What spectra can non-self-adjoint Sturm-Liouville operators have?

Rostyslav Hryniv
jointly with S. Albeverio (Bonn)
and Ya. Mykytyuk (Lviv)

Institute for Applied Problems of Mechanics and Mathematics

79601 Lviv, Ukraine
rhryniv@iapmm.lviv.ua

Berlin, 14 December 2006

Introduction

Assume that $q \in L_{2}(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_{2}(0,1)$ given by

Introduction

Assume that $q \in L_{2}(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_{2}(0,1)$ given by

$$
\begin{align*}
& T y=-y^{\prime \prime}+q y \tag{1}\\
& y(0)=y(1)=0 \tag{2}
\end{align*}
$$

Introduction

Assume that $q \in L_{2}(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_{2}(0,1)$ given by

$$
\begin{align*}
& T y=-y^{\prime \prime}+q y \tag{1}\\
& y(0)=y(1)=0 \tag{2}
\end{align*}
$$

Spectral properties:

Introduction

Assume that $q \in L_{2}(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_{2}(0,1)$ given by

$$
\begin{align*}
& T y=-y^{\prime \prime}+q y \tag{1}\\
& y(0)=y(1)=0 \tag{2}
\end{align*}
$$

Spectral properties:

- $\quad T$ is self-adjoint in L_{2} (i.e., $\left.(T u, v)=(u, T v) \quad \forall u, v \in \operatorname{dom} T\right)$

Introduction

Assume that $q \in L_{2}(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_{2}(0,1)$ given by

$$
\begin{align*}
& T y=-y^{\prime \prime}+q y \tag{1}\\
& y(0)=y(1)=0 \tag{2}
\end{align*}
$$

Spectral properties:

- $\quad T$ is self-adjoint in L_{2} (i.e., $\left.(T u, v)=(u, T v) \quad \forall u, v \in \operatorname{dom} T\right)$

EV's $\lambda_{1}<\lambda_{2}<\cdots$ real, countably many, tend to $+\infty$

Introduction

Assume that $q \in L_{2}(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_{2}(0,1)$ given by

$$
\begin{align*}
& T y=-y^{\prime \prime}+q y \tag{1}\\
& y(0)=y(1)=0 \tag{2}
\end{align*}
$$

Spectral properties:

- $\quad T$ is self-adjoint in L_{2} (i.e., $\left.(T u, v)=(u, T v) \quad \forall u, v \in \operatorname{dom} T\right)$
- EV's $\lambda_{1}<\lambda_{2}<\cdots$ real, countably many, tend to $+\infty$
- every EV is geometrically simple (the nullspace of $T-\lambda$ is of $\operatorname{dim} \leq 1$)

Introduction

Assume that $q \in L_{2}(0,1)$ is real-valued and let T be the Dirichlet Sturm-Liouville operator in $L_{2}(0,1)$ given by

$$
\begin{align*}
& T y=-y^{\prime \prime}+q y \tag{1}\\
& y(0)=y(1)=0 \tag{2}
\end{align*}
$$

Spectral properties:

- $\quad T$ is self-adjoint in L_{2} (i.e., $\left.(T u, v)=(u, T v) \quad \forall u, v \in \operatorname{dom} T\right)$
- EV's $\lambda_{1}<\lambda_{2}<\cdots$ real, countably many, tend to $+\infty$
- every EV is geometrically simple (the nullspace of $T-\lambda$ is of $\operatorname{dim} \leq 1$) and algebraically simple (no Jordan blocks of size $\geq 1 \Longleftrightarrow$ no solution to $\left.(T-\lambda) y_{0}=0,(T-\lambda) y_{1}=y_{0}\right)$

Known results (s-a case)

The inverse spectral theory for SL operators due to Gelfand, Levitan, Krein, and Marchenko (1950-ies) gave a complete description of the spectra in the s-a case, e.g.

Known results (s-a case)

The inverse spectral theory for SL operators due to Gelfand, Levitan, Krein, and Marchenko (1950-ies) gave a complete description of the spectra in the s-a case, e.g.

Theorem A. $\lambda_{1}<\lambda_{2}<\cdots$ and $\mu_{1}<\mu_{2}<\cdots$ are Dirichlet resp. Neumann-Dirichlet spectra of a SL expression (1) with $q \in L_{2}(0,1)$ iff these sequences interlace (i.e., $\mu_{n}<\lambda_{n}<\mu_{n+1}, \forall n \in \mathbb{N}$) and obey

$$
\begin{align*}
& \lambda_{n}=\pi^{2} n^{2}+A+a_{n} \tag{3}\\
& \mu_{n}=\pi^{2}\left(n-\frac{1}{2}\right)^{2}+A+b_{n} \tag{4}
\end{align*}
$$

with $A \in \mathbb{R}$ and $\left(a_{n}\right),\left(b_{n}\right) \in \ell_{2}$.

