$\sqrt{w} / \overline{\mathrm{I}} \mathrm{A} / \mathrm{s}$

Hagen Neidhardt
Wigner's R-matrix and Weyl functions
joint work with Jussi Behrndt (TU Berlin), Roxana and Paul Racec (TU Cottbus), Ulrich Wulf (TU Cottbus)

1 Basic facts on scattering system

Pair of self-adjoint operators $\left\{L, L_{0}\right\}$ on some separable Hilbert space \mathfrak{L} such that the wave operators

$$
W_{ \pm}\left(L, L_{0}\right)=s-\lim _{t \rightarrow \pm \infty} e^{i t L} e^{-i t L_{0}} P^{a c}\left(L_{0}\right)
$$

exists where $\boldsymbol{P}^{a c}\left(\boldsymbol{L}_{0}\right)$ is the projection onto the absolutely continuous subspace $\mathfrak{L}^{a c}\left(\boldsymbol{L}_{0}\right)$ of L_{0}. One has

$$
\operatorname{ran}\left(\boldsymbol{W}_{ \pm}\left(\boldsymbol{L}, \boldsymbol{L}_{0}\right)\right) \subseteq \mathfrak{L}^{a c}\left(\boldsymbol{L}_{0}\right)
$$

We say the scattering system is complete if

$$
\operatorname{ran}\left(\boldsymbol{W}_{ \pm}\left(\boldsymbol{L}, \boldsymbol{L}_{0}\right)\right)=\mathfrak{L}^{a c}(\boldsymbol{L})
$$

It is known that completeness \Longleftrightarrow existence of $\boldsymbol{W}_{ \pm}\left(\boldsymbol{L}_{0}, \boldsymbol{L}\right)$.

2 Existence of the wave operators

Let $\boldsymbol{V}=V^{*}$ be a self-adjoint trace class operator. If

$$
L=L_{0}+V
$$

then $\left\{L, L_{0}\right\}$ performs a complete scattering system.
If

$$
(L-z)^{-p}-\left(L_{0}-z\right)^{-p} \in \mathcal{B}_{1}(\mathfrak{L}), \quad p \in \mathbb{N}
$$

for some $z \in \mathbb{C} \backslash \mathbb{R}$, then $\left\{\boldsymbol{L}, L_{0}\right\}$ is a complete scattering system. In particular, if

$$
(L-z)^{-1}-\left(L_{0}-z\right)^{-1} \in \mathcal{B}_{1}(\mathfrak{L}) .
$$

3 Scattering operator

The scattering operator $S: \mathfrak{L}^{a c}\left(\boldsymbol{L}_{0}\right) \longrightarrow \mathfrak{L}^{a c}\left(\boldsymbol{L}_{0}\right)$

$$
S\left(L, L_{0}\right):=W_{+}\left(L, L_{0}\right)^{*} W_{-}\left(L, L_{0}\right)
$$

Obviously, one has

$$
e^{-i t L_{0}} S\left(L, L_{0}\right)=S\left(L, L_{0}\right) e^{-i t L_{0}}, \quad t \in \mathbb{R}
$$

which is equivalent to

$$
E_{0}(\Delta) S\left(L, L_{0}\right)=S\left(L, L_{0}\right) E_{0}(\Delta), \quad \Delta \in \mathfrak{B}(\mathbb{R})
$$

If $\left\{L, L_{0}\right\}$ is a complete scattering system, then $S\left(L, L_{0}\right)$ is unitary on $\mathfrak{L}^{a c}\left(L_{0}\right)$, that is,

$$
S\left(L, L_{0}\right)^{*} S\left(L, L_{0}\right)=S\left(L, L_{0}\right) S\left(L, L_{0}\right)^{*}=I_{\mathfrak{L}}{ }^{a c}\left(L_{0}\right)
$$

4 Scattering matrix

There is direct integral representation of $\mathfrak{L}^{a c}\left(\boldsymbol{L}_{0}\right)$,

$$
\mathfrak{L}^{a c}\left(L_{0}\right) \cong \int^{\oplus} \mathfrak{Q}_{\lambda} d \mu(\lambda)
$$

where $\left\{\mathfrak{Q}_{\lambda}\right\}_{\lambda \in \mathbb{R}}$ is family of Hilbert spaces and $\mu(\cdot)$ is a Borel measure on \mathbb{R} which is absolutely continuous with respect to the Lebesgue measure $d \lambda$ on \mathbb{R}, such that

$$
L_{0}^{a c} \cong \lambda
$$

Such a representation is called a spectral representation of $\boldsymbol{L}_{0}^{a c}$.
Since $S\left(L, L_{0}\right)$ commutes with $L_{0}^{a c}$, there is a measurable family of operators $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$, $\boldsymbol{S}(\boldsymbol{\lambda}): \mathfrak{Q}_{\lambda} \longrightarrow \mathfrak{Q}_{\lambda}$, such that

$$
S\left(L, L_{0}\right) \cong S(\lambda)
$$

If $S\left(L, L_{0}\right)$ is unitary, then $S(\lambda)$ is unitary for a.e. λ with respect to μ. $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$ is called the scattering matrix of the scattering system $\left\{L, L_{0}\right\}$.

