

Hagen Neidhardt Wigner's *R*-matrix and Weyl functions

joint work with Jussi Behrndt (TU Berlin), Roxana and Paul Racec (TU Cottbus), Ulrich Wulf (TU Cottbus)

TU Berlin Operatortag 2006, December 14.-17., 2006

1 Basic facts on scattering system

Pair of self-adjoint operators $\{L, L_0\}$ on some separable Hilbert space \mathfrak{L} such that the wave operators

$$W_\pm(L,L_0)=s-\lim_{t
ightarrow\pm\infty}e^{itL}e^{-itL_0}P^{ac}(L_0)\,.$$

exists where $P^{ac}(L_0)$ is the projection onto the absolutely continuous subspace $\mathfrak{L}^{ac}(L_0)$ of L_0 . One has

$$\operatorname{ran}(W_{\pm}(L,L_0)) \subseteq \mathfrak{L}^{ac}(L_0).$$

We say the scattering system is complete if

 $\operatorname{ran}(W_{\pm}(L,L_0)) = \mathfrak{L}^{ac}(L).$

It is known that completeness \iff existence of $W_{\pm}(L_0,L)$.

W I A S

2 Existence of the wave operators

Let $V = V^*$ be a self-adjoint trace class operator. If

 $L = L_0 + V,$

then $\{L, L_0\}$ performs a complete scattering system.

lf

WIAS

$$(L-z)^{-p}-(L_0-z)^{-p}\in \mathcal{B}_1(\mathfrak{L}), \hspace{1em} p\in \mathbb{N},$$

for some $z \in \mathbb{C} \setminus \mathbb{R}$, then $\{L, L_0\}$ is a complete scattering system. In particular, if

$$(L-z)^{-1}-(L_0-z)^{-1}\in\mathcal{B}_1(\mathfrak{L}).$$

3 Scattering operator

The scattering operator $S: \mathfrak{L}^{ac}(L_0) \longrightarrow \mathfrak{L}^{ac}(L_0)$

$$S(L,L_0):=W_+(L,L_0)^*W_-(L,L_0).$$

Obviously, one has

WIAS

$$e^{-itL_0}S(L,L_0)=S(L,L_0)e^{-itL_0}, \hspace{1em}t\in\mathbb{R},$$

which is equivalent to

$$E_0(\Delta)S(L,L_0)=S(L,L_0)E_0(\Delta), \hspace{1em} \Delta\in \mathfrak{B}(\mathbb{R}).$$

If $\{L, L_0\}$ is a complete scattering system, then $S(L, L_0)$ is unitary on $\mathfrak{L}^{ac}(L_0)$, that is,

$$S(L,L_0)^*S(L,L_0)=S(L,L_0)S(L,L_0)^*=I_{\mathfrak{L}^{ac}(L_0)}.$$

4 Scattering matrix

w i a s

There is direct integral representation of $\mathfrak{L}^{ac}(L_0)$,

$$\mathfrak{L}^{ac}(L_0)\cong\int^\oplus\mathfrak{Q}_\lambda d\mu(\lambda),$$

where $\{\mathfrak{Q}_{\lambda}\}_{\lambda\in\mathbb{R}}$ is family of Hilbert spaces and $\mu(\cdot)$ is a Borel measure on \mathbb{R} which is absolutely continuous with respect to the Lebesgue measure $d\lambda$ on \mathbb{R} , such that

$$L_0^{ac}\cong\lambda$$

Such a representation is called a spectral representation of L_0^{ac} .

Since $S(L, L_0)$ commutes with L_0^{ac} , there is a measurable family of operators $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$, $S(\lambda) : \mathfrak{Q}_{\lambda} \longrightarrow \mathfrak{Q}_{\lambda}$, such that

$$S(L,L_0)\cong S(\lambda)$$
 .

If $S(L, L_0)$ is unitary, then $S(\lambda)$ is unitary for a.e. λ with respect to μ . $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$ is called the scattering matrix of the scattering system $\{L, L_0\}$.

