark that this theorem does not answer the question whether for any two disjoint finite sequences in \mathbb{C} there are $q \in W_2^{-1}(0,1)$ and $h \in \mathbb{C}$ such that the first sequence is in the spectrum of $T(q,\infty)$ and the second in that of T(q,h).

In the s-a case, the norming constants are

$$lpha_n:=\int_0^1 |y(x,\lambda_n)|^2\,dx,$$

where $y(\cdot, \lambda)$ solves $l(q)y = \lambda y$ with the initial conditions $y(0) = 0, y^{[1]} = \sqrt{\lambda}$ if $h = \infty$ and $y(0) = 1, y^{[1]}(0) = h$ otherwise.

In the s-a case, the norming constants are

$$lpha_n := \int_0^1 |y(x,\lambda_n)|^2 \, dx,$$

where $y(\cdot,\lambda)$ solves $l(q)y=\lambda y$ with the initial conditions $y(0)=0,y^{[1]}=\sqrt{\lambda}$ if $h=\infty$ and $y(0)=1,y^{[1]}(0)=h$ otherwise. It is known that

$$\alpha_n = \frac{1}{2} + \tilde{\alpha}_n, \qquad (\alpha_n) \in \ell_2 \tag{7}$$

In the s-a case, the norming constants are

$$lpha_n := \int_0^1 |y(x,\lambda_n)|^2 \, dx,$$

where $y(\cdot,\lambda)$ solves $l(q)y = \lambda y$ with the initial conditions $y(0) = 0, y^{[1]} = \sqrt{\lambda}$ if $h = \infty$ and $y(0) = 1, y^{[1]}(0) = h$ otherwise. It is known that

$$\alpha_n = \frac{1}{2} + \tilde{\alpha}_n, \qquad (\alpha_n) \in \ell_2 \tag{7}$$

Theorem C. For any sequences of real numbers $(\lambda_n)_{n \in \mathbb{N}}$ and $(\alpha_n)_{n \in \mathbb{N}}$ s.t. λ_n strictly increase and obey (5) and α_n are positive and obey (7), there is a real-valued $q \in W_2^{-1}(0,1)$ s.t. λ_n and α_n are resp. the EV's and norming constants of the SL operator $T(q, \infty)$.

In the s-a case, the norming constants are

$$lpha_n := \int_0^1 |y(x,\lambda_n)|^2 \, dx,$$

where $y(\cdot,\lambda)$ solves $l(q)y = \lambda y$ with the initial conditions $y(0) = 0, y^{[1]} = \sqrt{\lambda}$ if $h = \infty$ and $y(0) = 1, y^{[1]}(0) = h$ otherwise. It is known that

$$\alpha_n = \frac{1}{2} + \tilde{\alpha}_n, \qquad (\alpha_n) \in \ell_2 \tag{7}$$

Theorem C. For any sequences of real numbers $(\lambda_n)_{n \in \mathbb{N}}$ and $(\alpha_n)_{n \in \mathbb{N}}$ s.t. λ_n strictly increase and obey (5) and α_n are positive and obey (7), there is a real-valued $q \in W_2^{-1}(0,1)$ s.t. λ_n and α_n are resp. the EV's and norming constants of the SL operator $T(q, \infty)$.

Similarly, if in the above assumptions (λ_n) is replaced by a sequence (μ_n) obeying (6) instead of (5), then the conclusion holds with a SL operator T(q,h) for some $q \in W_2^{-1}(0,1)$ and $h \in \mathbb{R}$.

Questions:

• In the non-s-a case, non-simple EV's are possible; what are norming constants then?

Questions:

- In the non-s-a case, non-simple EV's are possible; what are norming constants then?
- Can one reconstruct a SL operator from the spectrum and norming constants?

