Composition of Dirac structures for infinite-dimensional systems

Adrian Sandovici

joint work with Orest Iftime

Outline

(1) Dirac structures on real vector spaces
(2) Dirac structures on reflexive Banach spaces
(3) Representations of Dirac structures
(4) The scattering representation of a Dirac structure
(5) The composition of Dirac structures
(6) When is the composition again a Dirac structure?

Dirac structures on real vector spaces

Let \mathcal{F} and \mathcal{E} be real vector spaces whose elements are labeled as f and e, respectively.

The space \mathcal{F} is called the space of flows

The space \mathcal{E} is called the space of efforts.

The space $\mathcal{B}=\mathcal{F} \times \mathcal{E}$ is called the bond space and an element of the space \mathcal{B} is denoted by $b=(f, e)$.

The spaces \mathcal{F} and \mathcal{E} are power conjugate. This means that there exists a map
called the power product such that it is linear in each coordinate and it is not degenerate.

Dirac structures on real vector spaces

Let \mathcal{F} and \mathcal{E} be real vector spaces whose elements are labeled as f and e, respectively.

The space \mathcal{F} is called the space of flows

```
The space \mathcal{E}}\mathrm{ is called the space of efforts.
```

The space $\mathcal{B}=\mathcal{F} \times \mathcal{E}$ is called the bond space and an element of the space \mathcal{B} is denoted by $b=(f, e)$.

The spaces \mathcal{F} and \mathcal{E} are power conjugate. This means that there exists a map
called the power product such that it is linear in each coordinate and it is not degenerate.

Dirac structures on real vector spaces

Let \mathcal{F} and \mathcal{E} be real vector spaces whose elements are labeled as f and e, respectively.

The space \mathcal{F} is called the space of flows

The space \mathcal{E} is called the space of efforts.

The space $\mathcal{B}=\mathcal{F} \times \mathcal{E}$ is called the bond space and an element of the space \mathcal{B} is denoted by $b=(f, e)$.

The spaces \mathcal{F} and \mathcal{E} are power conjugate. This means that there exists a map
called the power product such that it is linear in each coordinate and it is not degenerate.

Dirac structures on real vector spaces

Let \mathcal{F} and \mathcal{E} be real vector spaces whose elements are labeled as f and e, respectively.

The space \mathcal{F} is called the space of flows

The space \mathcal{E} is called the space of efforts.

The space $\mathcal{B}=\mathcal{F} \times \mathcal{E}$ is called the bond space and an element of the space \mathcal{B} is denoted by $b=(f, e)$.

The spaces \mathcal{F} and \mathcal{E} are power conjugate. This means that there exists a map
called the power product such that it is linear in each coordinate and it
is not degenerate.

Dirac structures on real vector spaces

Let \mathcal{F} and \mathcal{E} be real vector spaces whose elements are labeled as f and e, respectively.

The space \mathcal{F} is called the space of flows

The space \mathcal{E} is called the space of efforts.

The space $\mathcal{B}=\mathcal{F} \times \mathcal{E}$ is called the bond space and an element of the space \mathcal{B} is denoted by $b=(f, e)$.

The spaces \mathcal{F} and \mathcal{E} are power conjugate. This means that there exists a map

$$
\langle\cdot \mid \cdot\rangle: \mathcal{E} \times \mathcal{F} \rightarrow \mathbb{R}
$$

called the power product such that it is linear in each coordinate and it is not degenerate.

Dirac structures on real vector spaces

Using the power product define a symmetric bilinear form

$$
\ll \cdot \cdot \gg: \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}
$$

by

$$
\ll\left(f^{1}, e^{1}\right),\left(f^{2}, e^{2}\right) \gg=\left\langle e^{1} \mid f^{2}\right\rangle+\left\langle e^{2} \mid f^{1}\right\rangle,
$$

for all $\left(f^{1}, e^{1}\right),\left(f^{2}, e^{2}\right) \in \mathcal{B}$.

We have the following immediate relation between the power product and and the bilinear form
for all $b=(f, e) \in \mathcal{B}$.

Dirac structures on real vector spaces

Using the power product define a symmetric bilinear form

$$
\ll \cdot \cdot \gg: \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}
$$

by

$$
\ll\left(f^{1}, e^{1}\right),\left(f^{2}, e^{2}\right) \gg\left\langle e^{1} \mid f^{2}\right\rangle+\left\langle e^{2} \mid f^{1}\right\rangle
$$

for all $\left(f^{1}, e^{1}\right),\left(f^{2}, e^{2}\right) \in \mathcal{B}$.

We have the following immediate relation between the power product and and the bilinear form

$$
\langle e \mid f\rangle=\frac{1}{2} \ll b, b \gg
$$

for all $b=(f, e) \in \mathcal{B}$.

Dirac structures on real vector spaces

Definition: Tellegen structure

Let \mathcal{Z} be a subspace of the vector space $\mathcal{B} . \mathcal{Z}$ is a Tellegen structure on \mathcal{B} if

$$
\langle e \mid f\rangle=0, \quad \forall(f, e) \in \mathcal{Z}
$$

Denote \mathcal{Z}^{\perp} the orthogonal complement of \mathcal{Z} with respect to the bilinear form $\ll \cdot \cdot \gg$

$$
\mathcal{Z}^{\perp}:=\{b \in \mathcal{B} \mid \ll b, \tilde{b} \gg=0, \forall \tilde{b} \in \mathcal{Z}\} .
$$

Let \mathcal{Z} be a subspace of the vector space \mathcal{B}. Then \mathcal{Z} is a Tellegan structure on \mathcal{B} if and only if

Dirac structures on real vector spaces

Definition: Tellegen structure

Let \mathcal{Z} be a subspace of the vector space $\mathcal{B} . \mathcal{Z}$ is a Tellegen structure on \mathcal{B} if

$$
\langle e \mid f\rangle=0, \quad \forall(f, e) \in \mathcal{Z}
$$

Denote \mathcal{Z}^{\perp} the orthogonal complement of \mathcal{Z} with respect to the bilinear form $\ll \cdot, \cdot \gg$

$$
\mathcal{Z}^{\perp}:=\{b \in \mathcal{B} \mid \ll b, \tilde{b} \gg=0, \forall \tilde{b} \in \mathcal{Z}\}
$$

Let \mathcal{Z} be a subspace of the vector space \mathcal{B}. Then \mathcal{Z} is a Tellegan structure on \mathcal{B} if and only if

Dirac structures on real vector spaces

Definition: Tellegen structure

Let \mathcal{Z} be a subspace of the vector space $\mathcal{B} . \mathcal{Z}$ is a Tellegen structure on \mathcal{B} if

$$
\langle e \mid f\rangle=0, \quad \forall(f, e) \in \mathcal{Z}
$$

Denote \mathcal{Z}^{\perp} the orthogonal complement of \mathcal{Z} with respect to the bilinear form $\ll \cdot, \cdot \gg$

$$
\mathcal{Z}^{\perp}:=\{b \in \mathcal{B} \mid \ll b, \tilde{b} \gg=0, \forall \tilde{b} \in \mathcal{Z}\}
$$

Let \mathcal{Z} be a subspace of the vector space \mathcal{B}. Then \mathcal{Z} is a Tellegan structure on \mathcal{B} if and only if

$$
\mathcal{Z} \subseteq \mathcal{Z}^{\perp}
$$

Dirac structures on real vector spaces

Definition: Dirac structure
Let \mathcal{D} be a subset of \mathcal{B}. We say that \mathcal{D} is a Dirac structure on \mathcal{B} if

$$
\mathcal{D}=\mathcal{D}^{\perp}
$$

For finite-dimensional spaces a Dirac structure is a Tellegan structure of maximal dimension.