Remarks:

- Inverse spectral theory gives an efficient reconstruction algorithm;

Remarks:

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\Longrightarrow \mu_{n}$ EV's for Robin-Dirichlet b.c. $y^{\prime}(0)-h y(0)=y(1)=0$;

Remarks:

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\Longrightarrow \mu_{n}$ EV's for Robin-Dirichlet b.c. $y^{\prime}(0)-h y(0)=y(1)=0$;
- also for other b.c., e.g., for Robin-Robin ones;

Remarks:

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\Longrightarrow \mu_{n}$ EV's for Robin-Dirichlet b.c. $y^{\prime}(0)-h y(0)=y(1)=0$;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_{2}^{n}(0,1)$;

Remarks:

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\Longrightarrow \mu_{n}$ EV's for Robin-Dirichlet b.c. $y^{\prime}(0)-h y(0)=y(1)=0$;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_{2}^{n}(0,1)$;
- singular potentials: distributions in $W_{2}^{-1}(0,1)$, e.g., $\delta(\cdot-a)$ or $1 /(\cdot-a)$

Remarks:

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\Longrightarrow \mu_{n}$ EV's for Robin-Dirichlet b.c. $y^{\prime}(0)-h y(0)=y(1)=0$;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_{2}^{n}(0,1)$;
- singular potentials: distributions in $W_{2}^{-1}(0,1)$, e.g., $\delta(\cdot-a)$ or $1 /(\cdot-a)$

Que.: What if T is non-self-adjoint, i.e., if q is complex-valued?

Remarks:

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\Longrightarrow \mu_{n}$ EV's for Robin-Dirichlet b.c. $y^{\prime}(0)-h y(0)=y(1)=0$;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_{2}^{n}(0,1)$;
- singular potentials: distributions in $W_{2}^{-1}(0,1)$, e.g., $\delta(\cdot-a)$ or $1 /(\cdot-a)$

Que.: What if T is non-self-adjoint, i.e., if q is complex-valued?
Why? PI-symmetric quantum mechanics

Remarks:

- Inverse spectral theory gives an efficient reconstruction algorithm;
- different A allowed $\Longrightarrow \mu_{n}$ EV's for Robin-Dirichlet b.c. $y^{\prime}(0)-h y(0)=y(1)=0$;
- also for other b.c., e.g., for Robin-Robin ones;
- potentials from $W_{2}^{n}(0,1)$;
- singular potentials: distributions in $W_{2}^{-1}(0,1)$, e.g., $\delta(\cdot-a)$ or $1 /(\cdot-a)$

Que.: What if T is non-self-adjoint, i.e., if q is complex-valued?
Why? $\mathcal{P T}$-symmetric quantum mechanics
Problems: EV's might be non-real and/or non-simple!

Known results (non-s-a case)

Less studied; the strongest result by Tkachenko (2002):

Known results (non-s-a case)

Less studied; the strongest result by Tkachenko (2002):
Theorem B. Let $\Lambda:=\left(\lambda_{n}\right)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $\left(a_{n}\right) \in \ell_{2}$. Then $\exists q \in L_{2}(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

Known results (non-s-a case)

Less studied; the strongest result by Tkachenko (2002):
Theorem B. Let $\Lambda:=\left(\lambda_{n}\right)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $\left(a_{n}\right) \in \ell_{2}$. Then $\exists q \in L_{2}(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda=\left(\lambda_{n}\right)$ is the spectrum of T if

Known results (non-s-a case)

Less studied; the strongest result by Tkachenko (2002):
Theorem B. Let $\Lambda:=\left(\lambda_{n}\right)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $\left(a_{n}\right) \in \ell_{2}$. Then $\exists q \in L_{2}(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda=\left(\lambda_{n}\right)$ is the spectrum of T if (i) $\lambda \in \operatorname{Sp}(T) \Longrightarrow \lambda \in \Lambda$;

Known results (non-s-a case)

Less studied; the strongest result by Tkachenko (2002):
Theorem B. Let $\Lambda:=\left(\lambda_{n}\right)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $\left(a_{n}\right) \in \ell_{2}$. Then $\exists q \in L_{2}(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda=\left(\lambda_{n}\right)$ is the spectrum of T if
(i) $\lambda \in \operatorname{Sp}(T) \Longrightarrow \lambda \in \Lambda$;
(ii) λ occurs in Λm times $\Longrightarrow \lambda$ is an EV of T of multiplicity m

Known results (non-s-a case)

Less studied; the strongest result by Tkachenko (2002):
Theorem B. Let $\Lambda:=\left(\lambda_{n}\right)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $\left(a_{n}\right) \in \ell_{2}$. Then $\exists q \in L_{2}(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda=\left(\lambda_{n}\right)$ is the spectrum of T if
(i) $\lambda \in \operatorname{Sp}(T) \Longrightarrow \lambda \in \Lambda$;
(ii) λ occurs in Λm times $\Longrightarrow \lambda$ is an EV of T of multiplicity m

We repeat every EV according to its multiplicity and number them s.t. equal EV's are adjacent and their moduli do not decrease

Known results (non-s-a case)

