The inverse problem for Kreǐn orthogonal entire matrix

functions

M.A. Kaashoek, VU Amsterdam

6th Berlin Operator Theory Workshop
December 14-17, 2006

Joint work with I. Gohberg and L. Lerer

Continuous analogues of orthogonal polynomials
$k \in L_{1}^{n \times n}[-\omega, \omega]$
$k(t)^{*}=k(-t),-\omega \leq t \leq \omega \quad$ [hermitian]
Let $f \in L_{1}^{n \times n}[0, \omega]$ be a solution of
(1) $\quad f(t)-\int_{0}^{\omega} k(t-s) f(s) d s=k(t), 0 \leq t \leq \omega$.

Put
(2) $\Phi(\lambda)=I+\int_{0}^{\omega} e^{i \lambda t} f(t) d t, \lambda \in \mathbb{C}$.

For $n=1$ functions of type (2) have been introduced by M.G. Kreĩn as continuous analogues of the classical Szegö orthogonal polynomials with respect to the unit circle. For this reason Φ is referred to as a Kreĭn orthogonal function (KOF) generated by k and ω.
N.B.: There is at most one KOF generated by k and ω.

Inverse problem for scalar functions

For $n=1$, Kreĩn in the fifties and Kreĩn and Langer in the eighties proved a number of remarkable results. One of these results is the solution to the inverse problem. Let

$$
\Phi(\lambda)=I+\int_{0}^{\omega} e^{i \lambda t} f(t) d t, f \in L_{1}[0, \omega]
$$

THM. The entire function Φ is a KOF if and only if Φ has no real zeroes and no conjugate pairs of zeroes.

This talk concerns the matrix-valued analogue of this theorem.

Root functions

Let $M(\lambda)$ be an entire $n \times n$ matrix function, and assume that $\operatorname{det} M(\lambda) \not \equiv 0$. A \mathbb{C}^{n}-valued function φ, analytic in a neighborhood of $\lambda_{0} \in$ \mathbb{C}, is called a root function of $M(\lambda)$ at λ_{0} of order at least $m(\geq 1)$ if
(i) $\varphi\left(\lambda_{0}\right) \neq 0$,
(ii) $M(\lambda) \varphi(\lambda)$ has a zero at λ_{0} of order at least m, that is,

$$
M(\lambda) \varphi(\lambda)=\sum_{\nu=m}^{\infty}\left(\lambda-\lambda_{0}\right)^{\nu} y_{\nu}
$$

In particular, $M\left(\lambda_{0}\right) \varphi\left(\lambda_{0}\right)=0$, and hence by (i) we have $\operatorname{det} M\left(\lambda_{0}\right)=0$. Conversely, if $\operatorname{det} M\left(\lambda_{0}\right)=0$, then $M(\lambda)$ has a root function at λ_{0} of order at least 1 .

- Canonical systems of root functions
- Jordan chains

Main theorem

Let Φ be the entire matrix function

$$
\Phi(\lambda)=I+\int_{0}^{\omega} e^{i \lambda t} f(t) d t, f \in L_{1}^{n \times n}[0, \omega]
$$

Main Theorem. The function Φ is a KOF if and only if det $\Phi(\lambda)$ has no real zero and for any symmetric pair of zeros $\lambda_{0}, \bar{\lambda}_{0}$ of $\operatorname{det} \Phi(\lambda)$ the following condition $\mathrm{C}\left(\lambda_{0}\right)$ is fulfilled.

Condition $\mathrm{C}\left(\lambda_{0}\right)$: If φ is a root function of $\Phi(\lambda)$ at λ_{0} and ψ is a root function of $\Phi(\lambda)$ at $\bar{\lambda}_{0}$, both of order at least m, then the function $\psi(\bar{\lambda})^{*} \varphi(\lambda)$ has a zero at λ_{0} of order at least m.

Comments: (1) In the scalar case condition $C\left(\lambda_{0}\right)$ is never fulfilled. (2) When Φ is a KOF, how to find the kernel function corresponding to Φ ?

An associate matrix function equation

Let Φ be the entire matrix function

$$
\Phi(\lambda)=I+\int_{0}^{\omega} e^{i \lambda t} f(t) d t, f \in L_{1}^{n \times n}[0, \omega]
$$

With Φ we associate the following matrix function equation

$$
\text { (AE) } \quad U(\lambda) \Phi(\lambda)+\Phi(\bar{\lambda})^{*} V(\lambda)=I_{n}, \lambda \in \mathbb{C} .
$$

The unknowns U, V are required to be entire $n \times n$ matrix functions of a special form, namely
(a) $U(\lambda)=I_{n}+\int_{0}^{\omega} e^{i \lambda t} u(t) d t, u \in L_{1}^{n \times n}[0, \omega]$,
(b) $V(\lambda)=\int_{\omega}^{2 \omega} e^{i \lambda t} v(t) d t, v \in L_{1}^{n \times n}[\omega, 2 \omega]$.