5 Example

$$
L f=-\frac{1}{2} \frac{d}{d x} \frac{1}{M} \frac{d}{d x} f+V f, \quad f \in \operatorname{dom}(L)=\left\{f \in W^{1,2}(\mathbb{R}): \frac{1}{M} f \in W^{1,2}(\mathbb{R})\right\}
$$

where

$$
\begin{aligned}
& M(x):=\left\{\begin{array}{ll}
m_{l}, & x \in\left(-\infty, x_{l}\right] \\
m(x), & x \in\left(x_{l}, x_{r}\right) \\
m_{r}, & x \in\left[x_{r}, \infty\right)
\end{array} \quad V(x):= \begin{cases}v_{l}, & x \in\left(-\infty, x_{l}\right] \\
v(x), & x \in\left(x_{l}, x_{r}\right) \\
v_{r}, & x \in\left[x_{r}, \infty\right) .\end{cases} \right. \\
& L_{0}:=-\frac{1}{2 m_{l}} \frac{d^{2}}{d x^{2}}+v_{l} \oplus-\frac{1}{2} \frac{d}{d x} \frac{1}{m} \frac{d}{d x}+v(x) \oplus-\frac{1}{2 m_{r}} \frac{d^{2}}{d x^{2}}+v_{r} \quad \text { Dirichlet b. c. } \\
& L^{2}(\mathbb{R})=L^{2}\left((-\infty), x_{l}\right) \oplus L^{2}\left(\left(x_{l}, x_{r}\right)\right) \oplus L^{2}\left(\left(x_{r}, \infty\right) .\right.
\end{aligned}
$$

$\left\{L, L_{0}\right\}$ performs a complete scattering system

6 Eisenbud-Wigner representation

Let $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$ be the scattering matrix in the spectral representation

$$
\int^{\oplus} \mathfrak{Q}_{\lambda} d \mu(\lambda) \simeq L^{2}\left(\left(v_{r}, v_{l}\right), \mathbb{C}\right) \oplus L^{2}\left(\left(v_{l}, \infty\right), \mathbb{C}^{2}\right), \quad v_{l}>v_{r}
$$

Wigner's \boldsymbol{R}-matrix:

$$
\begin{gathered}
R(\lambda):=i\left(I_{\mathfrak{Q}_{\lambda}}-S(\lambda)\right)\left(I_{\mathfrak{Q}_{\lambda}}+S(\lambda)\right)^{-1} \quad \Longrightarrow \quad S(\lambda):=\frac{i I_{\mathfrak{Q}_{\lambda}}-R(\lambda)}{i I_{\mathfrak{Q}_{\lambda}}+R(\lambda)} \\
R(\lambda)=\sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda\right)^{-1}\left(\cdot,\binom{\sqrt[4]{\frac{\lambda-v_{l}}{2 m_{l}}} \psi_{k}\left(x_{l}, \lambda\right)}{\sqrt[4]{\frac{\lambda-v_{r}}{2 m_{r}}} \psi_{k}\left(x_{r}, \lambda\right)}\right)\binom{\sqrt[4]{\frac{\lambda-v_{l}}{2 m_{l}}} \psi_{k}\left(x_{l}, \lambda\right)}{\sqrt[4]{\frac{\lambda-v_{r}}{2 m_{r}}} \psi_{k}\left(x_{r}, \lambda\right)}, \quad \lambda>v_{l},
\end{gathered}
$$

where $\left\{\lambda_{k}\right\}$ and $\psi_{k}, k=1,2, \ldots$, are the eigenvalues and eigenfunctions of the selfadjoint operator

$$
A_{1}:=-\frac{1}{2} \frac{d}{d x} \frac{1}{m(x)} \frac{d}{d x}+v(x), \quad \text { Neumann b. c. }
$$

7 Boundary triplets and scattering

Let \boldsymbol{A} be a closed symmetric operator on \mathfrak{H} and $\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triplet of \boldsymbol{A}^{*}.
By $M(z)$ we denote the corresponding Weyl function.
We consider the extensions

$$
\begin{equation*}
A_{0}:=L^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right) \quad \text { and } \quad A_{\Theta}:=L^{*} \upharpoonright \Gamma^{-1} \Theta \tag{1}
\end{equation*}
$$

where Θ is some self-adjoint relation on \mathcal{H}.
If the deficiency indices of L are finite, then any pair $\left\{\boldsymbol{A}_{\Theta}, \boldsymbol{A}_{0}\right\}$ performs a complete scattering system since the resolvent difference is a finite dimensional operator.