In what follows the focus will be on the case when \mathcal{B} is a reflexive Banach space.

Dirac structures on real vector spaces

Definition: Dirac structure

Let \mathcal{D} be a subset of \mathcal{B}. We say that \mathcal{D} is a Dirac structure on \mathcal{B} if

$$
\mathcal{D}=\mathcal{D}^{\perp}
$$

For finite-dimensional spaces a Dirac structure is a Tellegan structure of maximal dimension.

In what follows the focus will be on the case when \mathcal{B} is a reflexive Banach space.

Dirac structures on real vector spaces

Definition: Dirac structure

Let \mathcal{D} be a subset of \mathcal{B}. We say that \mathcal{D} is a Dirac structure on \mathcal{B} if

$$
\mathcal{D}=\mathcal{D}^{\perp}
$$

For finite-dimensional spaces a Dirac structure is a Tellegan structure of maximal dimension.

In what follows the focus will be on the case when \mathcal{B} is a reflexive Banach space.

Dirac structures on reflexive Banach spaces

Let \mathcal{F} be a (real) Banach space and $\mathcal{E}=\mathcal{F}^{*}$, where \mathcal{F}^{*} is the adjoint space of \mathcal{F} (the set of all bounded semi-linear forms on \mathcal{F}). Then \mathcal{E} is a Banach space with the norm $\|e\|$ defined by

$$
\|e\|=\sup _{0 \neq f \in \mathcal{F}} \frac{|e(f)|}{\|f\|}
$$

Dirac structures on reflexive Banach spaces

Let \mathcal{F} be a (real) Banach space and $\mathcal{E}=\mathcal{F}^{*}$, where \mathcal{F}^{*} is the adjoint space of \mathcal{F} (the set of all bounded semi-linear forms on \mathcal{F}). Then \mathcal{E} is a Banach space with the norm $\|e\|$ defined by

$$
\|e\|=\sup _{0 \neq f \in \mathcal{F}} \frac{|e(f)|}{\|f\|}
$$

Assumption

The Banach space \mathcal{F} is reflexive.

Dirac structures on reflexive Banach spaces

Introduce the scalar product

$$
\langle\cdot \mid \cdot\rangle_{\mathcal{E} \times \mathcal{F}}: \mathcal{E} \times \mathcal{F} \rightarrow \mathbb{R}
$$

defined by

$$
\langle e \mid f\rangle_{\mathcal{E} \times \mathcal{F}}:=e(f)
$$

for all $e \in \mathcal{E}$ and $f \in \mathcal{F}$.

Each $f \in \mathcal{F}$ may be regarded as an element of $\mathcal{F}^{* *}$ and introduce in a similar way another scalar product

Dirac structures on reflexive Banach spaces

Introduce the scalar product

$$
\langle\cdot \mid \cdot\rangle_{\mathcal{E} \times \mathcal{F}}: \mathcal{E} \times \mathcal{F} \rightarrow \mathbb{R}
$$

defined by

$$
\langle e \mid f\rangle_{\mathcal{E} \times \mathcal{F}}:=e(f)
$$

for all $e \in \mathcal{E}$ and $f \in \mathcal{F}$.

Each $f \in \mathcal{F}$ may be regarded as an element of $\mathcal{F}^{* *}$ and introduce in a similar way another scalar product

$$
\langle\cdot \mid \cdot\rangle_{\mathcal{F} \times \mathcal{E}}: \mathcal{F} \times \mathcal{E} \rightarrow \mathbb{R}
$$

which will satisfy $\langle f \mid e\rangle_{\mathcal{F} \times \mathcal{E}}=\langle e \mid f\rangle_{\mathcal{E} \times \mathcal{F}}$. for all $e \in \mathcal{E}$ and $f \in \mathcal{F}$.

Dirac structures on reflexive Banach spaces

The scalar product on $\mathcal{E} \times \mathcal{F}$ is a power product.

The bond space $\mathcal{B}=\mathcal{F} \times \mathcal{E}$ is also a reflexive Banach space with the linear structure defined componentwise and the norm defined by

$$
\|(f, e)\|=\left(\|f\|^{2}+\|e\|^{2}\right)^{\frac{1}{2}}
$$

Consider the scalar product $\langle\cdot, \cdot\rangle_{\mathcal{B}^{*} \times \mathcal{B}}: \mathcal{B}^{*} \times \mathcal{B} \rightarrow \mathbb{R}$ given by

$$
\langle b, \tilde{b}\rangle_{B^{*} \times B}:=\langle e \mid \tilde{f}\rangle+\langle\tilde{e} \mid \tilde{f}\rangle
$$

where $b=(e, f) \in \mathcal{B}^{*}=\mathcal{E} \times \mathcal{F}$ and $\tilde{b}=(\tilde{f}, \tilde{e}) \in \mathcal{B}=\mathcal{F} \times \mathcal{E}$.

Dirac structures on reflexive Banach spaces

The scalar product on $\mathcal{E} \times \mathcal{F}$ is a power product.

The bond space $\mathcal{B}=\mathcal{F} \times \mathcal{E}$ is also a reflexive Banach space with the linear structure defined componentwise and the norm defined by

$$
\|(f, e)\|=\left(\|f\|^{2}+\|e\|^{2}\right)^{\frac{1}{2}} .
$$

Consider the scalar product $\langle\cdot, \cdot\rangle_{\mathcal{B}^{*} \times \mathcal{B}}: \mathcal{B}^{*} \times \mathcal{B} \rightarrow \mathbb{R}$ given by

where $b=(e, f) \in \mathcal{B}^{*}=\mathcal{E} \times \mathcal{F}$ and $\tilde{b}=(\tilde{f}, \tilde{e}) \in \mathcal{B}=\mathcal{F} \times \mathcal{E}$.

Dirac structures on reflexive Banach spaces

The scalar product on $\mathcal{E} \times \mathcal{F}$ is a power product.