Less studied; the strongest result by Tkachenko (2002):
Theorem B. Let $\Lambda:=\left(\lambda_{n}\right)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $\left(a_{n}\right) \in \ell_{2}$. Then $\exists q \in L_{2}(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda=\left(\lambda_{n}\right)$ is the spectrum of T if
(i) $\lambda \in \operatorname{Sp}(T) \Longrightarrow \lambda \in \Lambda$;
(ii) λ occurs in Λm times $\Longrightarrow \lambda$ is an EV of T of multiplicity m

We repeat every EV according to its multiplicity and number them s.t. equal EV's are adjacent and their moduli do not decrease

Cor.: $\forall\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ s.t. $\lambda_{k}=\lambda_{l}$ for no k, l and $\forall\left(m_{1}, m_{2}, \ldots, m_{N}\right) \in \mathbb{N}^{N} \exists$ a SL operator (1) s.t. $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ are its Dirichlet EV's of (algebraic) multiplicities $m_{1}, m_{2}, \ldots, m_{N}$ resp.

Known results (non-s-a case)

Less studied; the strongest result by Tkachenko (2002):
Theorem B. Let $\Lambda:=\left(\lambda_{n}\right)$ be a sequence of complex numbers that is symmetric w.r.t. \mathbb{R} and obeys (3) for some $A \in \mathbb{R}$ and $\left(a_{n}\right) \in \ell_{2}$. Then $\exists q \in L_{2}(0,1)$ s.t. Λ is the Dirichlet spectrum of the SL operator (1).

We say $\Lambda=\left(\lambda_{n}\right)$ is the spectrum of T if
(i) $\lambda \in \operatorname{Sp}(T) \Longrightarrow \lambda \in \Lambda$;
(ii) λ occurs in Λm times $\Longrightarrow \lambda$ is an EV of T of multiplicity m

We repeat every EV according to its multiplicity and number them s.t. equal EV's are adjacent and their moduli do not decrease

Cor.: $\forall\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ s.t. $\lambda_{k}=\lambda_{l}$ for no k, l and $\forall\left(m_{1}, m_{2}, \ldots, m_{N}\right) \in \mathbb{N}^{N} \exists$ a SL operator (1) s.t. $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ are its Dirichlet EV's of (algebraic) multiplicities $m_{1}, m_{2}, \ldots, m_{N}$ resp.

Neither Thm B nor Cor implies that any complex sequence $\left(\lambda_{n}\right)$ obeying (3) is the spectrum of some SL operator (1)-(2)!

Our aim is three-fold:

- may the spectrum indeed be arbitrary? (modulo asymptotics)?

Our aim is three-fold:

- may the spectrum indeed be arbitrary? (modulo asymptotics)?
- treat potentials in $W_{2}^{-1}(0,1)$

Our aim is three-fold:

- may the spectrum indeed be arbitrary? (modulo asymptotics)?
- treat potentials in $W_{2}^{-1}(0,1)$
- give criterion for solubility and reconstruction algorithm

Singular SL operators

For real-valued $q \in W_{2}^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):

Singular SL operators

For real-valued $q \in W_{2}^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):
take $\sigma \in L_{2}(0,1)$ s. t. $q=\sigma^{\prime}$ and $\int \sigma=0$ and put

Singular SL operators

For real-valued $q \in W_{2}^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):
take $\sigma \in L_{2}(0,1)$ s. t. $q=\sigma^{\prime}$ and $\int \sigma=0$ and put

$$
\begin{gathered}
T y=T(q) y=l(q)(y):=-\left(y^{\prime}-\sigma y\right)^{\prime}-\sigma y^{\prime} \\
\operatorname{dom} T=\left\{y \in W_{2}^{1} \mid y^{\prime}-\sigma y \in W_{1}^{1}, l(q)(y) \in L_{2}(0,1)\right\}
\end{gathered}
$$

Singular SL operators

For real-valued $q \in W_{2}^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):
take $\sigma \in L_{2}(0,1)$ s. t. $q=\sigma^{\prime}$ and $\int \sigma=0$ and put

$$
\begin{gathered}
T y=T(q) y=l(q)(y):=-\left(y^{\prime}-\sigma y\right)^{\prime}-\sigma y^{\prime} \\
\operatorname{dom} T=\left\{y \in W_{2}^{1} \mid y^{\prime}-\sigma y \in W_{1}^{1}, l(q)(y) \in L_{2}(0,1)\right\}
\end{gathered}
$$

In the distributional sense

$$
T y=-y^{\prime \prime}+q y
$$

Singular SL operators

For real-valued $q \in W_{2}^{-1}(0,1)$ define the SL operator T by regularisation method (Shkalikov a.o., 1999):
take $\sigma \in L_{2}(0,1)$ s. t. $q=\sigma^{\prime}$ and $\int \sigma=0$ and put

$$
\begin{gathered}
T y=T(q) y=l(q)(y):=-\left(y^{\prime}-\sigma y\right)^{\prime}-\sigma y^{\prime} \\
\operatorname{dom} T=\left\{y \in W_{2}^{1} \mid y^{\prime}-\sigma y \in W_{1}^{1}, l(q)(y) \in L_{2}(0,1)\right\}
\end{gathered}
$$