5 Example

WIAS

$$Lf=-rac{1}{2}rac{d}{dx}rac{1}{M}rac{d}{dx}f+Vf, \hspace{1em} f\in \mathrm{dom}(L)=\{f\in W^{1,2}(\mathbb{R}):rac{1}{M}f\in W^{1,2}(\mathbb{R})\}.$$

where

$$M(x):=\left\{egin{array}{ll} m_l, & x\in(-\infty,x_l]\ m(x), & x\in(x_l,x_r)\ m_r, & x\in[x_r,\infty) \end{array}
ight. V(x):=\left\{egin{array}{ll} v_l, & x\in(-\infty,x_l]\ v(x), & x\in(x_l,x_r)\ v_r, & x\in[x_r,\infty). \end{array}
ight.$$

$$egin{aligned} L_0 &:= -rac{1}{2m_l}rac{d^2}{dx^2} + v_l \ \oplus \ -rac{1}{2}rac{d}{dx}rac{1}{m}rac{d}{dx} + v(x) \ \oplus \ -rac{1}{2m_r}rac{d^2}{dx^2} + v_r \ & ext{Dirichlet b. c.} \ L^2(\mathbb{R}) \ = \ L^2((-\infty), x_l) \oplus L^2((x_l, x_r)) \oplus L^2((x_r, \infty). \end{aligned}$$

 $\{L, L_0\}$ performs a complete scattering system

6 Eisenbud-Wigner representation

Let $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$ be the scattering matrix in the spectral representation

$$\int^\oplus \mathfrak{Q}_\lambda d\mu(\lambda) \simeq L^2((v_r,v_l),\mathbb{C}) \oplus L^2((v_l,\infty),\mathbb{C}^2), \qquad v_l > v_r.$$

Wigner's *R*-matrix:

WIAS

$$egin{aligned} R(\lambda) &:= i(I_{\mathfrak{Q}_{\lambda}} - S(\lambda))(I_{\mathfrak{Q}_{\lambda}} + S(\lambda))^{-1} &\Longrightarrow S(\lambda) := rac{iI_{\mathfrak{Q}_{\lambda}} - R(\lambda)}{iI_{\mathfrak{Q}_{\lambda}} + R(\lambda)} \ R(\lambda) &= \sum_{k=1}^{\infty} (\lambda_k - \lambda)^{-1} \left(\cdot, \left(egin{aligned} \sqrt[4]{rac{\lambda - v_l}{2m_l}} \psi_k(x_l, \lambda) \ \sqrt[4]{rac{\lambda - v_r}{2m_r}} \psi_k(x_r, \lambda) \end{pmatrix}
ight) \left(egin{aligned} \sqrt[4]{rac{\lambda - v_l}{2m_l}} \psi_k(x_l, \lambda) \ \sqrt[4]{rac{\lambda - v_r}{2m_r}} \psi_k(x_r, \lambda) \end{pmatrix}
ight), \quad \lambda > v_l, \end{aligned}$$

where $\{\lambda_k\}$ and ψ_k , k = 1, 2, ..., are the eigenvalues and eigenfunctions of the selfadjoint operator

$$A_1:=-rac{1}{2}rac{d}{dx}rac{1}{m(x)}rac{d}{dx}+v(x),$$
 Neumann b. c.

7 Boundary triplets and scattering

Let A be a closed symmetric operator on \mathfrak{H} and $\{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet of A^* .

By M(z) we denote the corresponding Weyl function.

We consider the extensions

WIAS

$$A_0 := L^* \upharpoonright \ker(\Gamma_0)$$
 and $A_\Theta := L^* \upharpoonright \Gamma^{-1}\Theta$ (1)

where Θ is some self-adjoint relation on \mathcal{H} .

If the deficiency indices of L are finite, then any pair $\{A_{\Theta}, A_0\}$ performs a complete scattering system since the resolvent difference is a finite dimensional operator.

Problem: Let us consider the scattering system $\{L_{\Theta}, L_0\}$. Is it possible to calculate the scattering matrix $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$?

8 Boundary triplets and direct integrals

Since \mathcal{H} is finite dimensional the limits $M(\lambda) := M(\lambda + i0)$ for a.e. $\lambda \in \mathbb{R}$. We denote by $\Sigma^M \subseteq \mathbb{R}$ the set where the limit $M(\lambda + i0)$ exists. Further,

$$\mathcal{H}_{M(\lambda)} := \operatorname{ran}(\Im m(M(\lambda)) \subseteq \mathcal{H}, \quad \lambda \in \Sigma^{\tau}.$$

By $Q_{M(\lambda)}$ we denote the family of orthogonal projections onto $\mathcal{H}_{M(\lambda)}$ which is measurable.

