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Dirac structures on real vector spaces

Let F and E be real vector spaces whose elements are labeled as f and
e, respectively.

The space F is called the space of flows

The space E is called the space of efforts.

The space B = F × E is called the bond space and an element of the
space B is denoted by b = (f , e).

The spaces F and E are power conjugate. This means that there exists
a map

〈· | ·〉 : E × F → R

called the power product such that it is linear in each coordinate and it
is not degenerate.
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Dirac structures on real vector spaces

Using the power product define a symmetric bilinear form

� ·, · �: B × B → R

by
� (f 1, e1), (f 2, e2) �= 〈e1 | f 2〉+ 〈e2 | f 1〉,

for all (f 1, e1), (f 2, e2) ∈ B.

We have the following immediate relation between the power product
and and the bilinear form

〈e | f 〉 =
1
2
� b, b �

for all b = (f , e) ∈ B.
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Dirac structures on real vector spaces

Definition: Tellegen structure
Let Z be a subspace of the vector space B. Z is a Tellegen structure
on B if

〈e | f 〉 = 0, ∀ (f , e) ∈ Z.

Denote Z⊥ the orthogonal complement of Z with respect to the
bilinear form � ·, · �

Z⊥ := {b ∈ B |� b, b̃ �= 0, ∀ b̃ ∈ Z}.

Let Z be a subspace of the vector space B. Then Z is a Tellegan
structure on B if and only if

Z ⊆ Z⊥.
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Definition: Dirac structure
Let D be a subset of B. We say that D is a Dirac structure on B if

D = D⊥.

For finite-dimensional spaces a Dirac structure is a Tellegan structure
of maximal dimension.

In what follows the focus will be on the case when B is a reflexive
Banach space.
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Dirac structures on reflexive Banach spaces

Let F be a (real) Banach space and E = F∗, where F∗ is the adjoint
space of F (the set of all bounded semi-linear forms on F). Then E is
a Banach space with the norm ‖e‖ defined by

‖e‖ = sup
06=f∈F

|e(f )|
‖f‖

.

Assumption
The Banach space F is reflexive.
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Dirac structures on reflexive Banach spaces

Introduce the scalar product

〈· | ·〉E×F : E × F → R

defined by
〈e | f 〉E×F := e(f )

for all e ∈ E and f ∈ F .

Each f ∈ F may be regarded as an element of F∗∗ and introduce in a
similar way another scalar product

〈· | ·〉F×E : F × E → R

which will satisfy 〈f | e〉F×E = 〈e | f 〉E×F . for all e ∈ E and f ∈ F .
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Dirac structures on reflexive Banach spaces

The scalar product on E × F is a power product.

The bond space B = F × E is also a reflexive Banach space with the
linear structure defined componentwise and the norm defined by

‖(f , e)‖ = (‖f‖2 + ‖e‖2)
1
2 .

Consider the scalar product 〈·, ·〉B∗×B : B∗ × B → R given by

〈b, b̃〉B∗×B := 〈e | f̃ 〉+ 〈ẽ | f 〉

where b = (e, f ) ∈ B∗ = E × F and b̃ = (f̃ , ẽ) ∈ B = F × E .
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Dirac structures on reflexive Banach spaces

Consider R the natural embedding of B∗ into B. Then R is an
isometric isomorphism between B∗ and B defined by

R =

[
0 rF∗∗F

idE 0

]
where idE is the identity on E and rF∗∗F is the inverse of rFF∗∗ , the
natural isometric isomorphism between F and F∗∗.

The inverse of R is the isometric isomorphism S : B → B∗ defined by

S =

[
0 idE

rFF∗∗ 0

]
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Dirac structures on reflexive Banach spaces

The bilinear form � ·, · � on B is related to the scalar product
〈·, ·〉B∗×B by

� b1, b2 �= 〈Sb1, b2〉B∗×B.

for all b1 = (f 1, e1) and b2 = (f 2, e2) in B.

Proposition
Let Z be a subspace of the bond space B. Then the following
equalities holds:

Z⊥ = RZc, SZ⊥ = Zc.
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Dirac structures on reflexive Banach spaces

Proposition
Let D be a vectorial subspace of B. The following statements are
equivalent:

1 D is a Dirac structure on B.
2 D = RDc.
3 Dc = SD.

Theorem
Let Z be a closed subspace of the bond space B. Then Z is a Dirac
structure on B if and only if Z and Z⊥ are Tellegan structures on B.
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Dirac structures on reflexive Banach spaces

An example
Let A be a skew-adjoint (unbounded in general) operator from
domA ⊆ F to E , that is

〈Ax | y〉+ 〈x | Ay〉 = 0,

for all x, y ∈ domA = domA∗.

Then the graph of A,

G(A) = {(x, Ax) : x ∈ domA}

is a Dirac structure.
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The kernel representation of a Dirac structure

Consider a densely defined closed operator T : B → L, where B is the
bond space. The subspace D = ker (T) is a Dirac structure on B if
and only if ker (T) and Im (RT∗) are Tellegan structures on B.

Theorem
Let D be a Dirac structure on the bond space B. There exists a
projection P from B onto D if and only if B = D⊕ N for some closed
subspace N of B. Then

D = ker (I − P).
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The kernel representation of a Dirac structure

An example
Consider a transmission line whose length is S. The Kirchhoff’s laws
describing the transmission line are given by

eφ = −∂eq
∂z ,

fq = −∂fφ
∂z .