Problem: Let us consider the scattering system $\left\{L_{\Theta}, L_{0}\right\}$. Is it possible to calculate the scattering matrix $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$?

8 Boundary triplets and direct integrals

Since \mathcal{H} is finite dimensional the limits $M(\boldsymbol{\lambda}):=M(\boldsymbol{\lambda}+\boldsymbol{i 0})$ for a.e. $\boldsymbol{\lambda} \in \mathbb{R}$. We denote by $\Sigma^{M} \subseteq \mathbb{R}$ the set where the limit $M(\boldsymbol{\lambda}+\boldsymbol{i 0})$ exists. Further,

$$
\mathcal{H}_{M(\lambda)}:=\operatorname{ran}\left(\Im \mathrm{s}(M(\lambda)) \subseteq \mathcal{H}, \quad \lambda \in \Sigma^{\tau} .\right.
$$

By $Q_{M(\lambda)}$ we denote the family of orthogonal projections onto $\mathcal{H}_{M(\lambda)}$ which is measurable.

$$
L^{2}(\mathbb{R}, d \lambda, \mathcal{H})=\int^{\oplus} \mathcal{H} d \lambda
$$

In $L^{2}(\mathbb{R}, d \lambda, \mathcal{H})$ we introduce the projection

$$
\left(Q_{M} f\right)(\lambda):=Q_{M(\lambda)} f(\lambda), \quad f \in L^{2}(\mathbb{R}, d \lambda, \mathcal{H})
$$

The subspace ${Q_{M}} L^{2}(\mathbb{R}, d \lambda, \mathcal{H})$ is denoted by

$$
Q_{M} L^{2}(\mathbb{R}, d \lambda, \mathcal{H})=L^{2}\left(\mathbb{R}, d \lambda, \mathcal{H}_{M(\lambda)}\right)=\int^{\oplus} \mathcal{H}_{M(\lambda)} d \lambda
$$

It turns out that $L_{0}^{a c} \cong \lambda$ where $\boldsymbol{\lambda}$ is the multiplication operator in $L^{2}\left(\mathbb{R}, d \lambda, \mathcal{H}_{M(\lambda)}\right)$.

9 Boundary triplets and scattering

THEOREM 1. Let \boldsymbol{A} be a densely defined closed simple symmetric operator with finite deficiency indices in the separable Hilbert space \mathfrak{H} and let $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for \boldsymbol{A}^{*} and $\boldsymbol{M}(\cdot)$ be the corresponding Weyl function. Further, let $\boldsymbol{A}_{0}=\boldsymbol{A}^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right)$ and let $\boldsymbol{A}_{\Theta}=\boldsymbol{A}^{*} \upharpoonright$ $\Gamma^{-1} \Theta$ be a self-adjoint extension of \boldsymbol{A} where Θ is a self-adjoint relation in \mathcal{H}. Then the scattering matrix $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$ of the complete scattering system $\left\{A_{\Theta}, A_{0}\right\}$ admits the representation

$$
S(\lambda)=I_{\mathcal{H}_{M(\lambda)}}+2 i \sqrt{\Im m(M(\lambda))}(\Theta-M(\lambda))^{-1} \sqrt{\Im m(M(\lambda))}
$$

for a.e. $\boldsymbol{\lambda} \in \mathbb{R}$, where $M(\boldsymbol{\lambda}):=M(\boldsymbol{\lambda}+i 0)$.