In the distributional sense $\quad T y=-y^{\prime \prime}+q y$
Example 1: $q=\alpha \delta\left(\cdot-\frac{1}{2}\right)$. Take

$$
\sigma(x)=0 \quad \text { for } x \leq \frac{1}{2}, \quad \sigma(x)=\alpha \quad \text { for } x>\frac{1}{2}
$$

then $l(q)(y)=-y^{\prime \prime}$ if $x \neq \frac{1}{2}$ and $y \in \operatorname{dom} T$ means y is continuous at $x=\frac{1}{2}$ and $y^{\prime}\left(\frac{1}{2}+\right)-y^{\prime}\left(\frac{1}{2}-\right)=\alpha y\left(\frac{1}{2}\right)$.

Example 2: $q=\left(x-\frac{1}{2}\right)^{-1}$. Restriction-extension theory defines the corresponding (non-s.a.) operators $T_{\gamma}, \gamma \in \mathbb{C} \cup\{\infty\}$ by the interface conditions $y\left(\frac{1}{2}+\right)=y\left(\frac{1}{2}-\right)=: y\left(\frac{1}{2}\right), y^{\prime}\left(\frac{1}{2}+\right)-y^{\prime}\left(\frac{1}{2}-\right)=\gamma y\left(\frac{1}{2}\right)$; cf. Kurasov (1996), Bodenstorfer a.o. (2000). This corresponds to

$$
\sigma(x)= \begin{cases}\log \left(\frac{1}{2}-x\right) & \text { for } x \leq \frac{1}{2} \\ \log \left(x-\frac{1}{2}\right)+\gamma & \text { for } x>\frac{1}{2}\end{cases}
$$

Spectra of singular non-s-a SL operators

$T(q, \infty)$: restriction by the Dirichlet b.c. $y(0)=y(1)=0$.

Spectra of singular non-s-a SL operators

$T(q, \infty)$: restriction by the Dirichlet b.c. $y(0)=y(1)=0$.
Known: $T(q, \infty)$ has a discrete spectrum $\left(\lambda_{n}\right)$ and

$$
\begin{equation*}
\lambda_{n}=\left(\pi n+\tilde{\lambda}_{n}\right)^{2}, \quad\left(\tilde{\lambda}_{n}\right) \in \ell_{2} \tag{5}
\end{equation*}
$$

Spectra of singular non-s-a SL operators

$T(q, \infty)$: restriction by the Dirichlet b.c. $y(0)=y(1)=0$.
Known: $T(q, \infty)$ has a discrete spectrum $\left(\lambda_{n}\right)$ and

$$
\begin{equation*}
\lambda_{n}=\left(\pi n+\tilde{\lambda}_{n}\right)^{2}, \quad\left(\tilde{\lambda}_{n}\right) \in \ell_{2} \tag{5}
\end{equation*}
$$

Rem.: y^{\prime} needn't be continuous; use the quasi-derivative $y^{[1]}:=$ $y^{\prime}-\sigma y$ instead

Spectra of singular non-s-a SL operators

$T(q, \infty)$: restriction by the Dirichlet b.c. $y(0)=y(1)=0$.
Known: $T(q, \infty)$ has a discrete spectrum $\left(\lambda_{n}\right)$ and

$$
\begin{equation*}
\lambda_{n}=\left(\pi n+\tilde{\lambda}_{n}\right)^{2}, \quad\left(\tilde{\lambda}_{n}\right) \in \ell_{2} \tag{5}
\end{equation*}
$$

Rem.: y^{\prime} needn't be continuous; use the quasi-derivative $y^{[1]}:=$ $y^{\prime}-\sigma y$ instead
$T(q, h)$: restriction by the Robin-Dirichlet b.c.

$$
y^{[1]}(0)-h y(0)=y(1)=0
$$

Spectra of singular non-s-a SL operators

$T(q, \infty)$: restriction by the Dirichlet b.c. $y(0)=y(1)=0$.
Known: $T(q, \infty)$ has a discrete spectrum $\left(\lambda_{n}\right)$ and

$$
\begin{equation*}
\lambda_{n}=\left(\pi n+\tilde{\lambda}_{n}\right)^{2}, \quad\left(\tilde{\lambda}_{n}\right) \in \ell_{2} \tag{5}
\end{equation*}
$$

Rem.: y^{\prime} needn't be continuous; use the quasi-derivative $y^{[1]}:=$ $y^{\prime}-\sigma y$ instead
$T(q, h)$: restriction by the Robin-Dirichlet b.c.

$$
y^{[1]}(0)-h y(0)=y(1)=0
$$

has a discrete spectrum (μ_{n}) with

$$
\begin{equation*}
\mu_{n}=\left(\pi\left(n-\frac{1}{2}\right)+\tilde{\lambda}_{n}\right)^{2}, \quad\left(\tilde{\lambda}_{n}\right) \in \ell_{2} \tag{6}
\end{equation*}
$$

Theorem 1. For any sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of complex numbers satisfying (5) $\exists q \in W_{2}^{-1}(0,1)$ s.t. the spectrum of the SL operator $T(q, \infty)$ coincides with $\left(\lambda_{n}\right)$.