$$L^2(\mathbb{R},d\lambda,\mathcal{H})=\int^\oplus\mathcal{H}d\lambda.$$

In $L^2(\mathbb{R}, d\lambda, \mathcal{H})$ we introduce the projection

$$(Q_M f)(\lambda):=Q_{M(\lambda)}f(\lambda), \hspace{1em} f\in L^2(\mathbb{R},d\lambda,\mathcal{H}).$$

The subspace $Q_M L^2(\mathbb{R}, d\lambda, \mathcal{H})$ is denoted by

$$Q_M L^2(\mathbb{R}, d\lambda, \mathcal{H}) = L^2(\mathbb{R}, d\lambda, \mathcal{H}_{M(\lambda)}) = \int^\oplus \mathcal{H}_{M(\lambda)} d\lambda.$$

It turns out that $L_0^{ac} \cong \lambda$ where λ is the multiplication operator in $L^2(\mathbb{R}, d\lambda, \mathcal{H}_{M(\lambda)})$.

w i a s

9 Boundary triplets and scattering

THEOREM 1. Let A be a densely defined closed simple symmetric operator with finite deficiency indices in the separable Hilbert space \mathfrak{H} and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triple for A^* and $M(\cdot)$ be the corresponding Weyl function. Further, let $A_0 = A^* \upharpoonright \ker(\Gamma_0)$ and let $A_{\Theta} = A^* \upharpoonright$ $\Gamma^{-1}\Theta$ be a self-adjoint extension of A where Θ is a self-adjoint relation in \mathcal{H} . Then the scattering matrix $\{S(\lambda)\}_{\lambda \in \mathbb{R}}$ of the complete scattering system $\{A_{\Theta}, A_0\}$ admits the representation

$$S(\lambda) = I_{\mathcal{H}_{M(\lambda)}} + 2i \sqrt{\Im ext{m}(M(\lambda))} ig(\Theta - M(\lambda) ig)^{-1} \sqrt{\Im ext{m}(M(\lambda))}$$

for a.e. $\lambda \in \mathbb{R}$, where $M(\lambda) := M(\lambda + i0)$.

10 Open quantum systems and decoupled system

Let us consider two symmetric operators A and T in \mathfrak{H} and \mathfrak{K} , respectively, with equal finite deficiency indices. Further, let $\{\mathcal{H}, \Gamma_0, \Gamma_1\}$ and $\{\mathcal{H}, \Upsilon_0, \Upsilon_1\}$ boundary triplets with Weyl functions $M(\lambda)$ and $\tau(\lambda)$, respectively. Then $\{\widetilde{\mathcal{H}}, \widetilde{\Gamma}_0, \widetilde{\Gamma}_1\}$,

$$\widetilde{\mathcal{H}} := egin{pmatrix} \mathcal{H} \ \mathcal{H} \end{pmatrix}, \qquad \widetilde{\Gamma}_0 := egin{pmatrix} \Gamma_0 \ \Upsilon_0 \end{pmatrix}, \qquad \widetilde{\Gamma}_1 := egin{pmatrix} \Gamma_1 \ \Upsilon_1 \end{pmatrix}$$

performs a boundary triplet for $A^* \oplus T^*$ with Weyl function

$$\widetilde{M}(\lambda) := egin{pmatrix} M(\lambda) & 0 \ 0 & au(\lambda) \end{pmatrix}$$

The systems $\{\mathfrak{H}, A\}$ and $\{\mathfrak{K}, T\}$ are called open system, $\{\mathfrak{H}, A\}$ is called the inner system, $\{\mathfrak{K}, T\}$ is called the outer system. The observer is in the inner system.

The system $\{\mathfrak{L}, A_0 \oplus T_0\}$, $A_0 := A^* \upharpoonright \ker(\Gamma_0)$, $T_0 := T^* \upharpoonright \ker(\Upsilon_0)$, is called the decoupled system.

