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Wigner’s R-matrix and Weyl function

1 Basic facts on scattering system

Pair of self-adjoint operators {L,L0} on some separable Hilbert space L such that the wave
operators

W±(L,L0) = s− lim
t→±∞

eitLe−itL0P ac(L0)

exists where P ac(L0) is the projection onto the absolutely continuous subspace Lac(L0) of
L0. One has

ran(W±(L,L0)) ⊆ Lac(L0).

We say the scattering system is complete if

ran(W±(L,L0)) = Lac(L).

It is known that completeness ⇐⇒ existence of W±(L0, L).
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2 Existence of the wave operators

Let V = V ∗ be a self-adjoint trace class operator. If

L = L0 + V,

then {L,L0} performs a complete scattering system.

If
(L− z)−p − (L0 − z)−p ∈ B1(L), p ∈ N,

for some z ∈ C \ R, then {L,L0} is a complete scattering system. In particular, if

(L− z)−1 − (L0 − z)−1 ∈ B1(L).
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3 Scattering operator

The scattering operator S : Lac(L0) −→ Lac(L0)

S(L,L0) := W+(L,L0)
∗W−(L,L0).

Obviously, one has
e−itL0S(L,L0) = S(L,L0)e

−itL0, t ∈ R,
which is equivalent to

E0(∆)S(L,L0) = S(L,L0)E0(∆), ∆ ∈ B(R).

If {L,L0} is a complete scattering system, then S(L,L0) is unitary on Lac(L0), that is,

S(L,L0)
∗S(L,L0) = S(L,L0)S(L,L0)

∗ = ILac(L0).
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4 Scattering matrix

There is direct integral representation of Lac(L0),

Lac(L0) ∼=
∫ ⊕

Qλdµ(λ),

where {Qλ}λ∈R is family of Hilbert spaces and µ(·) is a Borel measure on R which is abso-
lutely continuous with respect to the Lebesgue measure dλ on R, such that

Lac0
∼= λ

Such a representation is called a spectral representation of Lac0 .

Since S(L,L0) commutes with Lac0 , there is a measurable family of operators {S(λ)}λ∈R,
S(λ) : Qλ −→ Qλ, such that

S(L,L0) ∼= S(λ)

If S(L,L0) is unitary, then S(λ) is unitary for a.e. λ with respect to µ. {S(λ)}λ∈R is called
the scattering matrix of the scattering system {L,L0}.
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5 Example

Lf = −
1

2

d

dx

1

M

d

dx
f + V f, f ∈ dom(L) = {f ∈ W 1,2(R) :

1

M
f ∈ W 1,2(R)}.

where

M(x) :=


ml, x ∈ (−∞, xl]

m(x), x ∈ (xl, xr)

mr, x ∈ [xr,∞)

V (x) :=


vl, x ∈ (−∞, xl]

v(x), x ∈ (xl, xr)

vr, x ∈ [xr,∞).

L0 := −
1

2ml

d2

dx2
+ vl ⊕ −

1

2

d

dx

1

m

d

dx
+ v(x) ⊕ −

1

2mr

d2

dx2
+ vr Dirichlet b. c.

L2(R) = L2((−∞), xl) ⊕ L2((xl, xr)) ⊕ L2((xr,∞).

{L,L0} performs a complete scattering system
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6 Eisenbud-Wigner representation

Let {S(λ)}λ∈R be the scattering matrix in the spectral representation∫ ⊕
Qλdµ(λ) ' L2((vr, vl),C) ⊕ L2((vl,∞),C2), vl > vr.

Wigner’s R-matrix:

R(λ) := i(IQλ
− S(λ))(IQλ

+ S(λ))−1 =⇒ S(λ) :=
iIQλ

−R(λ)

iIQλ
+R(λ)

R(λ) =
∞∑
k=1

(λk − λ)−1

·,

 4
√

λ−vl
2ml

ψk(xl, λ)

4
√

λ−vr
2mr

ψk(xr, λ)

  4
√

λ−vl
2ml

ψk(xl, λ)

4
√

λ−vr
2mr

ψk(xr, λ)

 , λ > vl,

where {λk} and ψk, k = 1, 2, . . . , are the eigenvalues and eigenfunctions of the selfadjoint
operator

A1 := −
1

2

d

dx

1

m(x)

d

dx
+ v(x), Neumann b. c.
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Wigner’s R-matrix and Weyl function

7 Boundary triplets and scattering

Let A be a closed symmetric operator on H and {H,Γ0,Γ1} be a boundary triplet of A∗.

By M(z) we denote the corresponding Weyl function.

We consider the extensions

A0 := L∗ � ker(Γ0) and AΘ := L∗ � Γ−1Θ (1)

where Θ is some self-adjoint relation on H.