Here fq is the rate of charge density, eq is the voltage distribution, fφ is
the current distribution and eφ is the rate of flux density.
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The kernel representation of a Dirac structure

The boundary conditions are

fφ(0) = −fL, eq(0) = eL,
fφ(S) = fR, eq(S) = eR.

Here fL and eL are the current and voltage at the left boundary.

Similarly, fR and eR are the current and voltage at the right boundary.
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The kernel representation of a Dirac structure

Let p, q be two positive numbers satisfying the condition
1/p + 1/q = 1 and let Lp(0, S) and Lq(0, S) be the space of p- and
q-integrable functions on [0, S], respectively.

The space of flow variables is given by

F = Lp(0, S)× Lp(0, S)× R2,

while the space of effort variables is given by

E = Lq(0, S)× Lq(0, S)× R2.

An element of the space F is denoted by f = (fq, fφ, fL, fR), and an
element of the space E is denoted by e = (eq, eφ, eL, eR).
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The kernel representation of a Dirac structure

The power product is defined as

〈e|f 〉B = 〈e, f 〉F

=

S∫
0

fq(z)eq(z)dz +

S∫
0

fφ(z)eφ(z)dz

+fLeL + fReR.

The first term represents the power associated to electrical domain,
the second term is power associated to magnetic domain and the last
two terms represents the power exchanged through the boundary.
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T =
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M 0
0 N
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with M and N given by:
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M =

 idLp(0,S)
∂
∂z 0 0

0 ∂L,p 1 0
0 ∂R,p 0 −1

 ,

N =

 ∂
∂z idLq(0,S) 0 0

∂L,q 0 −1 0
∂L,q 0 0 −1

 .

Here, ∂L,p : Lp(0, S) → R is defined as ∂L,px = x(0) and
∂R,p : Lp(0, S) → R is defined as ∂R,px = x(S).
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The kernel representation of a Dirac structure

The domain of the operator T is

dom (T) = Lp(0, S)× dom p(
∂

∂z
)× R

×R× dom q(
∂

∂z
)× Lq(0, S)× R× R,

where

dom p(
∂

∂z
) = {x ∈ Lp(0, S) : x abs. cont.

and
∂x
∂z

∈ Lp(0, S)}.

D is a Dirac structure.
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The decomposition of a Dirac structure

Three classes of Dirac structures are introduced:
1 Completely multi–valued Dirac structures which are of the form

Dmul = {(0, e) : e ∈ E};

2 Completely kernel Dirac structures which are of the form

Dker = {(f , 0) : f ∈ F};

3 Completely skew-adjoint Dirac structures which are determined
by the graphs of injective skew-adjoint (not necessarily bounded)
operators from F to E .
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The decomposition of a Dirac structure

Under certain assumptions, a Dirac structure can be decomposed as:

D = Dmul ⊕Dker ⊕Dskew,

This decomposition is comparable to the so called "constrained
input–output representation" of a Dirac structure in
finite–dimensional spaces.
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The scattering representation of a Dirac structure

Let F be a Hilbert space, E = F∗ the dual of F , and consider
R : F → E an isometric isomorphism between F and E .

For any linear subspace V of B define the linear relation O in E by

OV = IE − 2R(V + R)−1.

Let D be a Dirac structure on the Hilbert space B. Then OD is a
unitary operator in E .

Let O be a unitary operator in E . Then the linear relation

DO :=

{(
1
2

R−1(IE −O)e,
1
2
(IE +O)e

)
: e ∈ E

}
is a Dirac structure on B.
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Let O be a unitary operator in E . Then the linear relation

DO :=

{(
1
2

R−1(IE −O)e,
1
2
(IE +O)e

)
: e ∈ E

}
is a Dirac structure on B.
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The composition of Dirac structures

Let Fi, 1 ≤ i ≤ 3 be three Hilbert spaces, let Ei = F∗i , 1 ≤ i ≤ 3, and
let Ri : F → E , 1 ≤ i ≤ 3 be the corresponding isometric
isomorphisms.

Consider two Dirac structures DA and DB on F1 × E1 ×F2 × E2 and
on F2 × E2 ×F3 × E3, respectively.

DA and DB have the following scaterring representations:

OA =

[
OA

11 OA
12

OA
21 OA

22

]
, OB =

[
OB

22 OB
23

OB
32 OB

33

]
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The composition of Dirac structures

The composition DA ◦ DB of DA and DB consists of all (f1, e1, f3, e3)
such that (f1, e1, f2, e2) ∈ DA and (f2, e2, f3, e3) ∈ DB for some
(f2, e2) ∈ F2 × E2.

The composition of two Dirac structures is always a Tellegen
structure.

For finite–dimensional systems, the composition of two Dirac
structures defines a Dirac structure. For distributed–parameter
systems the composition of two Dirac structures does not always
result in a new Dirac structure.
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When is the composition again a Dirac structure?

Theorem
Let DA and DB be two Dirac structures and let OA and OB the
corresponding scattering representations of them. The following
items are equivalent:

1 DA ◦ DB is a Dirac structure;
2 OB ?OA is a unitary operator in E1 × E3;
3 The following conditions are both met:

1 ran
[
OA

21 OA
22OB

23

]
⊂ ran

(
OA

22OB
22 − IE2

)
, and

2 ran
[
OB∗

22 OA∗
12 OB∗

32

]
⊂ ran

(
OB∗

22 OA∗
22 − IE2

)
.

In particular, if IE2 −OA
22OB

22 is invertible in E2 then DA ◦ DB is a
Dirac structure on F1 × E1 ×F3 × E3.
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