W I A S

11 Open quantum system and coupled system

THEOREM 2 (Derkach, Hassi, M. de Snoo, 2000). Let **A** and **T** be densely defined closed symmetric operators in the Hilbert spaces \mathfrak{H} and \mathfrak{K} which equal deficiency indices. Then the following holds:

(i) The closed extension $L := A^* \oplus T^* \upharpoonright \widetilde{\Gamma}^{-1} \widetilde{\Theta}$ corresponding to the relation

$$\widetilde{\Theta} := \left\{ egin{pmatrix} (v,v)^ op \ (w,-w)^ op \end{pmatrix} : v,w \in \mathcal{H}
ight\}$$

is self-adjoint in the Hilbert space $\mathfrak{L} := \mathfrak{H} \oplus \mathfrak{K}$ and is given by

$$L=A^{*}\oplus T^{*}{\upharpoonright}\left\{f_{1}\oplus f_{2}\in \mathrm{dom}(A^{*}\oplus T^{*}): egin{array}{c} \Gamma_{0}f_{1}-\Upsilon_{0}f_{2}=0\ \Gamma_{1}f_{1}+\Upsilon_{1}f_{2}=0 \end{array}
ight\}$$

(ii) The Strauss family $A_{-\tau(\lambda)} := A^* \upharpoonright \ker(\Gamma_1 + \tau(\lambda)\Gamma_0)$, $\lambda \in \mathbb{C}_+$, satisfies

$$(A_{- au(\lambda)}-\lambda)^{-1}=P_{\mathfrak{H}}ig(L-\lambdaig)^{-1}\restriction\mathfrak{H},\qquad\lambda\in\mathbb{C}_+.$$

The system $\{\mathfrak{L}, L\}$ is called the coupled system.

w i a s

12 Strauss family

Let $\tau(\cdot) : \mathcal{K} \longrightarrow \mathcal{K}$ be a Nevanlinna function.

$$A_{- au(\lambda)}:=A^*{\,ert\,}ig\{f\in \mathrm{dom}(A^*):\Gamma_1f=- au(\lambda)\Gamma_0fig\}, \hspace{1em}\lambda\in\mathbb{C}_+,$$

 $\{A_{- au(\lambda)}\}_{\lambda\in\mathbb{C}_+}$ is called a Strauss family.

Since $\dim(\mathcal{H}) < \infty$ the family admits an extension to a.e. $\lambda \in \mathbb{R}$, i.e.

$$au(\lambda):=\lim_{\epsilon o+0} au(\lambda+i\epsilon).$$

In general, the Strauss family consists of maximal dissipative operators. The characteristic function of $A_{-\tau(\lambda)}$ are given by

$$\Theta_{A_{-\tau(\lambda)}}(\mu) = I_{\mathcal{Q}_{\lambda}} + 2i\sqrt{\Im (\tau(\lambda))} (\tau(\lambda)^{*} + M(\overline{\mu})^{*})^{-1} \sqrt{\Im (\tau(\lambda))}, \quad \mu \in \mathbb{C}_{-},$$

where

$$\mathcal{Q}_{\lambda} := \operatorname{clo}\{\operatorname{ran}(\Im \mathrm{m} \tau(\lambda))\}.$$

13 Coupling and scattering

THEOREM 3. Let A and T be densely defined closed simple symmetric operators in \mathfrak{H} and \mathfrak{K} , respectively, with equal finite deficiency indices such that A_0 is discrete. Then

(i) The wave operators

w i a s

$$W_\pm(L,L_0)=s-\lim_{t
ightarrow\pm\infty}e^{itL}e^{-itL_0}P^{ac}(L_0)=s-\lim_{t
ightarrow\pm\infty}e^{itL}e^{-itT_0}P^{ac}(T_0)$$

exist and are complete.

(ii) The scattering matrix {S(λ)}_{λ∈ℝ} of the scattering system {L, L₀} admits the representation S(λ) = I_{Q_λ} - 2i√Smτ(λ)(τ(λ) + M(λ))⁻¹√Smτ(λ) for a.e. λ ∈ ℝ, where τ(λ) = τ(λ + i0) and M(λ) = M(λ + i0).
(iii) The scattering matrix {S(λ)}_{λ∈ℝ} of the scattering system {L, L₀} admits the representation S(λ) = Θ_{A_{-τ(λ)}}(λ - i0)* (2) for a.e. λ ∈ ℝ where Θ_{A_{-τ(λ)}}(·), λ ∈ ℝ, are the characteristic functions of the the Strauss family {A_{-τ(λ)}}_{λ∈ℝ}.