Theorem 1. For any sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of complex numbers satisfying (5) $\exists q \in W_{2}^{-1}(0,1)$ s.t. the spectrum of the SL operator $T(q, \infty)$ coincides with $\left(\lambda_{n}\right)$.
Similarly, for any sequence $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ of complex numbers satisfying (6) $\exists q \in W_{2}^{-1}(0,1)$ and $h \in \mathbb{C}$ s.t. the spectrum of $T(q, h)$ coincides with $\left(\mu_{n}\right)$.

Reconstruction from two spectra

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Reconstruction from two spectra

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin-Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Reconstruction from two spectra

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin-Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Theorem 2. Assume that sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ of complex numbers verify (5) and (6) respectively.

Reconstruction from two spectra

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin-Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Theorem 2. Assume that sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ of complex numbers verify (5) and (6) respectively.

Then for every $\varepsilon>0$ there is a sequence $\left(\hat{\mu}_{n}\right)_{n \in \mathbb{N}}$ such that

Reconstruction from two spectra

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin-Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Theorem 2. Assume that sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ of complex numbers verify (5) and (6) respectively.

Then for every $\varepsilon>0$ there is a sequence $\left(\hat{\mu}_{n}\right)_{n \in \mathbb{N}}$ such that
(a) the index set $\mathcal{I}:=\left\{n \in \mathbb{N} \mid \mu_{n} \neq \hat{\mu}_{n}\right\}$ is finite and $\sum\left|\hat{\mu}_{n}-\mu_{n}\right|^{2}<\varepsilon$;

Reconstruction from two spectra

In the non-self-adjoint case there is no simple analogue of Marchenko's Theorem A!

Although there are necessary and sufficient conditions for two sequences to be the Dirichlet and Robin-Dirichlet spectra of a SL operator, they cannot be formulated in terms of geometric properties of the very sequences alone.

Theorem 2. Assume that sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ of complex numbers verify (5) and (6) respectively.

Then for every $\varepsilon>0$ there is a sequence $\left(\hat{\mu}_{n}\right)_{n \in \mathbb{N}}$ such that
(a) the index set $\mathcal{I}:=\left\{n \in \mathbb{N} \mid \mu_{n} \neq \hat{\mu}_{n}\right\}$ is finite and $\sum\left|\hat{\mu}_{n}-\mu_{n}\right|^{2}<\varepsilon$;
(b) there are $q \in W_{2}^{-1}(0,1)$ and $h \in \mathbb{C}$ such that the sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\hat{\mu}_{n}\right)_{n \in \mathbb{N}}$ are spectra of the Sturm-Liouville operators $T(q, \infty)$ and $T(q, h)$ respectively.

We remark that this theorem does not answer the question whether for any two disjoint finite sequences in \mathbb{C} there are $q \in$ $W_{2}^{-1}(0,1)$ and $h \in \mathbb{C}$ such that the first sequence is in the spectrum of $T(q, \infty)$ and the second in that of $T(q, h)$.

Reconstruction from norming constants

In the s-a case, the norming constants are

$$
\alpha_{n}:=\int_{0}^{1}\left|y\left(x, \lambda_{n}\right)\right|^{2} d x
$$

where $y(\cdot, \lambda)$ solves $l(q) y=\lambda y$ with the initial conditions $y(0)=$ $0, y^{[1]}=\sqrt{\lambda}$ if $h=\infty$ and $y(0)=1, y^{[1]}(0)=h$ otherwise.

Reconstruction from norming constants

In the s-a case, the norming constants are

$$
\alpha_{n}:=\int_{0}^{1}\left|y\left(x, \lambda_{n}\right)\right|^{2} d x
$$

where $y(\cdot, \lambda)$ solves $l(q) y=\lambda y$ with the initial conditions $y(0)=$ $0, y^{[1]}=\sqrt{\lambda}$ if $h=\infty$ and $y(0)=1, y^{[1]}(0)=h$ otherwise. It is known that

$$
\begin{equation*}
\alpha_{n}=\frac{1}{2}+\tilde{\alpha}_{n}, \quad\left(\alpha_{n}\right) \in \ell_{2} \tag{7}
\end{equation*}
$$

Reconstruction from norming constants

In the s-a case, the norming constants are

$$
\alpha_{n}:=\int_{0}^{1}\left|y\left(x, \lambda_{n}\right)\right|^{2} d x
$$

where $y(\cdot, \lambda)$ solves $l(q) y=\lambda y$ with the initial conditions $y(0)=$ $0, y^{[1]}=\sqrt{\lambda}$ if $h=\infty$ and $y(0)=1, y^{[1]}(0)=h$ otherwise. It is known that

$$
\begin{equation*}
\alpha_{n}=\frac{1}{2}+\tilde{\alpha}_{n}, \quad\left(\alpha_{n}\right) \in \ell_{2} \tag{7}
\end{equation*}
$$

Theorem C. For any sequences of real numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ s.t. λ_{n} strictly increase and obey (5) and α_{n} are positive and obey (7), there is a real-valued $q \in W_{2}^{-1}(0,1)$ s.t. λ_{n} and α_{n} are resp. the EV's and norming constants of the SL operator $T(q, \infty)$.