The bond space $\mathcal{B}=\mathcal{F} \times \mathcal{E}$ is also a reflexive Banach space with the linear structure defined componentwise and the norm defined by

$$
\|(f, e)\|=\left(\|f\|^{2}+\|e\|^{2}\right)^{\frac{1}{2}} .
$$

Consider the scalar product $\langle\cdot, \cdot\rangle_{\mathcal{B}^{*} \times \mathcal{B}}: \mathcal{B}^{*} \times \mathcal{B} \rightarrow \mathbb{R}$ given by

$$
\langle b, \tilde{b}\rangle_{\mathcal{B}^{*} \times \mathcal{B}}:=\langle e \mid \tilde{f}\rangle+\langle\tilde{e} \mid f\rangle
$$

where $b=(e, f) \in \mathcal{B}^{*}=\mathcal{E} \times \mathcal{F}$ and $\tilde{b}=(\tilde{f}, \tilde{e}) \in \mathcal{B}=\mathcal{F} \times \mathcal{E}$.

Dirac structures on reflexive Banach spaces

For any subset \mathcal{Z} of \mathcal{B} denote by \mathcal{Z}^{c} the orthogonal complement with respect to the scalar product $\langle\cdot, \cdot\rangle_{\mathcal{B}^{*} \times \mathcal{B}}$, i.e.

$$
\mathcal{Z}^{c}:=\left\{b \in \mathcal{B}^{*} \mid\langle b, \tilde{b}\rangle_{\mathcal{B}^{*} \times \mathcal{B}}=0, \forall \tilde{b} \in \mathcal{Z}\right\} .
$$

\mathcal{Z}^{c} is a subset of $\mathcal{B}^{*}=\mathcal{E} \times \mathcal{F}$ and \mathcal{Z}^{\perp} (the orthogonal of \mathcal{Z} with respect to the bilinear form on \mathcal{B} as defined in the previous section)

$$
\mathcal{Z}^{\perp}:=\{b \in \mathcal{B} \mid \ll b, \tilde{b} \gg=0, \forall \tilde{b} \in \mathcal{Z}\}
$$

is a subset of \mathcal{B}.

Dirac structures on reflexive Banach spaces

For any subset \mathcal{Z} of \mathcal{B} denote by \mathcal{Z}^{c} the orthogonal complement with respect to the scalar product $\langle\cdot, \cdot\rangle_{\mathcal{B}^{*} \times \mathcal{B}}$, i.e.

$$
\mathcal{Z}^{c}:=\left\{b \in \mathcal{B}^{*} \mid\langle b, \tilde{b}\rangle_{\mathcal{B}^{*} \times \mathcal{B}}=0, \forall \tilde{b} \in \mathcal{Z}\right\} .
$$

\mathcal{Z}^{c} is a subset of $\mathcal{B}^{*}=\mathcal{E} \times \mathcal{F}$ and \mathcal{Z}^{\perp} (the orthogonal of \mathcal{Z} with respect to the bilinear form on \mathcal{B} as defined in the previous section)

$$
\mathcal{Z}^{\perp}:=\{b \in \mathcal{B} \mid \ll b, \tilde{b} \gg=0, \forall \tilde{b} \in \mathcal{Z}\}
$$

is a subset of \mathcal{B}.

Dirac structures on reflexive Banach spaces

Consider R the natural embedding of \mathcal{B}^{*} into \mathcal{B}. Then R is an isometric isomorphism between \mathcal{B}^{*} and \mathcal{B} defined by

$$
R=\left[\begin{array}{cc}
0 & r_{\mathcal{F}^{* * *}} \\
i d_{\mathcal{E}} & 0
\end{array}\right]
$$

where $i d_{\mathcal{E}}$ is the identity on \mathcal{E} and $r_{\mathcal{F}^{* *}} \mathcal{F}$ is the inverse of $r_{\mathcal{F F}^{* *}}$, the natural isometric isomorphism between \mathcal{F} and $\mathcal{F}^{* *}$.

The inverse of R is the isometric isomorphism S

Dirac structures on reflexive Banach spaces

Consider R the natural embedding of \mathcal{B}^{*} into \mathcal{B}. Then R is an isometric isomorphism between \mathcal{B}^{*} and \mathcal{B} defined by

$$
R=\left[\begin{array}{cc}
0 & r_{\mathcal{F} * * \mathcal{F}} \\
i d_{\mathcal{E}} & 0
\end{array}\right]
$$

where $i d_{\mathcal{E}}$ is the identity on \mathcal{E} and $r_{\mathcal{F}^{* *}} \mathcal{F}$ is the inverse of $r_{\mathcal{F F}^{* *}}$, the natural isometric isomorphism between \mathcal{F} and $\mathcal{F}^{* *}$.

The inverse of R is the isometric isomorphism $S: \mathcal{B} \rightarrow \mathcal{B}^{*}$ defined by

$$
S=\left[\begin{array}{cc}
0 & i d_{\mathcal{E}} \\
r_{\mathcal{F} \mathcal{F}^{* *}} & 0
\end{array}\right] .
$$

Dirac structures on reflexive Banach spaces

The bilinear form $\ll \cdot, \cdot \gg$ on \mathcal{B} is related to the scalar product
$\langle\cdot, \cdot\rangle_{\mathcal{B}^{*} \times \mathcal{B}}$ by

$$
\ll b^{1}, b^{2} \gg=\left\langle S b^{1}, b^{2}\right\rangle_{\mathcal{B}^{*} \times \mathcal{B}} .
$$

for all $b^{1}=\left(f^{1}, e^{1}\right)$ and $b^{2}=\left(f^{2}, e^{2}\right)$ in \mathcal{B}.

Proposition

Let \mathcal{Z} be a subspace of the bond space \mathcal{B}. Then the following equalities holds:

Dirac structures on reflexive Banach spaces

The bilinear form $\ll \cdot, \cdot \gg$ on \mathcal{B} is related to the scalar product $\langle\cdot, \cdot\rangle_{\mathcal{B}^{*} \times \mathcal{B}}$ by

$$
\ll b^{1}, b^{2} \gg=\left\langle S b^{1}, b^{2}\right\rangle_{\mathcal{B}^{*} \times \mathcal{B}} .
$$

for all $b^{1}=\left(f^{1}, e^{1}\right)$ and $b^{2}=\left(f^{2}, e^{2}\right)$ in \mathcal{B}.

Proposition

Let \mathcal{Z} be a subspace of the bond space \mathcal{B}. Then the following equalities holds:

$$
\mathcal{Z}^{\perp}=R \mathcal{Z}^{c}, \quad S \mathcal{Z}^{\perp}=\mathcal{Z}^{c}
$$

Dirac structures on reflexive Banach spaces

Proposition

Let D be a vectorial subspace of \mathcal{B}. The following statements are equivalent:

- D is a Dirac structure on \mathcal{B}.
- $D=R D^{c}$.
- $D^{c}=S D$.