TU Berlin, Operatortag, December 2005

W I A S

14 R-matrix

One introduces the *R*-matrix

$$R(\lambda):=i(I_{\mathcal{H}_{ au(\lambda)}}-S(\lambda))(I_{\mathcal{H}_{ au(\lambda)}}+S(\lambda))^{-1},$$

for those $\lambda \in \Sigma^{\tau}$ obeying $-1 \in \varrho(\widetilde{S}(\lambda))$ which is a bounded operator acting in $\mathcal{H}_{\tau(\lambda)}$. Conversely, one has

$$S(\lambda) = rac{i I_{\mathcal{H}(au(\lambda))} - R(\lambda)}{i I_{\mathcal{H}(au(\lambda))} + R(\lambda)}$$

A straightforward calculation shows that

$$\begin{split} R(\lambda) &= -\sqrt{\Im m(\tau(\lambda))} \left(M(\lambda) + \Re \mathrm{e}(\tau(\lambda)) \right)^{-1} \right) \sqrt{\Im m(\tau(\lambda))} \\ \text{for } \lambda \in \{ t \in \Sigma^{\tau} : \Im m(\tau(t)) \neq 0 \} \cap \Sigma^{M} \cap \Sigma^{(M+\tau)^{-1}} \text{ and } \ker(M(\lambda) + \Re \mathrm{e}(\tau(\lambda))) = \{ 0 \}. \text{ If } \\ \Re \mathrm{e}(\tau(\lambda)) &= 0, \text{ then} \end{split}$$

$$R(\lambda) = -\sqrt{\Im \mathrm{m}(au(\lambda))} M(\lambda)^{-1} \sqrt{\Im \mathrm{m}(au(\lambda))}$$

for $\lambda \in \{t \in \Sigma^{\tau} : \Im(\tau(t)) \neq 0\} \cap \Sigma^{M} \cap \Sigma^{(M+\tau)^{-1}}$ and $\ker(M(\lambda)) = \{0\}.$

TU Berlin, Operatortag, December 2005

15 Eigenfunction representation

Let us introduce the self-adjoint extensions

$$A_{-\Re \mathrm{e}(au(\lambda))}:=A^*\restriction \mathrm{ker}(\Gamma_1+\Re\mathrm{e}(au(\lambda))\Gamma_0)$$

for $\lambda \in \Sigma^{\tau}$. If $\lambda \in \Sigma^{\tau} \cap \varrho(A_0)$, then

w i a s

$$\lambda \in arrho(A_{-\Re \mathrm{e}(au(\lambda))}) \Longleftrightarrow \ker(M(\lambda) + \Re \mathrm{e}(au(\lambda))) = \{0\}.$$

PROPOSITION 4. Let A, $\{\mathcal{H}, \Gamma_0, \Gamma_1\}$, $M(\cdot)$ and T, $\{\mathcal{H}, \Upsilon_0, \Upsilon_1\}$, $\tau(\cdot)$ be as above and assume $\sigma(A_0) = \sigma_p(A_0)$ and that A is semibounded from below. For each $\lambda \in \{t \in \Sigma^{\tau} : \Im(t)\} \neq 0\} \cap \varrho(A_0) \cap \varrho(A_{-\tau(\lambda)}) \cap \varrho(A_{-\Re e(\tau(\lambda))})$ with $A_{-\Re e(\tau(\lambda))} \leq A_0$ the R-matrix admits the representation

$$R(\lambda) = \sum_{k=1}^{\infty} (\lambda_k[\lambda] - \lambda)^{-1} (\cdot, \sqrt{\Im \mathrm{m}(au(\lambda))} \Gamma_0 \psi_k[\lambda]) \sqrt{\Im \mathrm{m}(au(\lambda))} \Gamma_0 \psi_k[\lambda],$$

where $\{\lambda_k[\lambda]\}, k = 1, 2, ..., are the eigenvalues of the selfadjoint extension <math>A_{-\Re e(\tau(\lambda))}$ in increasing order and $\psi_k[\lambda]$ are the corresponding eigenfunctions.

