
A test for commutative J-symmetric families of

D+
κ -class.

Vladimir Strauss
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Abstract

A goal of this report is a study of relations between com-
mutative J -symmetric families of so-called D+

κ -class and
some spectral functions with peculiarities.
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1. Preliminaries

Let H be a Hilbert space. If Y ⊆ H, then the sym-
bol LinY refers to the linear span of Y , and by the
symbol CLinY we denote the closed linear span of Y .
The symbol dimX is the linear dimension of a vector
space X . In what follows H is a Krein space with an
indefinite sesquilinear form [·, ·]. Let H = H+[+̇]H−

be a canonical decomposition of H, let P+ and P−

be canonical projections: H+ = P+H, H− = P−H,
let J = P+ − P− be a canonical symmetry, and let
(·, ·) = [J ·, ·] be a canonical scalar product. Note that
one of these canonical objects uniquely determines the
others. Everywhere below we fix on H a unique form
[x, y] = (Jx, y). At the same time let us note that in
the question we consider, a concrete choice of Hilbert
scalar product is not really essential. One needs only
to fix the topology (defined by the above mentioned
scalar product) and the structure of J .

Below non-negative (especially maximal non-nega-
tive) subspaces will play an important role. The set
of all maximal non-negative subspaces of the Krein
space H is denoted M+(H).

A subspace L is called pseudo-regular ([7]) if it can
be presented in the form

L = L̂
.
+ L1, (1.1)

where L̂ is a regular subspace and L1 is an isotropic
part of L (i.e. L1 = L ∩ L[⊥]).
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Proposition 1.1. ([3]) Let:

• L+ ∈ M+(H) and be a pseudo-regular subspace;
• L1 be the isotropic subspace of L+;
• (·, ·)′ be a scalar product on L1, such that the

norm
√

(x, x)′ is equivalent to the original one;

• L− = L
[⊥]
+ ;

and let

L+ = L̂++̇L1, L− = L̂−+̇L1, (1.2)

where L̂+ and L̂− are uniformly definite subspaces.
Then one can define on H a canonical scalar pro-
duct (·, ·) such that:

a) on L1 : (·, ·) ≡ (·, ·)′

b) L1 ⊥ L̂+ , L1 ⊥ L̂−

c) on L̂+ : (·, ·) = [·, ·]

d) on L̂− : (·, ·) = −[·, ·]





(1.3)

Define a special case of pseudo-regular subspaces:
a non-negative (non-positive) subspace L is called a
subspace of the class h+ ( h−) if it is pseudo-regular
and dimL1 < ∞ for L1 as in (1.1). In Pontryagin
spaces every subspace is pseudo-regular and every se-
mi-definite subspace belongs to class h+ or h−.
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Here the term ”operator” means ”bounded linear
operator”. By the symbol B# we denote the operator
J -adjoint (J -a.) to an operator B. For an operator A
symbols: σ(A) and σp(A) mean respectively its spec-
trum and point spectrum. If λ0 ∈ σp(A) then the
symbols Nλ0(A) and Kλ0(A) mean respectively the
root linear manyfold (i.e. the set of all eigenvectors
and root vectors) and the eigenspace of the opera-
tor A corresponding to the eigenvalue λ0. If λ0 = 0
then the subspace Kλ0(A) is also denoted Ker A. Gen-
erally speaking Nλ0(A) can be a non-closed linear
manyfold but for the type of A that we consider it
is a subspace (i.e. a closed linear manyfold). For an
operator A we set U(A) : = ∪λ∈σp(A){Nλ(A)} and
U1(A) : = ∪λ∈σp(A){Kλ(A)}. In the same way for
an operator family Y we put I(Y) : = ∩A∈YU(A)
and I1(Y) : = ∩A∈YU1(A). Now let a non-trivial Y-
invariant linear manyfold G ⊂ I(Y). Then for every
A ∈ Y there is a unique number λG(A) that is the
eigenvalue of A|G, i.e.

∃x ∈ G : Ax = λG(A)x, x 6= 0. (1.4)

If an operator family Y is such that the condition
A ∈ Y implies A# ∈ Y, then this family is said to
be J -symmetric. Note that a group of J -unitary op-
erators is J -symmetric. An operator algebra A is said
to be WJ∗-algebra if it is closed in the weak opera-
tor topology, J -symmetric and contains the identity I .
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The symbol Alg Y means the minimal WJ∗-algebra
which contains Y.

