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Introduction

Assume that g € L»(0,1) is real-valued and let T be the Dirichlet
Sturm—Liouville operator in Ly(0,1) given by

Ty=—y" +qy (1)
y(0) =y(1) =0 (2)

Spectral properties:
o T is self-adjoint in Ly (i.e., (Tu,v) = (u,Tv) V u,v € domT)
° EV's A1 < XAy < --- real, countably many, tend to +oco

o every EV is geometrically simple (the nullspace of T'— X\ is of
dim < 1) and algebraically simple (no Jordan blocks of size > 1 <—
no solution to (T"— X)yo =0, (T — MNy1 = yo)
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Known results (s-a case)

The inverse spectral theory for SL operators due to Gelfand,
Levitan, Krein, and Marchenko (1950-ies) gave a complete
description of the spectra in the s-a case, e.q.

Theorem A. M\ < A < --- and u; < pus < --- are Dirichlet resp.
Neumann-Dirichlet spectra of a SL expression (1) with q € L2(0,1)
iff these sequences interlace (i.e., pun, < A\n < pn+1, Vn € N) and obey

A = 0%+ A+ an, (3)
pn = 7 (n —3)* + A+ by (4)

with A € R and (an), (bn) € lo.
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Remarks:

e Inverse spectral theory gives an efficient reconstruction
algorithm;

e different A allowed — u, EV's for Robin—Dirichlet b.c.
y'(0) — hy(0) = y(1) = 0;

e also for other b.c., e.g., for Robin—Robin ones;
e potentials from W (0,1);

e singular potentials: distributions in W, '(0,1), e.g., §(- — a) or
1/(- —a)

Que.: What if T is non-self-adjoint, i.e., if g is complex-valued?

Why? P7T-symmetric quantum mechanics

Problems: EV's might be non-real and/or non-simplel!
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Known results (non-s-a case)
Less studied; the strongest result by Tkachenko (2002):

Theorem B. Let A := ()\,) be a sequence of complex numbers
that is symmetric w.r.t. R and obeys (3) for some A € R and
(an) € b3. Then 3q € L2(0,1) s.t. A is the Dirichlet spectrum of the
SL operator ([1).

We say A = (\,) is the spectrum of T if
() AeSp(T) =— XeA;
(ii) A occurs in A m times — X is an EV of T" of multiplicity m

We repeat every EV according to its multiplicity and number
them s.t. equal EV's are adjacent and their moduli do not decrease

Cor.: V(AyXe,....Ay) € CVN sit. X\ = )\ for no k,I and
Y (m1,me,...,my) € NV 3 a SL operator (1)) s.t. A1, Xe,..., Ay are
its Dirichlet EV's of (algebraic) multiplicities mi, mo, ..., my resp.

Neither Thm B nor Cor implies that any complex sequence (\,)
obeying (3) is the spectrum of some SL operator (1)—(2))!
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Our aim is three-fold:

e may the spectrum indeed be arbitrary? (modulo asymptotics)?
e treat potentials in W, '(0,1)

e give criterion for solubility and reconstruction algorithm
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Singular SL operators

For real-valued ¢ € W, '(0,1) define the SL operator T by
regularisation method (Shkalikov a.o., 1999):

take o € L»(0,1) s. t. ¢g=0" and [ o =0 and put

Ty =T(q)y =l(q)(y) := -y —oy) — oy
domT ={ye W, |y —oy € W}, l(q)(y) € L2(0,1)}

In the distributional sense Ty = —vy" + qu

Example 1: ¢ = ad(- —3). Take

o(x) =0 for:::g%, o(r) =« fora:>%

then l(q)(y) = —y" if x # % and y € dom T means y is continuous at
z =5 and y(G+) —v'(5-) = ay(3)-



Example 2: g = (z —% —1. Restriction-extension theory defines

the corresponding (non-s.a.) operators 7,, v € CU {c0} by the
interface conditions y(+) = y(3—) = ¥(3), ¥G+) —v'G—) = 1Ww(3);
cf. Kurasov (1996), Bodenstorfer a.o. (2000). This corresponds
to

1 1

log(x — %) + 7 for = > %
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Spectra of singular non-s-a SL operators

T(q,00): restriction by the Dirichlet b.c. y(0) =y(1) = 0.

Known: T'(q,00) has a discrete spectrum (A,) and
An = (1 + An)?, (An) € £ (5)

Rem.: ¢y’ needn’'t be continuous; use the quasi-derivative ylll :=
y' — oy instead

T(q,h): restriction by the Robin—Dirichlet b.c.

y(0) — hy(0) = y(1) =0

has a discrete spectrum (u,) with

po=(r(n=H+X)"% ()€l (6)
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Theorem 1. For any sequence (\)neny Of complex numbers
satisfying (B) 3¢ € W, '(0,1) s.t. the spectrum of the SL operator
T(q,00) coincides with (\,).

Similarly, for any sequence (un)nen OF complex numbers
satisfying (6]) 3¢ € W, '(0,1) and h € C s.t. the spectrum of T(q, h)
coincides with ().
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Reconstruction from two spectra

In the non-self-adjoint case there is no simple analogue of
Marchenko's Theorem Al

Although there are necessary and sufficient conditions for two
sequences to be the Dirichlet and Robin—Dirichlet spectra of a
SL operator, they cannot be formulated in terms of geometric

properties of the very sequences alone.