Assume that λ is an eigenvalue of T(q, h) of algebraic multiplicity m; then $\lambda = \lambda_n = \lambda_{n+1} = \cdots = \lambda_{n+m-1}$ for some $n \in \mathbb{N}$. Introduce the functions y_n, \ldots, y_{n+m-1} via

$$y_{n+j}(x) := \frac{1}{j!} \frac{\partial^j y(x,z)}{\partial z^j} \Big|_{z=\lambda_n}, \qquad j = 0, 1, \dots, m-1.$$

Assume that λ is an eigenvalue of T(q, h) of algebraic multiplicity m; then $\lambda = \lambda_n = \lambda_{n+1} = \cdots = \lambda_{n+m-1}$ for some $n \in \mathbb{N}$. Introduce the functions y_n, \ldots, y_{n+m-1} via

$$y_{n+j}(x) := \frac{1}{j!} \frac{\partial^j y(x,z)}{\partial z^j} \Big|_{z=\lambda_n}, \qquad j = 0, 1, \dots, m-1.$$

Then y_n is an EF of T(q,h) corresponding to the EV λ_n , $y_{n+j} \in \text{dom } T(q,h)$, and

$$T(q,\infty)y_{n+j} = \lambda_n y_{n+j} + y_{n+j-1},$$

for j = 1, ..., m - 1

Assume that λ is an eigenvalue of T(q, h) of algebraic multiplicity m; then $\lambda = \lambda_n = \lambda_{n+1} = \cdots = \lambda_{n+m-1}$ for some $n \in \mathbb{N}$. Introduce the functions y_n, \ldots, y_{n+m-1} via

$$y_{n+j}(x) := \frac{1}{j!} \frac{\partial^j y(x,z)}{\partial z^j} \Big|_{z=\lambda_n}, \qquad j = 0, 1, \dots, m-1.$$

Then y_n is an EF of T(q,h) corresponding to the EV λ_n , $y_{n+j} \in \text{dom } T(q,h)$, and

$$T(q,\infty)y_{n+j} = \lambda_n y_{n+j} + y_{n+j-1},$$

for j = 1, ..., m - 1, i.e., the sequence $y_n, y_{n+1}, ..., y_{n+m-1}$ forms a chain of eigen- and associated functions of T(q, h) corresponding to the eigenvalue λ_n . (Correspond to a Jordan block in a Jordan basis!)

Assume that λ is an eigenvalue of T(q, h) of algebraic multiplicity m; then $\lambda = \lambda_n = \lambda_{n+1} = \cdots = \lambda_{n+m-1}$ for some $n \in \mathbb{N}$. Introduce the functions y_n, \ldots, y_{n+m-1} via

$$y_{n+j}(x) := \frac{1}{j!} \frac{\partial^j y(x,z)}{\partial z^j} \Big|_{z=\lambda_n}, \qquad j = 0, 1, \dots, m-1.$$

Then y_n is an EF of T(q,h) corresponding to the EV λ_n , $y_{n+j} \in \text{dom } T(q,h)$, and

$$T(q,\infty)y_{n+j} = \lambda_n y_{n+j} + y_{n+j-1},$$

for j = 1, ..., m - 1, i.e., the sequence $y_n, y_{n+1}, ..., y_{n+m-1}$ forms a chain of eigen- and associated functions of T(q, h) corresponding to the eigenvalue λ_n . (Correspond to a Jordan block in a Jordan basis!)

In this way we construct the sequence $(y_k)_{k\in\mathbb{N}}$, in which y_k is an eigen- or associated function of T(q,h) corresponding to the eigenvalue λ_k .

Put

 $a_{kl}:=\langle y_k,y_l\rangle,$ where $\langle\,\cdot,\cdot\,\rangle$ is the bilinear (not sesquilinear!) form $\langle f,g\rangle=\int_0^1 f(t)g(t)\,dt$

Put

 $a_{kl} := \langle y_k, y_l \rangle,$

where $\langle\,\cdot,\cdot\,\rangle$ is the bilinear (not sesquilinear!) form $\langle f,g\rangle=\int_0^1 f(t)g(t)\,dt$

Then the Gram matrix $A = (a_{kl})$ has a block-diagonal form, namely $a_{kl} = 0$ if $\lambda_k \neq \lambda_l$.