Theorem
Let \mathcal{Z} be a closed subspace of the bond space \mathcal{B}. Then \mathcal{Z} is a Dirac structure on \mathcal{B} if and only if \mathcal{Z} and \mathcal{Z}^{\perp} are Tellegan structures on \mathcal{B}.

Dirac structures on reflexive Banach spaces

Proposition

Let D be a vectorial subspace of \mathcal{B}. The following statements are equivalent:

- D is a Dirac structure on \mathcal{B}.
- $D=R D^{c}$
- $D^{c}=S D$.

Theorem
Let \mathcal{Z} be a closed subspace of the bond space \mathcal{B}. Then \mathcal{Z} is a Dirac structure on \mathcal{B} if and only if \mathcal{Z} and \mathcal{Z}^{\perp} are Tellegan structures on \mathcal{B}.

Dirac structures on reflexive Banach spaces

Proposition

Let D be a vectorial subspace of \mathcal{B}. The following statements are equivalent:

- D is a Dirac structure on \mathcal{B}.
(2) $D=R D^{c}$.
- $D^{c}=S D$.

Theorem
Let \mathcal{Z} be a closed subspace of the bond space B. Then \mathcal{Z} is a Dirac structure on \mathcal{B} if and only if \mathcal{Z} and \mathcal{Z}^{\perp} are Tellegan structures on \mathcal{B}.

Dirac structures on reflexive Banach spaces

Proposition

Let D be a vectorial subspace of \mathcal{B}. The following statements are equivalent:

- D is a Dirac structure on \mathcal{B}.
(2) $D=R D^{c}$.
($D^{c}=S D$.
Theorem
Let \mathcal{Z} be a closed subspace of the bond space \mathcal{B}. Then \mathcal{Z} is a Dirac structure on \mathcal{B} if and only if \mathcal{Z} and \mathcal{Z}^{\perp} are Tellegan structures on \mathcal{B}.

Dirac structures on reflexive Banach spaces

Proposition

Let D be a vectorial subspace of \mathcal{B}. The following statements are equivalent:

- D is a Dirac structure on \mathcal{B}.
(2) $D=R D^{c}$.
($D^{c}=S D$.

Theorem

Let \mathcal{Z} be a closed subspace of the bond space \mathcal{B}. Then \mathcal{Z} is a Dirac structure on \mathcal{B} if and only if \mathcal{Z} and \mathcal{Z}^{\perp} are Tellegan structures on \mathcal{B}.

Dirac structures on reflexive Banach spaces

An example

Let A be a skew-adjoint (unbounded in general) operator from $\operatorname{dom} A \subseteq \mathcal{F}$ to \mathcal{E}, that is

$$
\langle A x \mid y\rangle+\langle x \mid A y\rangle=0,
$$

for all $x, y \in d o m A=d o m A^{*}$.

Then the graph of A,

$$
G(A)=\{(x, A x): x \in \operatorname{dom} A\}
$$

is a Dirac structure.

Dirac structures on reflexive Banach spaces

An example

Let A be a skew-adjoint (unbounded in general) operator from $\operatorname{dom} A \subseteq \mathcal{F}$ to \mathcal{E}, that is

$$
\langle A x \mid y\rangle+\langle x \mid A y\rangle=0,
$$

for all $x, y \in d o m A=d o m A^{*}$.

Then the graph of A,

$$
\mathcal{G}(A)=\{(x, A x): x \in \operatorname{dom} A\}
$$

is a Dirac structure.

The kernel representation of a Dirac structure

Consider a densely defined closed operator $T: \mathcal{B} \rightarrow \mathcal{L}$, where \mathcal{B} is the bond space. The subspace $D=\operatorname{ker}(T)$ is a Dirac structure on \mathcal{B} if and only if ker (T) and $\operatorname{Im}\left(R T^{*}\right)$ are Tellegan structures on \mathcal{B}.
\square
Let D be a Dirac structure on the bond space \mathcal{B}. There exists a projection P from \mathcal{B} onto D if and only if $\mathcal{B}=D \oplus N$ for some closed subspace N of \mathcal{B}. Then

The kernel representation of a Dirac structure

Consider a densely defined closed operator $T: \mathcal{B} \rightarrow \mathcal{L}$, where \mathcal{B} is the bond space. The subspace $D=\operatorname{ker}(T)$ is a Dirac structure on \mathcal{B} if and only if ker (T) and $\operatorname{Im}\left(R T^{*}\right)$ are Tellegan structures on \mathcal{B}.

Theorem

Let D be a Dirac structure on the bond space \mathcal{B}. There exists a projection P from \mathcal{B} onto D if and only if $\mathcal{B}=D \oplus N$ for some closed subspace N of \mathcal{B}. Then

$$
D=\operatorname{ker}(I-P)
$$

The kernel representation of a Dirac structure

An example

Consider a transmission line whose length is S. The Kirchhoff's laws describing the transmission line are given by

$$
\begin{aligned}
& e_{\phi}=-\frac{\partial e_{q}}{\partial z}, \\
& f_{q}=-\frac{\partial f_{\phi}}{\partial z} .
\end{aligned}
$$

Here f_{q} is the rate of charge density, e_{q} is the voltage distribution, f_{ϕ} is the current distribution and e_{ϕ} is the rate of flux density.

The kernel representation of a Dirac structure

An example

Consider a transmission line whose length is S. The Kirchhoff's laws describing the transmission line are given by

$$
\begin{aligned}
& e_{\phi}=-\frac{\partial e_{q}}{\partial z}, \\
& f_{q}=-\frac{\partial f_{\phi}}{\partial z} .
\end{aligned}
$$

Here f_{q} is the rate of charge density, e_{q} is the voltage distribution, f_{ϕ} is the current distribution and e_{ϕ} is the rate of flux density.

The kernel representation of a Dirac structure

The boundary conditions are

$$
\begin{gathered}
f_{\phi}(0)=-f_{L}, e_{q}(0)=e_{L} \\
f_{\phi}(S)=f_{R}, e_{q}(S)=e_{R}
\end{gathered}
$$

Here f_{L} and e_{L} are the current and voltage at the left boundary.

Similarly, f_{R} and e_{R} are the current and voltage at the right boundary.

The kernel representation of a Dirac structure

The boundary conditions are

$$
\begin{gathered}
f_{\phi}(0)=-f_{L}, e_{q}(0)=e_{L} \\
f_{\phi}(S)=f_{R}, e_{q}(S)=e_{R}
\end{gathered}
$$

Here f_{L} and e_{L} are the current and voltage at the left boundary.