Reconstruction from norming constants

In the s-a case, the norming constants are

$$
\alpha_{n}:=\int_{0}^{1}\left|y\left(x, \lambda_{n}\right)\right|^{2} d x
$$

where $y(\cdot, \lambda)$ solves $l(q) y=\lambda y$ with the initial conditions $y(0)=$ $0, y^{[1]}=\sqrt{\lambda}$ if $h=\infty$ and $y(0)=1, y^{[1]}(0)=h$ otherwise. It is known that

$$
\begin{equation*}
\alpha_{n}=\frac{1}{2}+\tilde{\alpha}_{n}, \quad\left(\alpha_{n}\right) \in \ell_{2} \tag{7}
\end{equation*}
$$

Theorem C. For any sequences of real numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ s.t. λ_{n} strictly increase and obey (5) and α_{n} are positive and obey (7), there is a real-valued $q \in W_{2}^{-1}(0,1)$ s.t. λ_{n} and α_{n} are resp. the EV's and norming constants of the SL operator $T(q, \infty)$.

Similarly, if in the above assumptions $\left(\lambda_{n}\right)$ is replaced by a sequence (μ_{n}) obeying (6) instead of (5), then the conclusion holds with a SL operator $T(q, h)$ for some $q \in W_{2}^{-1}(0,1)$ and $h \in \mathbb{R}$.

Questions:

- In the non-s-a case, non-simple EV's are possible; what are norming constants then?

Questions:

- In the non-s-a case, non-simple EV's are possible; what are norming constants then?
- Can one reconstruct a SL operator from the spectrum and norming constants?

Norming constants in the non-s-a case

Assume that λ is an eigenvalue of $T(q, h)$ of algebraic multiplicity m; then $\lambda=\lambda_{n}=\lambda_{n+1}=\cdots=\lambda_{n+m-1}$ for some $n \in \mathbb{N}$. Introduce the functions y_{n}, \ldots, y_{n+m-1} via

$$
y_{n+j}(x):=\left.\frac{1}{j!} \frac{\partial^{j} y(x, z)}{\partial z^{j}}\right|_{z=\lambda_{n}}, \quad j=0,1, \ldots, m-1
$$

Norming constants in the non-s-a case

Assume that λ is an eigenvalue of $T(q, h)$ of algebraic multiplicity m; then $\lambda=\lambda_{n}=\lambda_{n+1}=\cdots=\lambda_{n+m-1}$ for some $n \in \mathbb{N}$. Introduce the functions y_{n}, \ldots, y_{n+m-1} via

$$
y_{n+j}(x):=\left.\frac{1}{j!} \frac{\partial^{j} y(x, z)}{\partial z^{j}}\right|_{z=\lambda_{n}}, \quad j=0,1, \ldots, m-1 .
$$

Then y_{n} is an EF of $T(q, h)$ corresponding to the EV $\lambda_{n}, y_{n+j} \in$ $\operatorname{dom} T(q, h)$, and

$$
T(q, \infty) y_{n+j}=\lambda_{n} y_{n+j}+y_{n+j-1},
$$

for $j=1, \ldots, m-1$

Norming constants in the non-s-a case

Assume that λ is an eigenvalue of $T(q, h)$ of algebraic multiplicity m; then $\lambda=\lambda_{n}=\lambda_{n+1}=\cdots=\lambda_{n+m-1}$ for some $n \in \mathbb{N}$. Introduce the functions y_{n}, \ldots, y_{n+m-1} via

$$
y_{n+j}(x):=\left.\frac{1}{j!} \frac{\partial^{j} y(x, z)}{\partial z^{j}}\right|_{z=\lambda_{n}}, \quad j=0,1, \ldots, m-1 .
$$

Then y_{n} is an EF of $T(q, h)$ corresponding to the EV $\lambda_{n}, y_{n+j} \in$ $\operatorname{dom} T(q, h)$, and

$$
T(q, \infty) y_{n+j}=\lambda_{n} y_{n+j}+y_{n+j-1},
$$

for $j=1, \ldots, m-1$, i.e., the sequence $y_{n}, y_{n+1}, \ldots, y_{n+m-1}$ forms a chain of eigen- and associated functions of $T(q, h)$ corresponding to the eigenvalue λ_{n}. (Correspond to a Jordan block in a Jordan basis!)