16 Wigner-Eisenbud representation

COROLLARY 5 (Wigner-Eisenbud '46–'47). If in addition $\Re e(\tau(\lambda)) = 0$ and $A_1 \leq A_0$, then for each $\lambda \in \{t \in \Sigma^{\tau} : \Im(\tau(t)) \neq 0\} \cap \varrho(A_0) \cap \varrho(A_{-\tau(\lambda)}) \cap \varrho(A_1)$ the *R*-matrix admits the representation

$$R(\lambda) = \sum_{k=1}^{\infty} (\lambda_k - \lambda)^{-1} ig(oldsymbol{\cdot}, \sqrt{\Im \mathrm{m}(au(\lambda))} \Gamma_0 \psi_k ig) \sqrt{\Im \mathrm{m}(au(\lambda))} \Gamma_0 \psi_k,$$

where $\{\lambda_k\}$, k = 1, 2, ..., are the eigenvalues of the selfadjoint extension $A_1 := A^* \upharpoonright \ker(\Gamma_1)$ in increasing order and ψ_k are the corresponding eigenfunctions.

In particular, if $A_0 := A^* \upharpoonright \ker(\Gamma_0)$ is the Friedrichs extension, then the condition $A_{-\Re e(\tau(\lambda))} \leq A_0$ or $A_1 \leq A_0$ is always satisfied.

If the condition $A_{-\Re e(\tau(\lambda))} \leq A_0$ or $A_1 \geq A_0$ is not satisfied, then Wigner-Eisenbud representation is not true.

w i a s

17 Example

17.1 Inner system

In $\mathfrak{H}:=L^2((x_l,x_r))$ one defines

$$(Af)(x) := -rac{1}{2} rac{d}{dx} rac{1}{m(x)} rac{d}{dx} f(x) + v(x) f(x), \ \mathrm{dom}(A) := \left\{ egin{array}{c} f, rac{1}{m}f' \in W^{1,2}((x_l,x_r)) \ f \in \mathfrak{H} : \ f(x_l) = f(x_r) = 0 \ (rac{1}{m}f') \ (x_l) = (rac{1}{m}f') \ (x_r) = 0 \end{array}
ight\}.$$

where m>0 and $m+rac{1}{m}\in L^\infty((x_l,x_r)),\,v\in L^\infty((x_l,x_r)).$

$$\Gamma_0 f := \left(egin{array}{c} f(x_l) \ f(x_r) \end{array}
ight) \quad ext{and} \quad \Gamma_1 f := rac{1}{2} \left(egin{array}{c} \left(rac{1}{m}f'
ight)(x_l) \ -\left(rac{1}{m}f'
ight)(x_r) \end{array}
ight),$$

 $A_0 \Longleftrightarrow$ Dirichlet boundary conditions $A_1 \Longleftrightarrow$

 $A_1 \iff$ Neumann boundary conditions.

17.2 Outer system

In $\mathfrak{K}_l = L^2((-\infty, x_l))$ one defines

$$egin{aligned} &(T_l f)(x):=-rac{1}{2m_l}rac{d^2}{dx^2}f(x)+v_l(x)f(x),\ & ext{dom}(T_l):=\left\{f\in \mathfrak{K}_l: egin{aligned} &f,rac{1}{m_l}f'\in W^{1,2}((-\infty,x_l))\ &f(x_l)=\left(rac{1}{m_l}f'
ight)(x_l)=0 \end{aligned}
ight\}. \end{aligned}$$

Boundary triplet:

$$\Upsilon^l_0 f:=f(x_l) \quad ext{and} \quad \Upsilon^l_1 f=-\left(rac{1}{2m_l}f'
ight)(x_l), \quad f\in ext{dom}(T^*_l),$$

Weyl function:

$$au_l(\lambda):=i\sqrt{rac{\lambda-v_l}{2m_l}},\qquad \lambda\in\mathbb{C}_+.$$

In $\mathfrak{K}_r = L^2((x_r,\infty))$ one defines

$$egin{aligned} &(T_rf)(x):=-rac{1}{2m_r}rac{d^2}{dx^2}f(x)+v_r(x)f(x),\ & ext{dom}(T_r):=\left\{f\in \mathfrak{K}_r: egin{aligned} &f,rac{1}{m_r}f'\in W^{1,2}((x_r,\infty))\ &f(x_r)=\left(rac{1}{m_r}f'
ight)(x_r)=0 \end{array}
ight\}. \end{aligned}$$

Boundary triplet

$$\Upsilon_0^r f:=f(x_r) \quad ext{and} \quad \Upsilon_1^r f=\left(rac{1}{2m_r}f'
ight)(x_r), \quad f\in ext{dom}(T_r^*),$$