Theorem 2. Assume that sequences (M\,)nen and (pn)nen OF
complex numbers verify (5)) and (|6)) respectively.

Then for every € > 0 there is a sequence (fi,)nen SUCh that

(a) the index set 7 := {n € N | u, # fin} is finite and > |fin — pn|® < €;

(b) there are q € W, '(0,1) and h € C such that the sequences (\,)nen
and (fin)nen are spectra of the Sturm—Liouville operators T'(q, co)

and T(q,h) respectively.



We remark that this theorem does not answer the question
whether for any two disjoint finite sequences in C there are q €
W, '(0,1) and h € C such that the first sequence is in the spectrum
of T'(q,00) and the second in that of T'(q, h).
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Reconstruction from norming constants

In the s-a case, the norming constants are

1
Oty ::/ ly(x, A\n)|? dx
0

where y(-,\) solves I(q)y = Ay with the initial conditions y(0) =
0,y = VX if h = 0o and y(O) = 1,y(0) = h otherwise. It is known
that

O = % + Gin, (o) € £y (7)

Theorem C. For any sequences of real numbers (A\,)nen and
(an)nen S.t. N\, Strictly increase and obey (B) and o, are positive
and obey (7)), there is a real-valued q € W, '(0,1) s.t. A\, and «,, are
resp. the EV'’s and norming constants of the SL operator T (q,o0).

Similarly, if in the above assumptions (\,) is replaced by a
sequence (u,) obeying (6]) instead of (5), then the conclusion
holds with a SL operator T(q,h) for some q € W, '(0,1) and h € R.
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Questions:

e In the non-s-a case, non-simple EV’'s are possible; what are
norming constants then?

e Can one reconstruct a SL operator from the spectrum and
norming constants?
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Norming constants in the non-s-a case

Assume that X is an eigenvalue of T'(q, h) of algebraic multiplicity

m; then A= X\, = A1 = -+ = A1 for some n € N. Introduce
the functions y,,...,Yntm-1 Via
1 0y(z, 2) .
Ynt;(X) 1= = : j=0,1,...,m—1.

- ]' 823 z2=Mn

Then y, is an EF of T'(q,h) corresponding to the EV \,, yn+j €
domT'(q, h), and

T(Qa Oo)yn+j — AnynJrj + Yn+j—1,

for y =1,...,m — 1, i.e., the sequence vy., Ynii,-..,Yntm—1 fOrms a
chain of eigen- and associated functions of T'(q,h) corresponding
to the eigenvalue \,. (Correspond to a Jordan block in a Jordan
basis!)

In this way we construct the sequence (yi)ren, in which y; is
an eigen- or associated function of T'(q,h) corresponding to the
eigenvalue \..
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Norming constants (cont’d)

Put
Q] «— <yk7yl>7
where (-,-) is the bilinear (not sesquilinear!) form (f,g) =

Jo F)g(t) dt

Then the Gram matrix A = (ay) has a block-diagonal form,
namely ay; = 0 if A\x # A\;. Moreover, the sub-matrix on the diagonal
corresponding to an EV A\, = \,01 = -+ = A\uem—1 Of multiplicity m
iIs a Hankel lower-triangular matrix of size m, i.e.,

0, kE,l=n,....n+m —1, E+1l<2n+m—1,
ar =
& Dyt (il k.,l=n,....n+m —1, k+1>2n+m — 1.

Observe that «, # 0, as otherwise the function y,, would be
orthogonal to y; for all [ € N; thus this Hankel matrix is non-
singular.

We call the number «p, k£ € N, the norming constant
corresponding to the eigenvalue \..
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Reconstruction from norming constants

If \x is a simple eigenvalue, then a; = fol yi(z) dz, which agrees
with the above definition in the self-adjoint case. The a; have the
same asymptotics as in the self-adjoint case.

Although in the non-self-adjoint case Theorem C has no direct
analogue, it still holds generically.

Theorem 3. Assume that complex sequences (A,)nen and (o) nen
satisfy the asymptotics of (5) and ([7]) resp.

Fix an arbitrary € > 0. Then finitely many numbers «, can be
changed at most by  so that (\,) is the spectrum and the sequence
of changed «, Is the sequence of the corresponding norming
constants, of a SL operator T(q, o) with some q € W, '(0,1).

A similar statement holds if instead of the asymptotics (5]) that
of (6)) is assumed, resulting in a SL operator T(q,h) with some
q € W,;'(0,1) and h € C.
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Combining the above statements with the criterion on solubility
of the inverse spectral problem for Sturm—Liouville operators with
complex-valued potentials in the space L,(0,1) [Tkachenko'02], we
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Regular potentials

Combining the above statements with the criterion on solubility
of the inverse spectral problem for Sturm—Liouville operators with
complex-valued potentials in the space Ly(0,1) [Tkachenko'02], we
get

Corollary. Assume that sequences (M\,)nen, (fn)nen, and (aum)pen OF
complex numbers are such that

Ay = 202 4+ A+ A\,

,unzﬂ'z(n_%)z‘i"B"‘/]m
1_|_64n

oy = —+ —
2 n

for some complex A and B and some complex ls-sequences (\,),
(&n), and (&,). Then the conclusions of Theorems |13 hold true
with a complex-valued q € L2(0,1).



Thank you!