If the deficiency indices of L are finite, then any pair {AΘ, A0} performs a complete scatte-
ring system since the resolvent difference is a finite dimensional operator.

Problem: Let us consider the scattering system {LΘ, L0}. Is it possible to calculate the scat-
tering matrix {S(λ)}λ∈R?
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8 Boundary triplets and direct integrals

Since H is finite dimensional the limits M(λ) := M(λ + i0) for a.e. λ ∈ R. We denote by
ΣM ⊆ R the set where the limit M(λ+ i0) exists. Further,

HM(λ) := ran(=m(M(λ)) ⊆ H, λ ∈ Στ .

By QM(λ) we denote the family of orthogonal projections onto HM(λ) which is measurable.

L2(R, dλ,H) =

∫ ⊕
Hdλ.

In L2(R, dλ,H) we introduce the projection

(QMf)(λ) := QM(λ)f(λ), f ∈ L2(R, dλ,H).

The subspace QML
2(R, dλ,H) is denoted by

QML
2(R, dλ,H) = L2(R, dλ,HM(λ)) =

∫ ⊕
HM(λ)dλ.

It turns out that Lac0
∼= λ where λ is the multiplication operator in L2(R, dλ,HM(λ)).
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9 Boundary triplets and scattering

THEOREM 1. Let A be a densely defined closed simple symmetric operator with finite deficiency
indices in the separable Hilbert space H and let Π = {H,Γ0,Γ1} be a boundary triple for A∗ and
M(·) be the corresponding Weyl function. Further, let A0 = A∗ � ker(Γ0) and let AΘ = A∗ �
Γ−1Θ be a self-adjoint extension of A where Θ is a self-adjoint relation in H. Then the scattering
matrix {S(λ)}λ∈R of the complete scattering system {AΘ, A0} admits the representation

S(λ) = IHM(λ) + 2i
√

=m(M(λ))
(
Θ −M(λ)

)−1√=m(M(λ))

for a.e. λ ∈ R, whereM(λ) := M(λ+ i0).
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10 Open quantum systems and decoupled system

Let us consider two symmetric operators A and T in H and K, respectively, with equal finite
deficiency indices. Further, let {H,Γ0,Γ1} and {H,Υ0,Υ1} boundary triplets with Weyl
functions M(λ) and τ (λ), respectively. Then {H̃, Γ̃0, Γ̃1},

H̃ :=

(
H
H

)
, Γ̃0 :=

(
Γ0

Υ0

)
, Γ̃1 :=

(
Γ1

Υ1

)
performs a boundary triplet for A∗ ⊕ T ∗ with Weyl function

M̃(λ) :=

(
M(λ) 0

0 τ (λ)

)
The systems {H, A} and {K, T} are called open system, {H, A} is called the inner system,
{K, T} is called the outer system. The observer is in the inner system.

The system {L, A0⊕T0},A0 := A∗ � ker(Γ0), T0 := T ∗ � ker(Υ0), is called the decoupled
system.
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11 Open quantum system and coupled system

THEOREM 2 (Derkach, Hassi, M. de Snoo, 2000). LetA and T be densely defined closed symmetric
operators in the Hilbert spaces H and K which equal deficiency indices. Then the following holds:

(i) The closed extension L := A∗ ⊕ T ∗ � Γ̃−1Θ̃ corresponding to the relation

Θ̃ :=

{(
(v, v)>

(w,−w)>

)
: v, w ∈ H

}
is self-adjoint in the Hilbert space L := H ⊕ K and is given by

L = A∗ ⊕ T ∗ �

{
f1 ⊕ f2 ∈ dom(A∗ ⊕ T ∗) :

Γ0f1 − Υ0f2 = 0

Γ1f1 + Υ1f2 = 0

}
.

(ii) The Strauss familyA−τ (λ) := A∗ � ker(Γ1 + τ (λ)Γ0), λ ∈ C+, satisfies

(A−τ (λ) − λ)−1 = PH

(
L− λ

)−1
� H, λ ∈ C+.

The system {L, L} is called the coupled system.
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12 Strauss family

Let τ (·) : K −→ K be a Nevanlinna function.

A−τ (λ) := A∗ �
{
f ∈ dom(A∗) : Γ1f = −τ (λ)Γ0f

}
, λ ∈ C+,

{A−τ (λ)}λ∈C+ is called a Strauss family.

Since dim(H) < ∞ the family admits an extension to a.e. λ ∈ R, i.e.

τ (λ) := lim
ε→+0

τ (λ+ iε).