If U, V given by (a) and (b) satisfy (AE), then U, V is called a regular solution pair of the associate equation (AE).

Reducing the inverse problem

Let Φ be the entire matrix function

$$
\Phi(\lambda)=I+\int_{0}^{\omega} e^{i \lambda t} f(t) d t, f \in L_{1}^{n \times n}[0, \omega]
$$

THM 1. The function Φ is a KOF if and only if the associated equation (AE) has a regular solution pair. Moreover, given any regular solution pair U, V of (AE), a hermitian matrix function $k \in L_{1}^{n \times n}[-\omega, \omega]$ such that Φ is a KOF generated by k can be obtained as the restriction to the interval $[-\omega, \omega]$ of the inverse Fourier transform of the matrix function

$$
\left(U(\bar{\lambda})^{*}-V(\lambda)\right) \Phi(\lambda)^{-1}, \quad \lambda \in \mathbb{R} .
$$

In other words, $k=\left.\ell\right|_{[-\omega, \omega]}$ where

$$
\int_{-\infty}^{\infty} e^{i \lambda s} \ell(s) d s=\left(U(\bar{\lambda})^{*}-V(\lambda)\right) \Phi(\lambda)^{-1}
$$

The proof is "algebraic" in flavor using band method arguments.

Conclusion from Theorem 1

Let Φ be the entire matrix function

$$
\Phi(\lambda)=I+\int_{0}^{\omega} e^{i \lambda t} f(t) d t, f \in L_{1}^{n \times n}[0, \omega]
$$

Consider the associate equation:
(AE) $U(\lambda) \Phi(\lambda)+\Phi(\bar{\lambda})^{*} V(\lambda)=I_{n}, \quad \lambda \in \mathbb{C}$.
To prove the main theorem it suffices to show that the following two statements are equivalent.
(α) Equation (AE) has a regular solution pair U, V.
(β) The function $\operatorname{det} \Phi(\lambda)$ has no real zero and for any conjugate pair of zeros $\lambda_{0}, \bar{\lambda}_{0}$ of $\operatorname{det} \Phi(\lambda)$ condition $C\left(\lambda_{0}\right)$ is fulfilled.

The problem to prove the main theorem is now reduced to a problem about entire matrix function equations.

Rewriting the associate equation

$$
\Phi(\lambda)=I+\int_{0}^{\omega} e^{i \lambda t} f(t) d t, f \in L_{1}^{n \times n}[0, \omega]
$$

(AE) $U(\lambda) \Phi(\lambda)+\Phi(\bar{\lambda})^{*} V(\lambda)=I_{n}, \lambda \in \mathbb{C}$.
Introduce:

$$
\begin{aligned}
& \mathcal{B}(\lambda)=I_{n}+\int_{-\omega}^{0} e^{i \lambda t} \beta(t) d t, \beta(t)=f(-t) \\
& \mathcal{D}(\lambda)=I_{n}+\int_{0}^{\omega} e^{i \lambda t} \delta(t) d t, \delta(t)=f(t)^{*} \\
& X(\lambda)=\int_{0}^{\omega} e^{i \lambda t} x(t) d t, x(t)=u(\omega-t) \\
& Y(\lambda)=\int_{-\omega}^{0} e^{i \lambda t} y(t) d t, y(t)=v(\omega-t) \\
& G(\lambda)=e^{i \lambda \omega} I_{n}-e^{i \lambda \omega} \mathcal{B}(\lambda)
\end{aligned}
$$

Replacing λ by $-\lambda$, (AE) is equivalent to

$$
X(\lambda) \mathcal{B}(\lambda)+\mathcal{D}(\lambda) Y(\lambda)=G(\lambda), \quad \lambda \in \mathbb{C}
$$

A class of matrix function equations

Consider the entire matrix function equation
(E) $\quad X(\lambda) \mathcal{B}(\lambda)+\mathcal{D}(\lambda) Y(\lambda)=G(\lambda), \lambda \in \mathbb{C}$.