10 Open quantum systems and decoupled system

Let us consider two symmetric operators A and T in \mathfrak{H} and \mathfrak{K}, respectively, with equal finite deficiency indices. Further, let $\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ and $\left\{\mathcal{H}, \Upsilon_{0}, \Upsilon_{1}\right\}$ boundary triplets with Weyl functions $M(\lambda)$ and $\tau(\lambda)$, respectively. Then $\left\{\mathcal{H}, \widetilde{\Gamma}_{0}, \widetilde{\Gamma}_{1}\right\}$,

$$
\widetilde{\mathcal{H}}:=\binom{\mathcal{H}}{\mathcal{H}}, \quad \widetilde{\Gamma}_{0}:=\binom{\Gamma_{0}}{\Upsilon_{0}}, \quad \widetilde{\Gamma}_{1}:=\binom{\Gamma_{1}}{\Upsilon_{1}}
$$

performs a boundary triplet for $\boldsymbol{A}^{*} \oplus \boldsymbol{T}^{*}$ with Weyl function

$$
\widetilde{M}(\lambda):=\left(\begin{array}{cc}
M(\lambda) & 0 \\
0 & \tau(\lambda)
\end{array}\right)
$$

The systems $\{\mathfrak{H}, A\}$ and $\{\mathfrak{K}, T\}$ are called open system, $\{\mathfrak{H}, A\}$ is called the inner system, $\{\mathfrak{K}, T\}$ is called the outer system. The observer is in the inner system.

The system $\left\{\mathfrak{L}, A_{0} \oplus T_{0}\right\}, A_{0}:=A^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right), T_{0}:=T^{*} \upharpoonright \operatorname{ker}\left(\Upsilon_{0}\right)$, is called the decoupled system.

11 Open quantum system and coupled system

THEOREM 2 (Derkach, Hassi, M. de Snoo, 2000). Let A and \boldsymbol{T} be densely defined closed symmetric operators in the Hilbert spaces \mathfrak{H} and \mathfrak{K} which equal deficiency indices. Then the following holds:
(i) The closed extension $L:=A^{*} \oplus T^{*} \upharpoonright \widetilde{\Gamma}^{-1} \widetilde{\Theta}$ corresponding to the relation

$$
\widetilde{\Theta}:=\left\{\binom{(v, v)^{\top}}{(w,-w)^{\top}}: v, w \in \mathcal{H}\right\}
$$

is self-adjoint in the Hilbert space $\mathfrak{L}:=\mathfrak{H} \oplus \mathfrak{K}$ and is given by

$$
L=A^{*} \oplus T^{*} \upharpoonright\left\{f_{1} \oplus f_{2} \in \operatorname{dom}\left(A^{*} \oplus T^{*}\right): \begin{array}{l}
\Gamma_{0} f_{1}-\Upsilon_{0} f_{2}=0 \\
\Gamma_{1} f_{1}+\Upsilon_{1} f_{2}=0
\end{array}\right\}
$$

(ii) The Strauss family $\boldsymbol{A}_{-\tau(\lambda)}:=A^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{1}+\tau(\lambda) \Gamma_{0}\right), \lambda \in \mathbb{C}_{+}$, satisfies

$$
\left(A_{-\tau(\lambda)}-\lambda\right)^{-1}=P_{\mathfrak{H}}(L-\lambda)^{-1} \upharpoonright \mathfrak{H}, \quad \lambda \in \mathbb{C}_{+}
$$

The system $\{\mathfrak{L}, L\}$ is called the coupled system.

12 Strauss family

Let $\tau(\cdot): \mathcal{K} \longrightarrow \mathcal{K}$ be a Nevanlinna function.

$$
A_{-\tau(\lambda)}:=A^{*} \upharpoonright\left\{f \in \operatorname{dom}\left(A^{*}\right): \Gamma_{1} f=-\tau(\lambda) \Gamma_{0} f\right\}, \quad \lambda \in \mathbb{C}_{+},
$$

$\left\{A_{-\tau(\lambda)}\right\}_{\lambda \in \mathbb{C}_{+}}$is called a Strauss family.
Since $\operatorname{dim}(\mathcal{H})<\infty$ the family admits an extension to a.e. $\boldsymbol{\lambda} \in \mathbb{R}$, i.e.

$$
\tau(\lambda):=\lim _{\epsilon \rightarrow+0} \tau(\lambda+i \epsilon) .
$$

In general, the Strauss family consists of maximal dissipative operators. The characteristic function of $\boldsymbol{A}_{-\tau(\lambda)}$ are given by

$$
\Theta_{A_{-\tau(\lambda)}}(\mu)=I_{\mathcal{Q}_{\lambda}}+2 i \sqrt{\Im \mathrm{~m}(\tau(\lambda))}\left(\tau(\lambda)^{*}+M(\bar{\mu})^{*}\right)^{-1} \sqrt{\Im \mathrm{~m}(\tau(\lambda))}, \quad \mu \in \mathbb{C}_{-}
$$

where

$$
\mathcal{Q}_{\lambda}:=\operatorname{clo}\{\operatorname{ran}(\Im \mathrm{m} \tau(\lambda))\} .
$$