In general, the Strauss family consists of maximal dissipative operators. The characteristic
function of A−τ (λ) are given by

ΘA−τ (λ)(µ) = IQλ
+ 2i

√
=m(τ (λ))

(
τ (λ)∗ +M(µ)∗)−1√=m(τ (λ)), µ ∈ C−,

where
Qλ := clo{ran(=mτ (λ))}.
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13 Coupling and scattering

THEOREM 3. Let A and T be densely defined closed simple symmetric operators in H and K,
respectively, with equal finite deficiency indices such thatA0 is discrete. Then

(i) The wave operators

W±(L,L0) = s− lim
t→±∞

eitLe−itL0P ac(L0) = s− lim
t→±∞

eitLe−itT0P ac(T0)

exist and are complete.

(ii) The scattering matrix {S(λ)}λ∈R of the scattering system {L,L0} admits the representation

S(λ) = IQλ
− 2i

√
=mτ (λ)

(
τ (λ) +M(λ)

)−1√=mτ (λ)

for a.e. λ ∈ R, where τ (λ) = τ (λ+ i0) andM(λ) = M(λ+ i0).

(iii) The scattering matrix {S(λ)}λ∈R of the scattering system {L,L0} admits the representation

S(λ) = ΘA−τ (λ)(λ− i0)∗ (2)

for a.e. λ ∈ R where ΘA−τ (λ)(·), λ ∈ R, are the characteristic functions of the the Strauss family
{A−τ (λ)}λ∈R.
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14 R-matrix

One introduces the R-matrix

R(λ) := i(IHτ (λ) − S(λ))(IHτ (λ) + S(λ))−1,

for those λ ∈ Στ obeying −1 ∈ %(S̃(λ)) which is a bounded operator acting in Hτ (λ).
Conversely, one has

S(λ) =
iIH(τ (λ)) −R(λ)

iIH(τ (λ)) +R(λ)

A straightforward calculation shows that

R(λ) = −
√

=m(τ (λ)) (M(λ) + <e(τ (λ)))−1)
√

=m(τ (λ))

for λ ∈ {t ∈ Στ : =m(τ (t)) 6= 0} ∩ ΣM ∩ Σ(M+τ )−1 and ker(M(λ) + <e(τ (λ)) = {0}. If
<e(τ (λ)) = 0, then

R(λ) = −
√

=m(τ (λ))M(λ)−1
√

=m(τ (λ))

for λ ∈ {t ∈ Στ : =m(τ (t)) 6= 0} ∩ ΣM ∩ Σ(M+τ )−1 and ker(M(λ)) = {0}.
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15 Eigenfunction representation

Let us introduce the self-adjoint extensions

A−<e(τ (λ)) := A∗ � ker(Γ1 + <e(τ (λ))Γ0)

for λ ∈ Στ . If λ ∈ Στ ∩ %(A0), then

λ ∈ %(A−<e(τ (λ))) ⇐⇒ ker(M(λ) + <e(τ (λ))) = {0}.
PROPOSITION 4. LetA, {H,Γ0,Γ1},M(·) and T , {H,Υ0,Υ1}, τ (·) be as above and assume
σ(A0) = σp(A0) and that A is semibounded from below. For each λ ∈ {t ∈ Στ : =mτ (t)) 6=
0} ∩ %(A0) ∩ %(A−τ (λ)) ∩ %(A−<e(τ (λ))) withA−<e(τ (λ)) ≤ A0 theR-matrix admits the repre-
sentation

R(λ) =
∞∑
k=1

(λk[λ] − λ)−1
(
·,

√
=m(τ (λ))Γ0ψk[λ]

)√
=m(τ (λ))Γ0ψk[λ],

where {λk[λ]}, k = 1, 2, . . . , are the eigenvalues of the selfadjoint extension A−<e(τ (λ)) in incre-
asing order and ψk[λ] are the corresponding eigenfunctions.
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16 Wigner-Eisenbud representation

COROLLARY 5 (Wigner-Eisenbud ’46–’47). If in addition <e(τ (λ)) = 0 andA1 ≤ A0, then for
each λ ∈ {t ∈ Στ : =m(τ (t)) 6= 0} ∩ %(A0) ∩ %(A−τ (λ)) ∩ %(A1) the R-matrix admits the
representation

R(λ) =
∞∑
k=1

(λk − λ)−1
(
·,

√
=m(τ (λ))Γ0ψk

)√
=m(τ (λ))Γ0ψk,

where {λk}, k = 1, 2, . . . , are the eigenvalues of the selfadjoint extensionA1 := A∗ � ker(Γ1) in
increasing order and ψk are the corresponding eigenfunctions.

In particular, if A0 := A∗ � ker(Γ0) is the Friedrichs extension, then the condition
A−<e(τ (λ)) ≤ A0 or A1 ≤ A0 is always satisfied.