Norming constants in the non-s-a case

Assume that λ is an eigenvalue of $T(q, h)$ of algebraic multiplicity m; then $\lambda=\lambda_{n}=\lambda_{n+1}=\cdots=\lambda_{n+m-1}$ for some $n \in \mathbb{N}$. Introduce the functions y_{n}, \ldots, y_{n+m-1} via

$$
y_{n+j}(x):=\left.\frac{1}{j!} \frac{\partial^{j} y(x, z)}{\partial z^{j}}\right|_{z=\lambda_{n}}, \quad j=0,1, \ldots, m-1 .
$$

Then y_{n} is an EF of $T(q, h)$ corresponding to the EV $\lambda_{n}, y_{n+j} \in$ $\operatorname{dom} T(q, h)$, and

$$
T(q, \infty) y_{n+j}=\lambda_{n} y_{n+j}+y_{n+j-1},
$$

for $j=1, \ldots, m-1$, i.e., the sequence $y_{n}, y_{n+1}, \ldots, y_{n+m-1}$ forms a chain of eigen- and associated functions of $T(q, h)$ corresponding to the eigenvalue λ_{n}. (Correspond to a Jordan block in a Jordan basis!)

In this way we construct the sequence $\left(y_{k}\right)_{k \in \mathbb{N}}$, in which y_{k} is an eigen- or associated function of $T(q, h)$ corresponding to the eigenvalue λ_{k}.

Norming constants (cont'd)

> Put $$
a_{k l}:=\left\langle y_{k}, y_{l}\right\rangle,
$$ where $\langle\cdot, \cdot\rangle$ is the bilinear (not sesquilinear!) form $\langle f, g\rangle=$ $\int_{0}^{1} f(t) g(t) d t$

Norming constants (cont'd)

Put

$$
a_{k l}:=\left\langle y_{k}, y_{l}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is the bilinear (not sesquilinear!) form $\langle f, g\rangle=$ $\int_{0}^{1} f(t) g(t) d t$

Then the Gram matrix $A=\left(a_{k l}\right)$ has a block-diagonal form, namely $a_{k l}=0$ if $\lambda_{k} \neq \lambda_{l}$.

Norming constants (cont'd)

Put

$$
a_{k l}:=\left\langle y_{k}, y_{l}\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ is the bilinear (not sesquilinear!) form $\langle f, g\rangle=$ $\int_{0}^{1} f(t) g(t) d t$

Then the Gram matrix $A=\left(a_{k l}\right)$ has a block-diagonal form, namely $a_{k l}=0$ if $\lambda_{k} \neq \lambda_{l}$. Moreover, the sub-matrix on the diagonal corresponding to an EV $\lambda_{n}=\lambda_{n+1}=\cdots=\lambda_{n+m-1}$ of multiplicity m is a Hankel lower-triangular matrix of size m, i.e.,

Norming constants (cont'd)

Put

$$
a_{k l}:=\left\langle y_{k}, y_{l}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is the bilinear (not sesquilinear!) form $\langle f, g\rangle=$ $\int_{0}^{1} f(t) g(t) d t$

Then the Gram matrix $A=\left(a_{k l}\right)$ has a block-diagonal form, namely $a_{k l}=0$ if $\lambda_{k} \neq \lambda_{l}$. Moreover, the sub-matrix on the diagonal corresponding to an EV $\lambda_{n}=\lambda_{n+1}=\cdots=\lambda_{n+m-1}$ of multiplicity m is a Hankel lower-triangular matrix of size m, i.e.,

$$
a_{k l}=\left\{\begin{array}{lll}
0, & k, l=n, \ldots, n+m-1, & k+l<2 n+m-1, \\
\alpha_{k+l-(n+m-1)}, & k, l=n, \ldots, n+m-1, & k+l \geq 2 n+m-1 .
\end{array}\right.
$$

Norming constants (cont'd)

Put

$$
a_{k l}:=\left\langle y_{k}, y_{l}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is the bilinear (not sesquilinear!) form $\langle f, g\rangle=$ $\int_{0}^{1} f(t) g(t) d t$

Then the Gram matrix $A=\left(a_{k l}\right)$ has a block-diagonal form, namely $a_{k l}=0$ if $\lambda_{k} \neq \lambda_{l}$. Moreover, the sub-matrix on the diagonal corresponding to an EV $\lambda_{n}=\lambda_{n+1}=\cdots=\lambda_{n+m-1}$ of multiplicity m is a Hankel lower-triangular matrix of size m, i.e.,
$a_{k l}=\left\{\begin{array}{lll}0, & k, l=n, \ldots, n+m-1, & k+l<2 n+m-1, \\ \alpha_{k+l-(n+m-1)}, & k, l=n, \ldots, n+m-1, & k+l \geq 2 n+m-1 .\end{array}\right.$
Observe that $\alpha_{n} \neq 0$, as otherwise the function \bar{y}_{n} would be orthogonal to y_{l} for all $l \in \mathbb{N}$; thus this Hankel matrix is nonsingular.