The kernel representation of a Dirac structure

The boundary conditions are

$$
\begin{gathered}
f_{\phi}(0)=-f_{L}, e_{q}(0)=e_{L} \\
f_{\phi}(S)=f_{R}, e_{q}(S)=e_{R}
\end{gathered}
$$

Here f_{L} and e_{L} are the current and voltage at the left boundary.

Similarly, f_{R} and e_{R} are the current and voltage at the right boundary.

The kernel representation of a Dirac structure

Let p, q be two positive numbers satisfying the condition $1 / p+1 / q=1$ and let $L_{p}(0, S)$ and $L_{q}(0, S)$ be the space of p - and q-integrable functions on $[0, S]$, respectively.

The space of flow variables is given by

$$
\mathcal{F}=L_{p}(0, S) \times L_{p}(0, S) \times \mathbb{R}^{2}
$$

while the space of effort variables is given by

An element of the space \mathcal{F} is denoted by $f=\left(f_{q}, f_{\phi}, f_{L}, f_{R}\right)$, and an element of the space \mathcal{E} is denoted by $e=\left(e_{q}, e_{\phi}, e_{L}, e_{R}\right)$.

The kernel representation of a Dirac structure

Let p, q be two positive numbers satisfying the condition $1 / p+1 / q=1$ and let $L_{p}(0, S)$ and $L_{q}(0, S)$ be the space of p - and q-integrable functions on $[0, S]$, respectively.

The space of flow variables is given by

$$
\mathcal{F}=L_{p}(0, S) \times L_{p}(0, S) \times \mathbb{R}^{2}
$$

while the space of effort variables is given by

$$
\mathcal{E}=L_{q}(0, S) \times L_{q}(0, S) \times \mathbb{R}^{2}
$$

An element of the space \mathcal{F} is denoted by $f=\left(f_{q}, f_{\phi}, f_{L}, f_{R}\right)$, and an element of the space \mathcal{E} is denoted by $e=\left(e_{q}, e_{\phi}, e_{L}, e_{R}\right)$.

The kernel representation of a Dirac structure

Let p, q be two positive numbers satisfying the condition $1 / p+1 / q=1$ and let $L_{p}(0, S)$ and $L_{q}(0, S)$ be the space of p - and q-integrable functions on $[0, S]$, respectively.

The space of flow variables is given by

$$
\mathcal{F}=L_{p}(0, S) \times L_{p}(0, S) \times \mathbb{R}^{2}
$$

while the space of effort variables is given by

$$
\mathcal{E}=L_{q}(0, S) \times L_{q}(0, S) \times \mathbb{R}^{2}
$$

An element of the space \mathcal{F} is denoted by $f=\left(f_{q}, f_{\phi}, f_{L}, f_{R}\right)$, and an element of the space \mathcal{E} is denoted by $e=\left(e_{q}, e_{\phi}, e_{L}, e_{R}\right)$.

The kernel representation of a Dirac structure

The power product is defined as

$$
\begin{aligned}
\langle e \mid f\rangle_{\mathcal{B}}= & \langle e, f\rangle_{\mathcal{F}} \\
= & \int_{0}^{S} f_{q}(z) e_{q}(z) d z+\int_{0}^{S} f_{\phi}(z) e_{\phi}(z) d z \\
& +f_{L} e_{L}+f_{R} e_{R} .
\end{aligned}
$$

The first term represents the power associated to electrical domain, the second term is power associated to magnetic domain and the last two terms represents the power exchanged through the boundary.

The kernel representation of a Dirac structure

The power product is defined as

$$
\begin{aligned}
\langle e \mid f\rangle_{\mathcal{B}}= & \langle e, f\rangle_{\mathcal{F}} \\
= & \int_{0}^{S} f_{q}(z) e_{q}(z) d z+\int_{0}^{S} f_{\phi}(z) e_{\phi}(z) d z \\
& +f_{L} e_{L}+f_{R} e_{R} .
\end{aligned}
$$

The first term represents the power associated to electrical domain, the second term is power associated to magnetic domain and the last two terms represents the power exchanged through the boundary.

The kernel representation of a Dirac structure

The space of admissible flows and efforts is given by

$$
\mathcal{D}=\operatorname{ker}(T),
$$

where
$T: \mathcal{B} \rightarrow \mathcal{L}=L_{p}(0, S) \times L_{p}(0, S) \times \mathbb{R}^{2} \times L_{q}(0, S) \times L_{q}(0, S) \times \mathbb{R}^{2}$ is as follows

$$
T=\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right]
$$

with M and N given by:

The kernel representation of a Dirac structure

The space of admissible flows and efforts is given by

$$
\mathcal{D}=\operatorname{ker}(T)
$$

where
$T: \mathcal{B} \rightarrow \mathcal{L}=L_{p}(0, S) \times L_{p}(0, S) \times \mathbb{R}^{2} \times L_{q}(0, S) \times L_{q}(0, S) \times \mathbb{R}^{2}$ is as follows

$$
T=\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right]
$$

with M and N given by:

The kernel representation of a Dirac structure

$$
\begin{aligned}
& M=\left[\begin{array}{cccc}
i d_{L_{p}(0, S)} & \frac{\partial}{\partial z} & 0 & 0 \\
0 & \partial_{L, p} & 1 & 0 \\
0 & \partial_{R, p} & 0 & -1
\end{array}\right], \\
& N=\left[\begin{array}{cccc}
\frac{\partial}{\partial z} & i d_{L_{q}(0, S)} & 0 & 0 \\
\partial_{L, q} & 0 & -1 & 0 \\
\partial_{L, q} & 0 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

The kernel representation of a Dirac structure

$$
\begin{aligned}
& M=\left[\begin{array}{cccc}
i d_{L_{p}(0, S)} & \frac{\partial}{\partial z} & 0 & 0 \\
0 & \partial_{L, p} & 1 & 0 \\
0 & \partial_{R, p} & 0 & -1
\end{array}\right], \\
& N=\left[\begin{array}{cccc}
\frac{\partial}{\partial z} & i d_{L_{q}(0, S)} & 0 & 0 \\
\partial_{L, q} & 0 & -1 & 0 \\
\partial_{L, q} & 0 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

Here, $\partial_{L, p}: L_{p}(0, S) \rightarrow \mathbb{R}$ is defined as $\partial_{L, p} x=x(0)$ and $\partial_{R, p}: L_{p}(0, S) \rightarrow \mathbb{R}$ is defined as $\partial_{R, p} x=x(S)$.