Weyl function:

$$au_r(\lambda):=i\sqrt{rac{\lambda-v_r}{2m_r}},\qquad \lambda\in\mathbb{C}_+.$$

Full outer system

$$egin{aligned} L^2(\mathbb{R}\setminus (x_l,x_r)) &= L^2((-\infty,x_r))\oplus L^2((x_r,\infty)),\ T &= T_l\oplus T_r \end{aligned}$$

Boundary triplet:

$$\Upsilon_0:=\Upsilon_0^l\oplus\Upsilon_0^r$$
 and $\Upsilon_1:=\Upsilon_1^l\oplus\Upsilon_1^r$

Weyl function:

$$au(\lambda):=egin{pmatrix} au_l(\lambda) & 0 \ 0 & au_r(\lambda) \end{pmatrix}$$

17.3 Strauss family

WIAS

$$\mathrm{dom}(A_{- au(\lambda)}):=egin{cases} f,rac{1}{m}f'\in W^{1,2}((x_l,x_r))\ f\in\mathfrak{H}:\ (rac{1}{2m}f')(x_l)=- au_l(\lambda)f(x_l)\ (rac{1}{2m}f')(x_r)= au_r(\lambda)f(x_r) \ \end{pmatrix},\quad\lambda\in\mathbb{C}_+,$$

and

$$(A_{- au(\lambda)}f)(x) = -rac{1}{2}rac{d}{dx}rac{1}{m}rac{d}{dx}f(x) + v(x)f(x), \quad x \in (x_l, x_r), \ f \in \mathrm{dom}(A_{- au(\lambda)}), \lambda \in \mathbb{C}_+.$$

Characteristic function:

$$\begin{split} \Theta_{A_{-\tau(\lambda)}}(\mu) &= I_{\mathcal{H}_{\tau(\lambda)}} - i\sqrt{2\, \Im \mathrm{m}(\tau(\lambda))} \Gamma_0(A^*_{-\tau(\lambda)} - \mu)^{-1} \Gamma_0^* \sqrt{2\, \Im \mathrm{m}(\tau_l(\lambda))}, \quad \mu \in \mathbb{C}_-. \end{split}$$
 for $\lambda \in \Sigma^{\tau}$.

17.4 Scattering

The coupled system coincides with the operator L defined at the beginning while the unperturbed operator coincides with L_0 , that is

$$L_0f=-rac{1}{2}rac{d}{dx}rac{1}{M}rac{d}{dx}f+Vf,$$

with domain

$$\mathrm{dom}(L_0):=W_0^{2,2}((-\infty,x_l))\oplusiggl\{f\in W^{1,2}((x_l,x_r)): egin{array}{c} rac{1}{m}f'\in W^{1,2}((x_l,x_r))\ f(x_l)=f(x_r)=0 \end{array}iggr\}\oplus W_0^{2,2}((x_r,\infty)).$$

Notice that L_0 is the Friedrichs extension.

 $\{L.L_0\}$ performs a complete scattering system, its scattering matrix is given by

$$S(\lambda):=\Theta_{A_{- au(\lambda)}}(\lambda-i0)^*.$$

W I A S 17.5 *R*-matrix

We note that

$$\Re \mathrm{e}(au(\lambda)) = 0, \qquad \lambda \in (\max\{v_l, v_r\}, \infty).$$

Further

$$A_1:=A^*\restriction \ker(\Gamma_1)$$

with

$$\ker(\Gamma_1) := \left\{ f \in W^{1,2}((x_l,x_r)): egin{array}{c} rac{1}{m}f' \in W^{1,2}((x_l,x_r)) \ (rac{1}{2m}f')\,(x_l) = ig(rac{1}{2m}f'ig)\,(x_r) = 0 \end{array}
ight\}.$$

The *R*-matrix admits the representation

$$R(\lambda) = \sum_{k \in \mathbb{N}} (\lambda_k - \lambda)^{-1} \left\langle \cdot, igg(\sqrt{\Im \mathrm{m}(au_l(\lambda))} \psi_k(x_l) \ \sqrt{\Im \mathrm{m}(au_r(\lambda))} \psi_k(x_r)
ight
angle \left\langle igg(\sqrt{\Im \mathrm{m}(au_l(\lambda))} \psi_k(x_r)
ight
angle
ight
angle$$

for $\lambda \in (\max\{v_l, v_r\}, \infty)$ where λ_k and ψ_k are the eigenvalues and eigenfunctions of A_1 .