Norming constants (cont'd)

Put

$$
a_{k l}:=\left\langle y_{k}, y_{l}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is the bilinear (not sesquilinear!) form $\langle f, g\rangle=$ $\int_{0}^{1} f(t) g(t) d t$

Then the Gram matrix $A=\left(a_{k l}\right)$ has a block-diagonal form, namely $a_{k l}=0$ if $\lambda_{k} \neq \lambda_{l}$. Moreover, the sub-matrix on the diagonal corresponding to an EV $\lambda_{n}=\lambda_{n+1}=\cdots=\lambda_{n+m-1}$ of multiplicity m is a Hankel lower-triangular matrix of size m, i.e.,
$a_{k l}=\left\{\begin{array}{lll}0, & k, l=n, \ldots, n+m-1, & k+l<2 n+m-1, \\ \alpha_{k+l-(n+m-1)}, & k, l=n, \ldots, n+m-1, & k+l \geq 2 n+m-1 .\end{array}\right.$
Observe that $\alpha_{n} \neq 0$, as otherwise the function \bar{y}_{n} would be orthogonal to y_{l} for all $l \in \mathbb{N}$; thus this Hankel matrix is nonsingular.

We call the number $\alpha_{k}, k \in \mathbb{N}$, the norming constant corresponding to the eigenvalue λ_{k}.

Reconstruction from norming constants

If λ_{k} is a simple eigenvalue, then $\alpha_{k}=\int_{0}^{1} y_{k}^{2}(x) d x$, which agrees with the above definition in the self-adjoint case.

Reconstruction from norming constants

If λ_{k} is a simple eigenvalue, then $\alpha_{k}=\int_{0}^{1} y_{k}^{2}(x) d x$, which agrees with the above definition in the self-adjoint case. The α_{k} have the same asymptotics as in the self-adjoint case.

Reconstruction from norming constants

If λ_{k} is a simple eigenvalue, then $\alpha_{k}=\int_{0}^{1} y_{k}^{2}(x) d x$, which agrees with the above definition in the self-adjoint case. The α_{k} have the same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct analogue, it still holds generically.

Reconstruction from norming constants

If λ_{k} is a simple eigenvalue, then $\alpha_{k}=\int_{0}^{1} y_{k}^{2}(x) d x$, which agrees with the above definition in the self-adjoint case. The α_{k} have the same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct analogue, it still holds generically.

Theorem 3. Assume that complex sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ satisfy the asymptotics of (5) and (7) resp.

Reconstruction from norming constants

If λ_{k} is a simple eigenvalue, then $\alpha_{k}=\int_{0}^{1} y_{k}^{2}(x) d x$, which agrees with the above definition in the self-adjoint case. The α_{k} have the same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct analogue, it still holds generically.

Theorem 3. Assume that complex sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ satisfy the asymptotics of (5) and (7) resp.

Fix an arbitrary $\varepsilon>0$. Then finitely many numbers α_{n} can be changed at most by ε so that (λ_{n}) is the spectrum and the sequence of changed α_{n} is the sequence of the corresponding norming constants, of a SL operator $T(q, \infty)$ with some $q \in W_{2}^{-1}(0,1)$.

Reconstruction from norming constants

If λ_{k} is a simple eigenvalue, then $\alpha_{k}=\int_{0}^{1} y_{k}^{2}(x) d x$, which agrees with the above definition in the self-adjoint case. The α_{k} have the same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct analogue, it still holds generically.

Theorem 3. Assume that complex sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ satisfy the asymptotics of (5) and (7) resp.

Fix an arbitrary $\varepsilon>0$. Then finitely many numbers α_{n} can be changed at most by ε so that (λ_{n}) is the spectrum and the sequence of changed α_{n} is the sequence of the corresponding norming constants, of a SL operator $T(q, \infty)$ with some $q \in W_{2}^{-1}(0,1)$.

A similar statement holds if instead of the asymptotics (5) that of (6) is assumed, resulting in a SL operator $T(q, h)$ with some $q \in W_{2}^{-1}(0,1)$ and $h \in \mathbb{C}$.

Regular potentials

Combining the above statements with the criterion on solubility of the inverse spectral problem for Sturm-Liouville operators with complex-valued potentials in the space $L_{2}(0,1)$ [Tkachenko'02], we get

Regular potentials

Combining the above statements with the criterion on solubility of the inverse spectral problem for Sturm-Liouville operators with complex-valued potentials in the space $L_{2}(0,1)$ [Tkachenko'02], we get

Corollary. Assume that sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}},\left(\mu_{n}\right)_{n \in \mathbb{N}}$, and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ of complex numbers are such that

$$
\begin{aligned}
& \lambda_{n}=\pi^{2} n^{2}+A+\tilde{\lambda}_{n}, \\
& \mu_{n}=\pi^{2}\left(n-\frac{1}{2}\right)^{2}+B+\tilde{\mu}_{n}, \\
& \alpha_{n}=\frac{1}{2}+\frac{\tilde{\alpha}_{n}}{n}
\end{aligned}
$$

for some complex A and B and some complex ℓ_{2}-sequences $\left(\tilde{\lambda}_{n}\right)$, $\left(\tilde{\mu}_{n}\right)$, and $\left(\tilde{\alpha}_{n}\right)$. Then the conclusions of Theorems 1 -3 hold true with a complex-valued $q \in L_{2}(0,1)$.

Thank you!