The kernel representation of a Dirac structure

The domain of the operator T is

$$
\begin{aligned}
\operatorname{dom}(T)= & L_{p}(0, S) \times \operatorname{dom}_{p}\left(\frac{\partial}{\partial z}\right) \times \mathbb{R} \\
& \times \mathbb{R} \times \operatorname{dom}_{q}\left(\frac{\partial}{\partial z}\right) \times L_{q}(0, S) \times \mathbb{R} \times \mathbb{R}
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{dom}_{p}\left(\frac{\partial}{\partial z}\right)= & \left\{x \in L_{p}(0, S): x\right. \text { abs. cont. } \\
& \text { and } \left.\frac{\partial x}{\partial z} \in L_{p}(0, S)\right\} .
\end{aligned}
$$

The kernel representation of a Dirac structure

The domain of the operator T is

$$
\begin{aligned}
\operatorname{dom}(T)= & L_{p}(0, S) \times \operatorname{dom}_{p}\left(\frac{\partial}{\partial z}\right) \times \mathbb{R} \\
& \times \mathbb{R} \times \operatorname{dom}_{q}\left(\frac{\partial}{\partial z}\right) \times L_{q}(0, S) \times \mathbb{R} \times \mathbb{R}
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{dom}_{p}\left(\frac{\partial}{\partial z}\right)= & \left\{x \in L_{p}(0, S): x\right. \text { abs. cont. } \\
& \text { and } \left.\frac{\partial x}{\partial z} \in L_{p}(0, S)\right\}
\end{aligned}
$$

\mathcal{D} is a Dirac structure.

The decomposition of a Dirac structure

Three classes of Dirac structures are introduced:
(1) Completely multi-valued Dirac structures which are of the form

$$
\mathcal{D}_{\text {mul }}=\{(0, e): e \in \mathcal{E}\}
$$

(ㅇ) Completely kernel Dirac structures which are of the form

$$
\mathcal{D}_{\text {ker }}=\{(f, 0): f \in \mathcal{F}\}
$$

(Completely skew-adjoint Dirac structures which are determined by the graphs of injective skew-adjoint (not necessarily bounded) operators from \mathcal{F} to \mathcal{E}.

The decomposition of a Dirac structure

Three classes of Dirac structures are introduced:

- Completely multi-valued Dirac structures which are of the form

$$
\mathcal{D}_{m u l}=\{(0, e): e \in \mathcal{E}\} ;
$$

- Completely kernel Dirac structures which are of the form
$\mathcal{D}_{\text {ker }}=\{(f, 0): f \in \mathcal{F}\} ;$
- Completely skew-adjoint Dirac structures which are determined by the graphs of injective skew-adjoint (not necessarily bounded) operators from \mathcal{F} to \mathcal{E}.

The decomposition of a Dirac structure

Three classes of Dirac structures are introduced:

- Completely multi-valued Dirac structures which are of the form

$$
\mathcal{D}_{m u l}=\{(0, e): e \in \mathcal{E}\} ;
$$

© Completely kernel Dirac structures which are of the form

$$
\mathcal{D}_{k e r}=\{(f, 0): f \in \mathcal{F}\}
$$

- Completely skew-adjoint Dirac structures which are determined by the graphs of injective skew-adjoint (not necessarily bounded) operators from \mathcal{F} to \mathcal{E}.

The decomposition of a Dirac structure

Three classes of Dirac structures are introduced:

- Completely multi-valued Dirac structures which are of the form

$$
\mathcal{D}_{m u l}=\{(0, e): e \in \mathcal{E}\} ;
$$

© Completely kernel Dirac structures which are of the form

$$
\mathcal{D}_{k e r}=\{(f, 0): f \in \mathcal{F}\}
$$

- Completely skew-adjoint Dirac structures which are determined by the graphs of injective skew-adjoint (not necessarily bounded) operators from \mathcal{F} to \mathcal{E}.

The decomposition of a Dirac structure

Under certain assumptions, a Dirac structure can be decomposed as:

$$
\mathcal{D}=\mathcal{D}_{\text {mul }} \oplus \mathcal{D}_{\text {ker }} \oplus \mathcal{D}_{\text {skew }}
$$

This decomposition is comparable to the so called "constrained input-output representation" of a Dirac structure in finite-dimensional spaces.

The decomposition of a Dirac structure

Under certain assumptions, a Dirac structure can be decomposed as:

$$
\mathcal{D}=\mathcal{D}_{\text {mul }} \oplus \mathcal{D}_{\text {ker }} \oplus \mathcal{D}_{\text {skew }}
$$

This decomposition is comparable to the so called "constrained input-output representation" of a Dirac structure in finite-dimensional spaces.

The scattering representation of a Dirac structure

Let \mathcal{F} be a Hilbert space, $\mathcal{E}=\mathcal{F}^{*}$ the dual of \mathcal{F}, and consider $R: \mathcal{F} \rightarrow \mathcal{E}$ an isometric isomorphism between \mathcal{F} and \mathcal{E}.

Let \mathcal{D} be a Dirac structure on the Hilbert space \mathcal{B}. Then $\mathcal{O}_{\mathcal{D}}$ is a unitary operator in \mathcal{E}.

Let \mathcal{O} be a unitary operator in \mathcal{E}. Then the linear relation

is a Dirac structure on \mathcal{B}.

The scattering representation of a Dirac structure

Let \mathcal{F} be a Hilbert space, $\mathcal{E}=\mathcal{F}^{*}$ the dual of \mathcal{F}, and consider $R: \mathcal{F} \rightarrow \mathcal{E}$ an isometric isomorphism between \mathcal{F} and \mathcal{E}.

For any linear subspace \mathcal{V} of \mathcal{B} define the linear relation \mathcal{O} in \mathcal{E} by

$$
\mathcal{O}_{\mathcal{V}}=I_{\mathcal{E}}-2 R(\mathcal{V}+R)^{-1}
$$

Let \mathcal{D} be a Dirac structure on the Hilbert space \mathcal{B}. Then $\mathcal{O}_{\mathcal{D}}$ is a unitary operator in \mathcal{E}.

Let \mathcal{O} be a unitary operator in \mathcal{E}. Then the linear relation

The scattering representation of a Dirac structure

Let \mathcal{F} be a Hilbert space, $\mathcal{E}=\mathcal{F}^{*}$ the dual of \mathcal{F}, and consider $R: \mathcal{F} \rightarrow \mathcal{E}$ an isometric isomorphism between \mathcal{F} and \mathcal{E}.

For any linear subspace \mathcal{V} of \mathcal{B} define the linear relation \mathcal{O} in \mathcal{E} by

$$
\mathcal{O}_{\mathcal{V}}=I_{\mathcal{E}}-2 R(\mathcal{V}+R)^{-1}
$$

Let \mathcal{D} be a Dirac structure on the Hilbert space \mathcal{B}. Then $\mathcal{O}_{\mathcal{D}}$ is a unitary operator in \mathcal{E}.