Put

 $a_{kl} := \langle y_k, y_l \rangle,$

where $\langle\,\cdot,\cdot\,\rangle$ is the bilinear (not sesquilinear!) form $\langle f,g\rangle=\int_0^1 f(t)g(t)\,dt$

Then the Gram matrix $A = (a_{kl})$ has a block-diagonal form, namely $a_{kl} = 0$ if $\lambda_k \neq \lambda_l$. Moreover, the sub-matrix on the diagonal corresponding to an EV $\lambda_n = \lambda_{n+1} = \cdots = \lambda_{n+m-1}$ of multiplicity mis a Hankel lower-triangular matrix of size m, i.e.,

Put

 $a_{kl} := \langle y_k, y_l \rangle,$

where $\langle\,\cdot,\cdot\,\rangle$ is the bilinear (not sesquilinear!) form $\langle f,g\rangle=\int_0^1 f(t)g(t)\,dt$

Then the Gram matrix $A = (a_{kl})$ has a block-diagonal form, namely $a_{kl} = 0$ if $\lambda_k \neq \lambda_l$. Moreover, the sub-matrix on the diagonal corresponding to an EV $\lambda_n = \lambda_{n+1} = \cdots = \lambda_{n+m-1}$ of multiplicity mis a Hankel lower-triangular matrix of size m, i.e.,

$$a_{kl} = \begin{cases} 0, & k, l = n, \dots, n + m - 1, \\ \alpha_{k+l-(n+m-1)}, & k, l = n, \dots, n + m - 1, \end{cases} \quad k+l < 2n + m - 1, \\ k, l = n, \dots, n + m - 1, & k+l \ge 2n + m - 1. \end{cases}$$

Put

 $a_{kl} := \langle y_k, y_l \rangle,$

where $\langle\,\cdot,\cdot\,\rangle$ is the bilinear (not sesquilinear!) form $\langle f,g\rangle=\int_0^1 f(t)g(t)\,dt$

Then the Gram matrix $A = (a_{kl})$ has a block-diagonal form, namely $a_{kl} = 0$ if $\lambda_k \neq \lambda_l$. Moreover, the sub-matrix on the diagonal corresponding to an EV $\lambda_n = \lambda_{n+1} = \cdots = \lambda_{n+m-1}$ of multiplicity mis a Hankel lower-triangular matrix of size m, i.e.,

$$a_{kl} = \begin{cases} 0, & k, l = n, \dots, n + m - 1, \\ \alpha_{k+l-(n+m-1)}, & k, l = n, \dots, n + m - 1, \end{cases} \quad k+l < 2n + m - 1, \\ k, l = n, \dots, n + m - 1, & k+l \ge 2n + m - 1. \end{cases}$$

Observe that $\alpha_n \neq 0$, as otherwise the function \overline{y}_n would be orthogonal to y_l for all $l \in \mathbb{N}$; thus this Hankel matrix is non-singular.

Put

$$a_{kl} := \langle y_k, y_l \rangle,$$

where $\langle\,\cdot,\cdot\,\rangle$ is the bilinear (not sesquilinear!) form $\langle f,g\rangle=\int_0^1 f(t)g(t)\,dt$

Then the Gram matrix $A = (a_{kl})$ has a block-diagonal form, namely $a_{kl} = 0$ if $\lambda_k \neq \lambda_l$. Moreover, the sub-matrix on the diagonal corresponding to an EV $\lambda_n = \lambda_{n+1} = \cdots = \lambda_{n+m-1}$ of multiplicity mis a Hankel lower-triangular matrix of size m, i.e.,

$$a_{kl} = \begin{cases} 0, & k, l = n, \dots, n+m-1, & k+l < 2n+m-1, \\ \alpha_{k+l-(n+m-1)}, & k, l = n, \dots, n+m-1, & k+l \ge 2n+m-1. \end{cases}$$

Observe that $\alpha_n \neq 0$, as otherwise the function \overline{y}_n would be orthogonal to y_l for all $l \in \mathbb{N}$; thus this Hankel matrix is non-singular.