13 Coupling and scattering

THEOREM 3. Let \boldsymbol{A} and \boldsymbol{T} be densely defined closed simple symmetric operators in \mathfrak{H} and \mathfrak{K}, respectively, with equal finite deficiency indices such that \boldsymbol{A}_{0} is discrete. Then
(i) The wave operators

$$
W_{ \pm}\left(L, L_{0}\right)=s-\lim _{t \rightarrow \pm \infty} e^{i t L} e^{-i t L_{0}} P^{a c}\left(L_{0}\right)=s-\lim _{t \rightarrow \pm \infty} e^{i t L} e^{-i t T_{0}} P^{a c}\left(T_{0}\right)
$$

exist and are complete.
(ii) The scattering matrix $\{\boldsymbol{S}(\boldsymbol{\lambda})\}_{\lambda \in \mathbb{R}}$ of the scattering system $\left\{L, L_{0}\right\}$ admits the representation

$$
S(\lambda)=I_{\mathfrak{Q}_{\lambda}}-2 i \sqrt{\Im m \tau(\lambda)}(\tau(\lambda)+M(\lambda))^{-1} \sqrt{\Im m \tau(\lambda)}
$$

for a.e. $\boldsymbol{\lambda} \in \mathbb{R}$, where $\tau(\lambda)=\tau(\lambda+i 0)$ and $\boldsymbol{M}(\boldsymbol{\lambda})=\boldsymbol{M}(\boldsymbol{\lambda}+\boldsymbol{i} 0)$.
(iii) The scattering matrix $\{\boldsymbol{S}(\boldsymbol{\lambda})\}_{\lambda \in \mathbb{R}}$ of the scattering system $\left\{L, L_{0}\right\}$ admits the representation

$$
\begin{equation*}
S(\lambda)=\Theta_{A_{-\tau(\lambda)}}(\lambda-i 0)^{*} \tag{2}
\end{equation*}
$$

for a.e. $\boldsymbol{\lambda} \in \mathbb{R}$ where $\Theta_{A_{-\tau(\lambda)}}(\cdot), \boldsymbol{\lambda} \in \mathbb{R}$, are the characteristic functions of the the Strauss family $\left\{A_{-\tau(\lambda)}\right\}_{\lambda \in \mathbb{R}}$.

14 R-matrix

One introduces the \boldsymbol{R}-matrix

$$
R(\lambda):=i\left(I_{\mathcal{H}_{\tau(\lambda)}}-S(\lambda)\right)\left(I_{\mathcal{H}_{\tau(\lambda)}}+S(\lambda)\right)^{-1},
$$

for those $\lambda \in \Sigma^{\tau}$ obeying $-1 \in \varrho(\widetilde{S}(\lambda))$ which is a bounded operator acting in $\mathcal{H}_{\tau(\lambda)}$. Conversely, one has

$$
S(\lambda)=\frac{i \boldsymbol{I}_{\mathcal{H}(\tau(\lambda))}-R(\lambda)}{i \boldsymbol{I}_{\mathcal{H}(\tau(\lambda))}+R(\lambda)}
$$

A straightforward calculation shows that

$$
\left.R(\lambda)=-\sqrt{\Im \mathrm{m}(\tau(\lambda))}(M(\lambda)+\Re \mathrm{e}(\tau(\lambda)))^{-1}\right) \sqrt{\Im \mathrm{m}(\tau(\lambda))}
$$

for $\lambda \in\left\{t \in \Sigma^{\tau}: \Im m(\tau(t)) \neq 0\right\} \cap \Sigma^{M} \cap \Sigma^{(M+\tau)^{-1}}$ and $\operatorname{ker}(M(\lambda)+\Re e(\tau(\lambda))=\{0\}$. If $\Re \mathrm{e}(\tau(\lambda))=0$, then

$$
R(\lambda)=-\sqrt{\Im \mathrm{m}(\tau(\lambda))} M(\lambda)^{-1} \sqrt{\Im \mathrm{~m}(\tau(\lambda))}
$$

for $\lambda \in\left\{t \in \Sigma^{\tau}: \Im m(\tau(t)) \neq 0\right\} \cap \Sigma^{M} \cap \Sigma^{(M+\tau)^{-1}}$ and $\operatorname{ker}(M(\lambda))=\{0\}$.