Let \mathcal{O} be a unitary operator in \mathcal{E}. Then the linear relation

The scattering representation of a Dirac structure

Let \mathcal{F} be a Hilbert space, $\mathcal{E}=\mathcal{F}^{*}$ the dual of \mathcal{F}, and consider $R: \mathcal{F} \rightarrow \mathcal{E}$ an isometric isomorphism between \mathcal{F} and \mathcal{E}.

For any linear subspace \mathcal{V} of \mathcal{B} define the linear relation \mathcal{O} in \mathcal{E} by

$$
\mathcal{O}_{\mathcal{V}}=I_{\mathcal{E}}-2 R(\mathcal{V}+R)^{-1}
$$

Let \mathcal{D} be a Dirac structure on the Hilbert space \mathcal{B}. Then $\mathcal{O}_{\mathcal{D}}$ is a unitary operator in \mathcal{E}.

Let \mathcal{O} be a unitary operator in \mathcal{E}. Then the linear relation

$$
\mathcal{D}_{\mathcal{O}}:=\left\{\left(\frac{1}{2} R^{-1}\left(I_{\mathcal{E}}-\mathcal{O}\right) e, \frac{1}{2}\left(I_{\mathcal{E}}+\mathcal{O}\right) e\right): e \in \mathcal{E}\right\}
$$

is a Dirac structure on \mathcal{B}.

The composition of Dirac structures

Let $\mathcal{F}_{i}, 1 \leq i \leq 3$ be three Hilbert spaces, let $\mathcal{E}_{i}=\mathcal{F}_{i}^{*}, 1 \leq i \leq 3$, and let $R_{i}: \mathcal{F} \rightarrow \mathcal{E}, 1 \leq i \leq 3$ be the corresponding isometric isomorphisms.

Consider two Dirac structures \mathcal{D}_{A} and \mathcal{D}_{B} on $\mathcal{F}_{1} \times \mathcal{E}_{1} \times \mathcal{F}_{2} \times \mathcal{E}_{2}$ and on $\mathcal{F}_{2} \times \mathcal{E}_{2} \times \mathcal{F}_{3} \times \mathcal{E}_{3}$, respectively.
\mathcal{D}_{A} and \mathcal{D}_{B} have the following scaterring representations:

The composition of Dirac structures

Let $\mathcal{F}_{i}, 1 \leq i \leq 3$ be three Hilbert spaces, let $\mathcal{E}_{i}=\mathcal{F}_{i}^{*}, 1 \leq i \leq 3$, and let $R_{i}: \mathcal{F} \rightarrow \mathcal{E}, 1 \leq i \leq 3$ be the corresponding isometric isomorphisms.

Consider two Dirac structures \mathcal{D}_{A} and \mathcal{D}_{B} on $\mathcal{F}_{1} \times \mathcal{E}_{1} \times \mathcal{F}_{2} \times \mathcal{E}_{2}$ and on $\mathcal{F}_{2} \times \mathcal{E}_{2} \times \mathcal{F}_{3} \times \mathcal{E}_{3}$, respectively.
\mathcal{D}_{A} and \mathcal{D}_{B} have the following scaterring representations:

The composition of Dirac structures

Let $\mathcal{F}_{i}, 1 \leq i \leq 3$ be three Hilbert spaces, let $\mathcal{E}_{i}=\mathcal{F}_{i}^{*}, 1 \leq i \leq 3$, and let $R_{i}: \mathcal{F} \rightarrow \mathcal{E}, 1 \leq i \leq 3$ be the corresponding isometric isomorphisms.

Consider two Dirac structures \mathcal{D}_{A} and \mathcal{D}_{B} on $\mathcal{F}_{1} \times \mathcal{E}_{1} \times \mathcal{F}_{2} \times \mathcal{E}_{2}$ and on $\mathcal{F}_{2} \times \mathcal{E}_{2} \times \mathcal{F}_{3} \times \mathcal{E}_{3}$, respectively.
\mathcal{D}_{A} and \mathcal{D}_{B} have the following scaterring representations:

$$
\mathcal{O}_{A}=\left[\begin{array}{cc}
\mathcal{O}_{11}^{A} & \mathcal{O}_{12}^{A} \\
\mathcal{O}_{21}^{A} & \mathcal{O}_{22}^{A}
\end{array}\right], \quad \mathcal{O}_{B}=\left[\begin{array}{cc}
\mathcal{O}_{22}^{B} & \mathcal{O}_{23}^{B} \\
\mathcal{O}_{32}^{B} & \mathcal{O}_{33}^{B}
\end{array}\right]
$$

The composition of Dirac structures

The composition $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ of \mathcal{D}_{A} and \mathcal{D}_{B} consists of all $\left(f_{1}, e_{1}, f_{3}, e_{3}\right)$ such that $\left(f_{1}, e_{1}, f_{2}, e_{2}\right) \in \mathcal{D}_{A}$ and $\left(f_{2}, e_{2}, f_{3}, e_{3}\right) \in \mathcal{D}_{B}$ for some $\left(f_{2}, e_{2}\right) \in \mathcal{F}_{2} \times \mathcal{E}_{2}$.

The composition of two Dirac structures is always a Tellegen structure.

For finite-dimensional systems, the composition of two Dirac structures defines a Dirac structure. For distributed-parameter systems the composition of two Dirac structures does not always result in a new Dirac structure.

The composition of Dirac structures

The composition $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ of \mathcal{D}_{A} and \mathcal{D}_{B} consists of all $\left(f_{1}, e_{1}, f_{3}, e_{3}\right)$ such that $\left(f_{1}, e_{1}, f_{2}, e_{2}\right) \in \mathcal{D}_{A}$ and $\left(f_{2}, e_{2}, f_{3}, e_{3}\right) \in \mathcal{D}_{B}$ for some $\left(f_{2}, e_{2}\right) \in \mathcal{F}_{2} \times \mathcal{E}_{2}$.

The composition of two Dirac structures is always a Tellegen structure.

For finite-dimensional systems, the composition of two Dirac structures defines a Dirac structure. For distributed-parameter systems the composition of two Dirac structures does not always result in a new Dirac structure.

The composition of Dirac structures

The composition $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ of \mathcal{D}_{A} and \mathcal{D}_{B} consists of all $\left(f_{1}, e_{1}, f_{3}, e_{3}\right)$ such that $\left(f_{1}, e_{1}, f_{2}, e_{2}\right) \in \mathcal{D}_{A}$ and $\left(f_{2}, e_{2}, f_{3}, e_{3}\right) \in \mathcal{D}_{B}$ for some $\left(f_{2}, e_{2}\right) \in \mathcal{F}_{2} \times \mathcal{E}_{2}$.

The composition of two Dirac structures is always a Tellegen structure.

For finite-dimensional systems, the composition of two Dirac structures defines a Dirac structure. For distributed-parameter systems the composition of two Dirac structures does not always result in a new Dirac structure.