We call the number α_k , $k \in \mathbb{N}$, the norming constant corresponding to the eigenvalue λ_k .

If λ_k is a simple eigenvalue, then $\alpha_k = \int_0^1 y_k^2(x) dx$, which agrees with the above definition in the self-adjoint case.

If λ_k is a simple eigenvalue, then $\alpha_k = \int_0^1 y_k^2(x) dx$, which agrees with the above definition in the self-adjoint case. The α_k have the same asymptotics as in the self-adjoint case.

If λ_k is a simple eigenvalue, then $\alpha_k = \int_0^1 y_k^2(x) dx$, which agrees with the above definition in the self-adjoint case. The α_k have the same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct analogue, it still holds generically.

If λ_k is a simple eigenvalue, then $\alpha_k = \int_0^1 y_k^2(x) dx$, which agrees with the above definition in the self-adjoint case. The α_k have the same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct analogue, it still holds generically.

Theorem 3. Assume that complex sequences $(\lambda_n)_{n \in \mathbb{N}}$ and $(\alpha_n)_{n \in \mathbb{N}}$ satisfy the asymptotics of (5) and (7) resp.

If λ_k is a simple eigenvalue, then $\alpha_k = \int_0^1 y_k^2(x) dx$, which agrees with the above definition in the self-adjoint case. The α_k have the same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct analogue, it still holds generically.

Theorem 3. Assume that complex sequences $(\lambda_n)_{n \in \mathbb{N}}$ and $(\alpha_n)_{n \in \mathbb{N}}$ satisfy the asymptotics of (5) and (7) resp.

Fix an arbitrary $\varepsilon > 0$. Then finitely many numbers α_n can be changed at most by ε so that (λ_n) is the spectrum and the sequence of changed α_n is the sequence of the corresponding norming constants, of a SL operator $T(q, \infty)$ with some $q \in W_2^{-1}(0, 1)$.

If λ_k is a simple eigenvalue, then $\alpha_k = \int_0^1 y_k^2(x) dx$, which agrees with the above definition in the self-adjoint case. The α_k have the same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct analogue, it still holds generically.

Theorem 3. Assume that complex sequences $(\lambda_n)_{n \in \mathbb{N}}$ and $(\alpha_n)_{n \in \mathbb{N}}$ satisfy the asymptotics of (5) and (7) resp.

Fix an arbitrary $\varepsilon > 0$. Then finitely many numbers α_n can be changed at most by ε so that (λ_n) is the spectrum and the sequence of changed α_n is the sequence of the corresponding norming constants, of a SL operator $T(q, \infty)$ with some $q \in W_2^{-1}(0, 1)$.

A similar statement holds if instead of the asymptotics (5) that of (6) is assumed, resulting in a SL operator T(q,h) with some $q \in W_2^{-1}(0,1)$ and $h \in \mathbb{C}$.

Regular potentials

Combining the above statements with the criterion on solubility of the inverse spectral problem for Sturm–Liouville operators with complex-valued potentials in the space $L_2(0,1)$ [Tkachenko'02], we get

Regular potentials

Combining the above statements with the criterion on solubility of the inverse spectral problem for Sturm–Liouville operators with complex-valued potentials in the space $L_2(0,1)$ [Tkachenko'02], we get

Corollary. Assume that sequences $(\lambda_n)_{n \in \mathbb{N}}$, $(\mu_n)_{n \in \mathbb{N}}$, and $(\alpha_n)_{n \in \mathbb{N}}$ of complex numbers are such that

$$\lambda_n = \pi^2 n^2 + A + \tilde{\lambda}_n,$$

$$\mu_n = \pi^2 (n - \frac{1}{2})^2 + B + \tilde{\mu}_n$$

$$\alpha_n = \frac{1}{2} + \frac{\tilde{\alpha}_n}{n}$$

for some complex A and B and some complex ℓ_2 -sequences (λ_n) , $(\tilde{\mu}_n)$, and $(\tilde{\alpha}_n)$. Then the conclusions of Theorems 1–3 hold true with a complex-valued $q \in L_2(0, 1)$.

Thank you!