If the condition A−<e(τ (λ)) ≤ A0 or A1 ≥ A0 is not satisfied, then Wigner-Eisenbud repre-
sentation is not true.
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17 Example

17.1 Inner system

In H := L2((xl, xr)) one defines

(Af)(x) := −
1

2

d

dx

1

m(x)

d

dx
f(x) + v(x)f(x),

dom(A) :=

f ∈ H :

f, 1
m
f ′ ∈ W 1,2((xl, xr))

f(xl) = f(xr) = 0(
1
m
f ′) (xl) =

(
1
m
f ′) (xr) = 0

 .

where m > 0 and m+ 1
m

∈ L∞((xl, xr)), v ∈ L∞((xl, xr)).

Γ0f :=

(
f(xl)

f(xr)

)
and Γ1f :=

1

2

( (
1
m
f ′) (xl)

−
(

1
m
f ′) (xr)

)
,

A0 ⇐⇒ Dirichlet boundary conditions A1 ⇐⇒ Neumann boundary conditions.
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17.2 Outer system

In Kl = L2((−∞, xl)) one defines

(Tlf)(x) := −
1

2ml

d2

dx2
f(x) + vl(x)f(x),

dom(Tl) :=

{
f ∈ Kl :

f, 1
ml
f ′ ∈ W 1,2((−∞, xl))

f(xl) =
(

1
ml
f ′

)
(xl) = 0

}
.

Boundary triplet:

Υl
0f := f(xl) and Υl

1f = −
(

1

2ml

f ′
)

(xl), f ∈ dom(T ∗
l ),

Weyl function:

τl(λ) := i

√
λ− vl

2ml

, λ ∈ C+.
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In Kr = L2((xr,∞)) one defines

(Trf)(x) := −
1

2mr

d2

dx2
f(x) + vr(x)f(x),

dom(Tr) :=

{
f ∈ Kr :

f, 1
mr
f ′ ∈ W 1,2((xr,∞))

f(xr) =
(

1
mr
f ′

)
(xr) = 0

}
.

Boundary triplet

Υr
0f := f(xr) and Υr

1f =

(
1

2mr

f ′
)

(xr), f ∈ dom(T ∗
r ),

Weyl function:

τr(λ) := i

√
λ− vr

2mr

, λ ∈ C+.
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Full outer system

L2(R \ (xl, xr)) = L2((−∞, xr)) ⊕ L2((xr,∞)),

T = Tl ⊕ Tr

Boundary triplet:
Υ0 := Υl

0 ⊕ Υr
0 and Υ1 := Υl

1 ⊕ Υr
1

Weyl function:

τ (λ) :=

(
τl(λ) 0

0 τr(λ)

)
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17.3 Strauss family

dom(A−τ (λ)) :=

f ∈ H :

f, 1
m
f ′ ∈ W 1,2((xl, xr))

( 1
2m
f ′)(xl) = −τl(λ)f(xl)

( 1
2m
f ′)(xr) = τr(λ)f(xr)

 , λ ∈ C+,

and
(A−τ (λ)f)(x) = −

1

2

d

dx

1

m

d

dx
f(x) + v(x)f(x), x ∈ (xl, xr),

f ∈ dom(A−τ (λ)), λ ∈ C+.

Characteristic function:

ΘA−τ (λ)(µ) = IHτ (λ) − i
√

2 =m(τ (λ))Γ0(A
∗
−τ (λ) − µ)−1Γ∗

0

√
2 =m(τl(λ)), µ ∈ C−.

for λ ∈ Στ .
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17.4 Scattering

The coupled system coincides with the operator L defined at the beginning while the unper-
turbed operator coincides with L0, that is

L0f = −
1

2

d

dx

1

M

d

dx
f + V f,

with domain

dom(L0) := W 2,2
0 ((−∞, xl))⊕

{
f ∈ W 1,2((xl, xr)) :

1
m
f ′ ∈ W 1,2((xl, xr))

f(xl) = f(xr) = 0

}
⊕W 2,2

0 ((xr,∞)).

Notice that L0 is the Friedrichs extension.

{L.L0} performs a complete scattering system, its scattering matrix is given by

S(λ) := ΘA−τ (λ)(λ− i0)∗.
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17.5 R-matrix

We note that
<e(τ (λ)) = 0, λ ∈ (max{vl, vr},∞).

Further
A1 := A∗ � ker(Γ1)

with

ker(Γ1) :=

{
f ∈ W 1,2((xl, xr)) :

1
m
f ′ ∈ W 1,2((xl, xr))(

1
2m
f ′) (xl) =

(
1

2m
f ′) (xr) = 0

}
.

The R-matrix admits the representation

R(λ) =
∑
k∈N

(λk − λ)−1

〈
·,

(√
=m(τl(λ))ψk(xl)√
=m(τr(λ))ψk(xr)

)〉 (√
=m(τl(λ))ψk(xl)√
=m(τr(λ))ψk(xr)

)
for λ ∈ (max{vl, vr},∞) where λk and ψk are the eigenvalues and eigenfunctions of A1.
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