Definition 1.2. A J -symmetric operator family Y be-
longs to the class D+

κ if there is a subspace L+ in H,
such that

• L+ is Y-invariant,
• L+ ∈ M+(H) ∩ h+,

• dim(L+ ∩ L
[⊥]
+ ) = κ.

Let Λ={λk}
n
1 be a finite set of real numbers and let

RΛ be the family {X} of all Borel subsets of R such
that ∂X ∩Λ = ∅, where ∂X is the boundary of X in
R. Let E : X 7→ E(X) be a countably additive (with
respect to weak topology) function, that maps RΛ to a
commutative algebra of projections in a Hilbert space
H, E(R) = I . E(X) is called a spectral function
(on R) with the peculiar spectral set Λ, the mention
of Λ can be omitted. The symbol Supp(E) means the
minimal closed subset S of R, such that E(X) =
0 for every X : X ⊂ R\S and X ∈ RΛ. Besides
the symbol E we shall use also as a notation of a
spectral function the symbol Eλ, λ ∈ R, where Eλ=
E((−∞, λ)). Note that the notion of peculiar set has
no any direct connection with the behavior of spectral
function and it means only that some points on R

are distinguished. See below Definition 1.3 for some
explanations.
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In what follows the symbol let R
(0)
Λ means the col-

lection of all numerical subsets X such that X ∈ RΛ

and X ∩ Λ = ∅.

Definition 1.3. Let E be a spectral function with a
peculiar spectral set Λ. If λ ∈ Λ then λ will be called
a peculiarity of E. Let λ be a peculiarity. Fix a set
X ∈ RΛ: X ∩ Λ = {λ}. The peculiarity λ is called
regular if the operator family {E(X ∩ Y )}Y ∈RΛ

is
bounded, otherwise it is called singular.

A spectral function E that acts in a Krein space,
is said to be J -orthogonal (J -orth.sp.f.) if E(X) is a
J -ortho-projection for every X ∈ RΛ. The following
theorem was announced in [11] and proved in [4].

Theorem 1.4. Let Y ∈ D+
κ be a commutative fam-

ily of J-s.a. operators with real spectra. Then there
exists a J-orth.sp.f. E with a finite peculiar spec-
tral set Λ (Λ may be the empty set), such that the
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following conditions hold

a) Eλ ∈ Alg Y for all λ ∈ R\Λ;

b) ∃ Y-invariant L+ ∈ h+ : E(∆)H =
E(∆)L+[

.
+]E(∆)L−, ∆ being any

closed segment satisfying ∆ ∈ R
(0)
Λ ;

c) ∀A ∈ Y, ∃ a defined almost every-
where function φ(λ), such that for

every interval ∆ ∈ R
(0)
Λ the descom-

position AE(∆) =
∫

∆ φ(λ)E(dλ) is
valid;

d) H̃ = CLin
∆∈R

(0)
Λ

{E(∆)H} is pseudo-

regular and its isotropic part is fi-
nite dimensional;

e) if µ ∈ Λ, then ∀A ∈ A the set
σ(A|Hµ), where Hµ =

⋂
µ∈∆

E(∆)H,

is a singletone {λA}; moreover,
there is a natural number n (the
same for all A) such that (A −
λAI)nHµ = {0};

f) if λ0 ∈ Λ, then either
lim sup

λ→λ0

‖Eλ‖ = ∞ or at least

for one A ∈ Y the operator A|Hλ0

isn’t a sp. operator of scalar type.





(1.5)
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A spectral function E with a peculiar spectral set Λ
satisfying Conditions (1.5) are called an eigen spec-
tral function (e.s.f.) of the operator family Y.
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2. On the cardinality of a peculiarity set for a J-symmetric family of D+

κ
-class

It is evident that an e.s.f. E of an operator family
Y ∈ D+

κ is not uniquely defined. At the same time
there are some invariants related to E that depend of
Y only.

Proposition 2.1. Let E ∈ D+
κ be a J-orthogonal

spectral function with a peculiar spectral set Λ and
let λ0 ∈ Λ. The peculiarity λ0 is singular if and
only if the isotropic part the subspace

Hλ0 =
⋂

∆: λ0∈∆∈RΛ

E(∆)H

is non-trivial.