15 Eigenfunction representation

Let us introduce the self-adjoint extensions

$$
A_{-\Re e}(\tau(\lambda)):=A^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{1}+\Re \mathrm{e}(\tau(\lambda)) \Gamma_{0}\right)
$$

for $\lambda \in \Sigma^{\tau}$. If $\lambda \in \Sigma^{\tau} \cap \varrho\left(A_{0}\right)$, then

$$
\lambda \in \varrho\left(A_{-\Re \mathrm{e}(\tau(\lambda))}\right) \Longleftrightarrow \operatorname{ker}(M(\lambda)+\Re \mathrm{e}(\tau(\lambda)))=\{0\} .
$$

PROPOSITION 4. Let $\boldsymbol{A},\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}, M(\cdot)$ and $\boldsymbol{T},\left\{\mathcal{H}, \Upsilon_{0}, \Upsilon_{1}\right\}, \tau(\cdot)$ be as above and assume $\sigma\left(A_{0}\right)=\sigma_{p}\left(A_{0}\right)$ and that \boldsymbol{A} is semibounded from below. For each $\boldsymbol{\lambda} \in\left\{t \in \Sigma^{\tau}: \Im m \tau(t)\right) \neq$ $0\} \cap \varrho\left(\boldsymbol{A}_{0}\right) \cap \varrho\left(\boldsymbol{A}_{-\tau(\lambda)}\right) \cap \varrho\left(\boldsymbol{A}_{-\Re \mathrm{e}(\tau(\lambda))}\right)$ with $\boldsymbol{A}_{-\Re e(\tau(\lambda))} \leq \boldsymbol{A}_{0}$ the \boldsymbol{R}-matrix admits the representation

$$
R(\lambda)=\sum_{k=1}^{\infty}\left(\lambda_{k}[\lambda]-\lambda\right)^{-1}\left(\cdot, \sqrt{\Im m(\tau(\lambda))} \Gamma_{0} \psi_{k}[\lambda]\right) \sqrt{\Im m(\tau(\lambda))} \Gamma_{0} \psi_{k}[\lambda]
$$

where $\left\{\lambda_{k}[\lambda]\right\}, k=1,2, \ldots$, are the eigenvalues of the selfadjoint extension $A_{-\Re(~}^{(\tau(\lambda))}$ in increasing order and $\psi_{k}[\lambda]$ are the corresponding eigenfunctions.

16 Wigner-Eisenbud representation

COROLLARY 5 (Wigner-Eisenbud '46-'47). If in addition $\Re \mathrm{e}(\boldsymbol{\tau}(\boldsymbol{\lambda}))=\mathbf{0}$ and $\boldsymbol{A}_{1} \leq \boldsymbol{A}_{0}$, then for each $\lambda \in\left\{t \in \Sigma^{\tau}: \Im m(\tau(t)) \neq 0\right\} \cap \varrho\left(A_{0}\right) \cap \varrho\left(A_{-\tau(\lambda)}\right) \cap \varrho\left(A_{1}\right)$ the R-matrix admits the representation

$$
R(\lambda)=\sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda\right)^{-1}\left(\cdot, \sqrt{\Im m(\tau(\lambda))} \Gamma_{0} \psi_{k}\right) \sqrt{\Im m(\tau(\lambda))} \Gamma_{0} \psi_{k}
$$

where $\left\{\boldsymbol{\lambda}_{k}\right\}, k=1,2, \ldots$, are the eigenvalues of the selfadjoint extension $\boldsymbol{A}_{1}:=\boldsymbol{A}^{*} \upharpoonright \operatorname{ker}\left(\boldsymbol{\Gamma}_{\mathbf{1}}\right)$ in increasing order and ψ_{k} are the corresponding eigenfunctions.

In particular, if $A_{0}:=A^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right)$ is the Friedrichs extension, then the condition $A_{-\Re \mathrm{e}(\tau(\lambda))} \leq A_{0}$ or $A_{1} \leq A_{0}$ is always satisfied.

If the condition $A_{-\Re e(\tau(\lambda))} \leq A_{0}$ or $A_{1} \geq A_{0}$ is not satisfied, then Wigner-Eisenbud representation is not true.

17 Example

17.1 Inner system

In $\mathfrak{H}:=L^{2}\left(\left(x_{l}, x_{r}\right)\right)$ one defines

$$
\begin{aligned}
& (A f)(x):=-\frac{1}{2} \frac{d}{d x} \frac{1}{m(x)} \frac{d}{d x} f(x)+v(x) f(x), \\
& \operatorname{dom}(A):=\left\{\begin{array}{l}
f, \frac{1}{m} f^{\prime} \in W^{1,2}\left(\left(x_{l}, x_{r}\right)\right) \\
\left.f \in \mathfrak{H}: \begin{array}{l}
f\left(x_{l}\right)=f\left(x_{r}\right)=0 \\
\left(\frac{1}{m} f^{\prime}\right)\left(x_{l}\right)=\left(\frac{1}{m} f^{\prime}\right)\left(x_{r}\right)=0
\end{array}\right\} . ~ . ~ . ~ . ~ . ~
\end{array}\right.
\end{aligned}
$$

where $m>0$ and $m+\frac{1}{m} \in L^{\infty}\left(\left(x_{l}, x_{r}\right)\right), v \in L^{\infty}\left(\left(x_{l}, x_{r}\right)\right)$.