The coefficients \mathcal{B} and \mathcal{D} are given,

$$
\begin{aligned}
\mathcal{B}(\lambda) & =I_{n}+\int_{-\omega}^{0} e^{i \lambda t} b(t) d t, b \in L_{1}^{n \times n}[-\omega, 0] \\
\mathcal{D}(\lambda) & =I_{n}+\int_{0}^{\omega} e^{i \lambda t} d(t) d t, d \in L_{1}^{n \times n}[0, \omega]
\end{aligned}
$$

The right hand side G is known,

$$
G(\lambda)=\int_{-\omega}^{\omega} e^{i \lambda t} g(t) d t, g \in L_{1}^{n \times n}[-\omega, \omega]
$$

Problem: Find entire $n \times n$ matrix functions X and Y satisfying (E) and

$$
\begin{aligned}
& X(\lambda)=\int_{0}^{\omega} e^{i \lambda t} x(t) d t, x \in L_{1}^{n \times n}[0, \omega] \\
& Y(\lambda)=\int_{-\omega}^{0} e^{i \lambda t} y(t) d t, y \in L_{1}^{n \times n}[-\omega, 0]
\end{aligned}
$$

Matrix function equations - continued

$$
(\mathrm{E}) \quad X(\lambda) \mathcal{B}(\lambda)+\mathcal{D}(\lambda) Y(\lambda)=G(\lambda), \quad \lambda \in \mathbb{C}
$$

Condition $\operatorname{SC}\left(\lambda_{0}\right)$: If φ and ψ are root functions of $\mathcal{B}(\lambda)$ and $\mathcal{D}(\lambda)^{\top}$, respectively, both at λ_{0} and of order at least m, then the function $\psi(\lambda)^{\top} G(\lambda) \varphi(\lambda)$ has a zero at λ_{0} of order at least m.

THM 2. In order that there exist functions X, Y satisfying equation (E) of the form

$$
\begin{aligned}
& X(\lambda)=\int_{0}^{\omega} e^{i \lambda t} x(t) d t, x \in L_{1}^{n \times n}[0, \omega] \\
& Y(\lambda)=\int_{-\omega}^{0} e^{i \lambda t} y(t) d t, y \in L_{1}^{n \times n}[-\omega, 0],
\end{aligned}
$$

it is necessary and sufficient that for each common zero λ_{0} of $\operatorname{det} \mathcal{B}(\lambda)$ and $\operatorname{det} \mathcal{D}(\lambda)$ condition $\mathrm{SC}\left(\lambda_{0}\right)$ is satisfied.

Comments: (1) When (E) is derived from (AE), $C\left(\lambda_{0}\right) \Rightarrow \operatorname{SC}\left(\lambda_{0}\right)$. (2) Necessity is obvious.

About the proof of THM 2

To prove THM 2 we rewrite equation (E) as

$$
\begin{aligned}
& \mathbf{r}(X(\lambda))\left(\mathcal{B}(\lambda) \otimes I_{n}\right)+ \\
& +\mathbf{r}(Y(\lambda))\left(I_{n} \otimes \mathcal{D}(\lambda)\right)=\mathbf{r}((G(\lambda))
\end{aligned}
$$

Here \otimes is the (right) Kronecker product, and for a $k \times \ell$ matrix M we have

$$
\mathbf{r}(M)=\left[\begin{array}{llllll}
m_{11} & \cdots & m_{k 1} & m_{12} & \cdots & m_{k 2}
\end{array} \cdots\right.
$$

$$
\left.\cdots m_{1 \ell} \cdots m_{k \ell}\right] .
$$

The map \mathbf{r} is bijective from $\mathbb{C}^{k \times \ell}$ onto $\mathbb{C}^{1 \times k \ell}$.
LEM. Let $\lambda_{0} \in \mathbb{C}$, and assume that condition $\operatorname{SC}\left(\lambda_{0}\right)$ is satisfied. Then each common root function Φ of $\mathcal{B}(\lambda) \otimes I_{n}$ and $I_{n} \otimes \mathcal{D}(\lambda)^{\top}$ at λ_{0}, in both cases of order at least m, is a root function of $\mathbf{r}((G)(\lambda))$ at λ_{0} of order at least m.

Comment: $\mathcal{B}(\lambda) \otimes I_{n}$ and $I_{n} \otimes \mathcal{D}(\lambda)^{\top}$ commute and have similar positions in the equation.

Another class of matrix function equations

Consider the entire matrix function equation
(F) $\quad X(\lambda) \mathcal{B}(\lambda)+Y(\lambda) \mathcal{D}(\lambda)=G(\lambda), \quad \lambda \in \mathbb{C}$.