When is the composition again a Dirac structure?

Theorem

Let \mathcal{D}_{A} and \mathcal{D}_{B} be two Dirac structures and let \mathcal{O}_{A} and \mathcal{O}_{B} the corresponding scattering representations of them. The following items are equivalent:
(1) $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure;

- $\mathcal{O}_{B} \star \mathcal{O}_{A}$ is a unitary operator in $\mathcal{E}_{1} \times \mathcal{E}_{3}$;
- The following conditions are both met:

In particular, if $I_{\mathcal{E}_{2}}-\mathcal{O}_{22}^{A} \mathcal{O}_{22}^{B}$ is invertible in \mathcal{E}_{2} then $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure on $\mathcal{F}_{1} \times \mathcal{E}_{1} \times \mathcal{F}_{3} \times \mathcal{E}_{3}$.

When is the composition again a Dirac structure?

Theorem

Let \mathcal{D}_{A} and \mathcal{D}_{B} be two Dirac structures and let \mathcal{O}_{A} and \mathcal{O}_{B} the corresponding scattering representations of them. The following items are equivalent:
(1) $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure;

- $\mathcal{O}_{B} \star \mathcal{O}_{A}$ is a unitary operator in $\mathcal{E}_{1} \times \mathcal{E}_{3}$;
- The following conditions are both met:

In particular, if $I_{\mathcal{E}_{2}}-\mathcal{O}_{22}^{A} \mathcal{O}_{22}^{B}$ is invertible in \mathcal{E}_{2} then $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure on \mathcal{F}_{1}

When is the composition again a Dirac structure?

Theorem

Let \mathcal{D}_{A} and \mathcal{D}_{B} be two Dirac structures and let \mathcal{O}_{A} and \mathcal{O}_{B} the corresponding scattering representations of them. The following items are equivalent:
(1) $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure;
(2) $\mathcal{O}_{B} \star \mathcal{O}_{A}$ is a unitary operator in $\mathcal{E}_{1} \times \mathcal{E}_{3}$;

- The following conditions are both met:

In particular, if $I_{\mathcal{E}_{2}}-\mathcal{O}_{22}^{A} \mathcal{O}_{22}^{B}$ is invertible in \mathcal{E}_{2} then $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure on \mathcal{F}_{1}

When is the composition again a Dirac structure?

Theorem

Let \mathcal{D}_{A} and \mathcal{D}_{B} be two Dirac structures and let \mathcal{O}_{A} and \mathcal{O}_{B} the corresponding scattering representations of them. The following items are equivalent:
(1) $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure;
(2) $\mathcal{O}_{B} \star \mathcal{O}_{A}$ is a unitary operator in $\mathcal{E}_{1} \times \mathcal{E}_{3}$;
(0) The following conditions are both met:

When is the composition again a Dirac structure?

Theorem

Let \mathcal{D}_{A} and \mathcal{D}_{B} be two Dirac structures and let \mathcal{O}_{A} and \mathcal{O}_{B} the corresponding scattering representations of them. The following items are equivalent:
(1) $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure;
(2) $\mathcal{O}_{B} \star \mathcal{O}_{A}$ is a unitary operator in $\mathcal{E}_{1} \times \mathcal{E}_{3}$;
(0) The following conditions are both met:
(-) $\operatorname{ran}\left[\begin{array}{ll}\mathcal{O}_{21}^{A} & \mathcal{O}_{22}^{A} \mathcal{O}_{23}^{B}\end{array}\right] \subset \operatorname{ran}\left(\mathcal{O}_{22}^{A} \mathcal{O}_{22}^{B}-I_{\mathcal{E}_{2}}\right)$, and

In particular, if $I_{\mathcal{E}_{2}}-\mathcal{O}_{22}^{A} \mathcal{O}_{22}^{B}$ is invertible in \mathcal{E}_{2} then $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure on \mathcal{F}_{1}

When is the composition again a Dirac structure?

Theorem

Let \mathcal{D}_{A} and \mathcal{D}_{B} be two Dirac structures and let \mathcal{O}_{A} and \mathcal{O}_{B} the corresponding scattering representations of them. The following items are equivalent:
(1) $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure;
(2) $\mathcal{O}_{B} \star \mathcal{O}_{A}$ is a unitary operator in $\mathcal{E}_{1} \times \mathcal{E}_{3}$;
(0) The following conditions are both met:

- $\operatorname{ran}\left[\begin{array}{ll}\mathcal{O}_{21}^{A} & \mathcal{O}_{22}^{A} \mathcal{O}_{23}^{B}\end{array}\right] \subset \operatorname{ran}\left(\mathcal{O}_{22}^{A} \mathcal{O}_{22}^{B}-I_{\mathcal{E}_{2}}\right)$, and
(2) $\operatorname{ran}\left[\mathcal{O}_{22}^{B *} \mathcal{O}_{12}^{A *} \quad \mathcal{O}_{32}^{B *}\right] \subset \operatorname{ran}\left(\mathcal{O}_{22}^{B *} \mathcal{O}_{22}^{A *}-I_{\mathcal{E}_{2}}\right)$.

When is the composition again a Dirac structure?

Theorem

Let \mathcal{D}_{A} and \mathcal{D}_{B} be two Dirac structures and let \mathcal{O}_{A} and \mathcal{O}_{B} the corresponding scattering representations of them. The following items are equivalent:
(1) $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure;
(2) $\mathcal{O}_{B} \star \mathcal{O}_{A}$ is a unitary operator in $\mathcal{E}_{1} \times \mathcal{E}_{3}$;
(0) The following conditions are both met:

- $\operatorname{ran}\left[\begin{array}{ll}\mathcal{O}_{21}^{A} & \mathcal{O}_{22}^{A} \mathcal{O}_{23}^{B}\end{array}\right] \subset \operatorname{ran}\left(\mathcal{O}_{22}^{A} \mathcal{O}_{22}^{B}-I_{\mathcal{E}_{2}}\right)$, and
(2) $\operatorname{ran}\left[\mathcal{O}_{22}^{B *} \mathcal{O}_{12}^{A *} \quad \mathcal{O}_{32}^{B *}\right] \subset \operatorname{ran}\left(\mathcal{O}_{22}^{B *} \mathcal{O}_{22}^{A *}-I_{\mathcal{E}_{2}}\right)$.

In particular, if $I_{\mathcal{E}_{2}}-\mathcal{O}_{22}^{A} \mathcal{O}_{22}^{B}$ is invertible in \mathcal{E}_{2} then $\mathcal{D}_{A} \circ \mathcal{D}_{B}$ is a Dirac structure on $\mathcal{F}_{1} \times \mathcal{E}_{1} \times \mathcal{F}_{3} \times \mathcal{E}_{3}$.