$$
\Gamma_{0} f:=\binom{f\left(x_{l}\right)}{f\left(x_{r}\right)} \quad \text { and } \quad \Gamma_{1} f:=\frac{1}{2}\binom{\left(\frac{1}{m} f^{\prime}\right)\left(x_{l}\right)}{-\left(\frac{1}{m} f^{\prime}\right)\left(x_{r}\right)},
$$

$A_{0} \Longleftrightarrow$ Dirichlet boundary conditions $\quad A_{1} \Longleftrightarrow$ Neumann boundary conditions.

17.2 Outer system

$\ln \mathfrak{K}_{l}=L^{2}\left(\left(-\infty, x_{l}\right)\right)$ one defines

$$
\begin{aligned}
\left(T_{l} f\right)(x) & :=-\frac{1}{2 m_{l}} \frac{d^{2}}{d x^{2}} f(x)+v_{l}(x) f(x), \\
\operatorname{dom}\left(T_{l}\right) & :=\left\{\begin{array}{l}
f \in \mathfrak{K}_{l}: \begin{array}{l}
f, \frac{1}{m_{l}} f^{\prime} \in W^{1,2}\left(\left(-\infty, x_{l}\right)\right) \\
f\left(x_{l}\right)=\left(\frac{1}{m_{l}} f^{\prime}\right)\left(x_{l}\right)=0
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Boundary triplet:

$$
\Upsilon_{0}^{l} f:=f\left(x_{l}\right) \quad \text { and } \quad \Upsilon_{1}^{l} f=-\left(\frac{1}{2 m_{l}} f^{\prime}\right)\left(x_{l}\right), \quad f \in \operatorname{dom}\left(T_{l}^{*}\right),
$$

Weyl function:

$$
\tau_{l}(\lambda):=i \sqrt{\frac{\lambda-v_{l}}{2 m_{l}}}, \quad \lambda \in \mathbb{C}_{+} .
$$

In $\mathfrak{K}_{r}=L^{2}\left(\left(\boldsymbol{x}_{r}, \infty\right)\right)$ one defines

$$
\begin{aligned}
\left(T_{r} f\right)(x) & :=-\frac{1}{2 m_{r}} \frac{d^{2}}{d x^{2}} f(x)+v_{r}(x) f(x), \\
\operatorname{dom}\left(T_{r}\right) & :=\left\{\begin{array}{l}
f \in \mathfrak{K}_{r}: \begin{array}{l}
m_{r} \\
f\left(x_{r}\right)=\left(\frac{1}{m_{r}} f^{\prime}\right)\left(x_{r}\right)=0
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Boundary triplet

$$
\Upsilon_{0}^{r} f:=f\left(x_{r}\right) \quad \text { and } \quad \Upsilon_{1}^{r} f=\left(\frac{1}{2 m_{r}} f^{\prime}\right)\left(x_{r}\right), \quad f \in \operatorname{dom}\left(T_{r}^{*}\right),
$$

Weyl function:

$$
\tau_{r}(\lambda):=i \sqrt{\frac{\lambda-v_{r}}{2 m_{r}}}, \quad \lambda \in \mathbb{C}_{+}
$$

Full outer system

$$
\begin{gathered}
L^{2}\left(\mathbb{R} \backslash\left(x_{l}, x_{r}\right)\right)=L^{2}\left(\left(-\infty, x_{r}\right)\right) \oplus L^{2}\left(\left(x_{r}, \infty\right)\right) \\
T=T_{l} \oplus T_{r}
\end{gathered}
$$

Boundary triplet:

$$
\Upsilon_{0}:=\Upsilon_{0}^{l} \oplus \Upsilon_{0}^{r} \quad \text { and } \quad \Upsilon_{1}:=\Upsilon_{1}^{l} \oplus \Upsilon_{1}^{r}
$$

Weyl function:

$$
\tau(\lambda):=\left(\begin{array}{cc}
\tau_{l}(\lambda) & 0 \\
0 & \tau_{r}(\lambda)
\end{array}\right)
$$