The coefficients \mathcal{B} and \mathcal{D} are given,

$$
\begin{aligned}
\mathcal{B}(\lambda) & =I_{n}+\int_{-\omega}^{0} e^{i \lambda t} b(t) d t, b \in L_{1}^{n \times n}[-\omega, 0] \\
\mathcal{D}(\lambda) & =I_{n}+\int_{0}^{\omega} e^{i \lambda t} d(t) d t, d \in L_{1}^{n \times n}[0, \omega]
\end{aligned}
$$

The right hand side G is known,

$$
G(\lambda)=\int_{-\omega}^{\omega} e^{i \lambda t} g(t) d t, g \in L_{1}^{n \times n}[-\omega, \omega]
$$

Problem: Find entire $n \times n$ matrix functions X and Y satisfying (F) and

$$
\begin{aligned}
& X(\lambda)=\int_{0}^{\omega} e^{i \lambda t} x(t) d t, x \in L_{1}^{n \times n}[0, \omega] \\
& Y(\lambda)=\int_{-\omega}^{0} e^{i \lambda t} y(t) d t y \in L_{1}^{n \times n}[-\omega, 0]
\end{aligned}
$$

Matrix function equations - continued

$$
\text { (F) } \quad X(\lambda) \mathcal{B}(\lambda)+Y(\lambda) \mathcal{D}(\lambda)=G(\lambda), \lambda \in \mathbb{C} \text {. }
$$

Condition $\operatorname{TC}\left(\lambda_{0}\right)$: If φ is a common root function of $\mathcal{B}(\lambda)$ and $\mathcal{D}(\lambda)$ at λ_{0}, in both cases of order at least m, then the function $G(\lambda) \varphi(\lambda)$ has a zero at λ_{0} of order at least m.

THM 3. Assume $\mathcal{B}(\lambda)$ and $\mathcal{D}(\lambda)$ commute for each $\lambda \in \mathbb{C}$. There exist functions X, Y satisfying equation (F) and of the form

$$
\begin{aligned}
& X(\lambda)=\int_{0}^{\omega} e^{i \lambda t} x(t) d t, x \in L_{1}^{n \times n}[0, \omega], \\
& Y(\lambda)=\int_{-\omega}^{0} e^{i \lambda t} y(t) d t, y \in L_{1}^{n \times n}[-\omega, 0],
\end{aligned}
$$

if and only if condition $\operatorname{TC}\left(\lambda_{0}\right)$ is satisfied for each common zero λ_{0} of $\operatorname{det} \mathcal{B}(\lambda)$ and $\operatorname{det} \mathcal{D}(\lambda)$.

About the proof of THM 3

$$
\text { (F) } \quad X(\lambda) \mathcal{B}(\lambda)+Y(\lambda) \mathcal{D}(\lambda)=G(\lambda), \lambda \in \mathbb{C}
$$

WLOG: G, X, Y are one row matrix functions. Take inverse Fourier transforms in (F):

$$
\begin{aligned}
x(t) & +y(t)+\int_{0}^{\omega} x(s) b(t-s) d s+ \\
& +\int_{-\omega}^{0} y(s) d(t-s) d s=g(t),-\omega \leq t \leq \omega
\end{aligned}
$$

Let S be the corresponding integral operator on $L^{1 \times n}[-\omega, \omega]$. The Banach adjoint of S is the operator R on $L_{\infty}^{n}[-\omega, \omega]$ defined by

$$
(R f)(t)=\left\{\begin{array}{l}
f(t)+\int_{-\omega}^{\omega} b(r-t) f(r) d r, t>0 \\
f(t)+\int_{-\omega}^{\omega} d(r-t) f(r) d r, t<0
\end{array}\right.
$$

This operator R is the continuous analogue of the classical Sylvester resultant matrix.

About the proof of THM 3 - continued
Next, apply the Fredholm alternative together with the theorem from [1] describing the kernel of R in terms of the common root functions of $\mathcal{B}(\lambda)$ and $\mathcal{D}(\lambda)$. Commutativity (or rather quasi-commutativity) of $\mathcal{B}(\lambda)$ and $\mathcal{D}(\lambda)$ is essential.

Relevant Gohberg-K-Lerer papers:
[1] The continuous analogue of the resultant and related convolution operators, IWOTA 2004 Proceedings, to appear.
[2] Quasi-commutativity of entire matrix functions and the continuous analogue of the resultant, Simonenko volume, to appear.
[3] On a class of entire matrix function equations, Lin.Alg.Appl., to appear.
[4] The inverse problem for Kreǐn orthogonal matrix functions, J. Funct. Anal. Appl., to appear.