17.3 Strauss family

$$
\operatorname{dom}\left(A_{-\tau(\lambda)}\right):=\left\{\begin{array}{c}
f, \frac{1}{m} f^{\prime} \in W^{1,2}\left(\left(x_{l}, x_{r}\right)\right) \\
f \in \mathfrak{H}:\left(\frac{1}{2 m} f^{\prime}\right)\left(x_{l}\right)=-\tau_{l}(\lambda) f\left(x_{l}\right) \\
\left(\frac{1}{2 m} f^{\prime}\right)\left(x_{r}\right)=\tau_{r}(\lambda) f\left(x_{r}\right)
\end{array}\right\}, \quad \lambda \in \mathbb{C}_{+},
$$

and

$$
\left(A_{-\tau(\lambda)} f\right)(x)=-\frac{1}{2} \frac{d}{d x} \frac{1}{m} \frac{d}{d x} f(x)+v(x) f(x), \quad x \in\left(x_{l}, x_{r}\right),
$$

$f \in \operatorname{dom}\left(\boldsymbol{A}_{-\tau(\lambda)}\right), \lambda \in \mathbb{C}_{+}$.
Characteristic function:

$$
\Theta_{A_{-\tau(\lambda)}}(\mu)=I_{\mathcal{H}_{\tau(\lambda)}}-i \sqrt{2 \Im \mathrm{~m}(\tau(\lambda))} \Gamma_{0}\left(A_{-\tau(\lambda)}^{*}-\mu\right)^{-1} \Gamma_{0}^{*} \sqrt{2 \Im \mathrm{~s}\left(\tau_{l}(\lambda)\right)}, \quad \mu \in \mathbb{C}_{-}
$$

for $\boldsymbol{\lambda} \in \boldsymbol{\Sigma}^{\tau}$.

17.4 Scattering

The coupled system coincides with the operator L defined at the beginning while the unperturbed operator coincides with L_{0}, that is

$$
L_{0} f=-\frac{1}{2} \frac{d}{d x} \frac{1}{M} \frac{d}{d x} f+V f
$$

with domain
$\operatorname{dom}\left(L_{0}\right):=W_{0}^{2,2}\left(\left(-\infty, x_{l}\right)\right) \oplus\left\{f \in W^{1,2}\left(\left(x_{l}, x_{r}\right)\right): \begin{array}{c}\frac{1}{m} f^{\prime} \in W^{1,2}\left(\left(x_{l}, x_{r}\right)\right) \\ f\left(x_{l}\right)=f\left(x_{r}\right)=0\end{array}\right\} \oplus W_{0}^{2,2}\left(\left(x_{r}, \infty\right)\right)$.
Notice that L_{0} is the Friedrichs extension.
$\left\{L \cdot L_{0}\right\}$ performs a complete scattering system, its scattering matrix is given by

$$
S(\lambda):=\Theta_{A_{-\tau(\lambda)}}(\lambda-i 0)^{*} .
$$

17.5 R-matrix

We note that

$$
\Re \mathrm{e}(\tau(\lambda))=0, \quad \lambda \in\left(\max \left\{v_{l}, v_{r}\right\}, \infty\right)
$$

Further

$$
A_{1}:=A^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{1}\right)
$$

with

$$
\operatorname{ker}\left(\Gamma_{1}\right):=\left\{f \in W^{1,2}\left(\left(x_{l}, x_{r}\right)\right): \begin{array}{c}
\frac{1}{m} f^{\prime} \in W^{1,2}\left(\left(x_{l}, x_{r}\right)\right) \\
\left(\frac{1}{2 m} f^{\prime}\right)\left(x_{l}\right)=\left(\frac{1}{2 m} f^{\prime}\right)\left(x_{r}\right)=0
\end{array}\right\}
$$

The \boldsymbol{R}-matrix admits the representation

$$
R(\lambda)=\sum_{k \in \mathbb{N}}\left(\lambda_{k}-\lambda\right)^{-1}\left\langle\cdot,\binom{\sqrt{\Im m\left(\tau_{l}(\lambda)\right)} \psi_{k}\left(x_{l}\right)}{\sqrt{\Im m\left(\tau_{r}(\lambda)\right)} \psi_{k}\left(x_{r}\right)}\right\rangle\binom{\sqrt{\Im m\left(\tau_{l}(\lambda)\right)} \psi_{k}\left(x_{l}\right)}{\sqrt{\Im m\left(\tau_{r}(\lambda)\right)} \psi_{k}\left(x_{r}\right)}
$$

for $\boldsymbol{\lambda} \in\left(\max \left\{\boldsymbol{v}_{l}, v_{r}\right\}, \infty\right)$ where $\boldsymbol{\lambda}_{k}$ and ψ_{k} are the eigenvalues and eigenfunctions of \boldsymbol{A}_{1}.