For the next step we need the following result from
[3].
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Proposition 2.2. Let A ∈ D+
κ be a J-s.a. operator

such that σ(A) ⊂ R and let L+ ∈ h+ ∩ M+(H)
be A-invariant. Then there is on R the spectral
function EA

λ with a finite peculiar spectral set Λ,
such that (X ∈ RΛ)

a) Eλ ∈ Alg A for every λ ∈ R\Λ;

b) σ(A|E(X)H) ⊂ X̄ ;

c) if X ∩ Λ = ∅ then the operator
AE(X) is a scalar spectral operator

and AE(X) =

∫

X

ξE(dξ);

d) if X ∩ Λ 6= ∅ then AE(X) is not a
scalar spectral operator;

e) if ∆ ∈ RΛ and ∆ ∩ Λ = ∅ then

E(∆)H = H+
∆[+]H−

∆, AH+
∆ ⊂ H+

∆,

AH−
∆ ⊂ H−

∆, H+
∆ is uniformly posi-

tive and H−
∆ is uniformly negative

(each of the subspaces H+
∆ and H−

∆
can be equal to {0});

f) if ∆ ∈ RΛ and ∆ ∩ Λ 6= ∅ then

E(∆)L+ ∩ L1 6= {0}.





(2.1)
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Remark 2.3. If σ(A|EA(X)H) ∩ σ(A|L1) = ∅, then in

Representation (2.1e) one can take H+
X = EA(X)L+

and H−
X = EA(X)L−.

Proposition 2.4. Let A ∈ D+
κ be a J-s.a. opera-

tor with σ(A) ⊂ R, let EA
λ be its e.s.f. and let

λ ∈ σp(A), H̃A
λ : = ∩∆: λ∈∆∈RΛ

EA(∆)H. Then di-

mension of the subspace (A − λI)H̃A
λ does not ex-

ceed 3κ − 1.

Corollary 2.5. Let Y ∈ D+
κ be a family of J-s.a.

operators with real spectra and let a non-trivial Y-
invariant linear manyfold G ⊂ I(Y). Then its clo-
sure G is also Y-invariant, G ⊂ I(Y) and there is
a number m such that for every set of operators
A1, A2, . . . , Am ∈ Y the equality (A1 − λG(A1)I) ·
(A2 − λG(A2)I) · . . . · (Am − λG(Am)I)|G = 0 holds.
Here λG(Aj) is defined by (1.4).

Corollary 2.6. Let Y ∈ D+
κ be a family of J-s.a.

operators with real spectra and let a non-trivial Y-
invariant subspace G ⊂ I(Y). Then KG(Y) : =
∩A∈Y Ker((A − λG(A)I)|G) 6= {0}.
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Let us consider under the same hypothesis along
with operators from Y also operators from Alg(Y).
If a subspace G ⊂ I(Y) is Y-invariant, then it is
also Alg(Y)-invariant and due to Corollary 2.6 for ev-
ery A ∈ Alg(Y) there is (cf. (1.4)) a unique number
λG(A) such that

A|KG(Y) = λG(A)I|KG(Y). (2.2)

Proposition 2.7. Let Y ∈ D+
κ be a family of J-

s.a. operators with real spectra and let a non-trivial
Y-invariant subspace G be such that G ⊂ I(Y).
Then (see (2.2)) there is a number m such that for
every set of operators A1, A2, . . . , Am ∈ Alg(Y) the
equality (A1−λG(A1)I) · (A2−λG(A2)I) · . . . · (Am−
λG(Am)I)|G = 0 holds.
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Corollary 2.8. Let Y ∈ D+
κ be a family of J-s.a.

operators with real spectra. Then

I(Y) = I(Alg(Y)).

Proof. Indeed,

I(Y) =
⋃

υ∈Υ

Gυ, (2.3)

there Υ is an index set with finite or infinite cardinality
and Gυ is a Y-invariant subspace such that

a) Gυ is maximal in the following
sense: if a linear manyfold G̃ is
such that Gυ ⊂ G̃ ⊂ I(Y),

then G̃ = Gυ,
b) for every A ∈ Y the

set σ(A|Gυ) is a singleton
{λGυ(A)},





(2.4)

and we need to show that for every A ∈ Alg(Y) and
Gυ there is a number mυ such that (A−λGυ(A)I)mυ|Gυ

= 0, but this follows from Proposition 2.7. �

Remark 2.9. The condition Y ∈ D+
κ in the asser-

tions of Corollaries 2.5, 2.6, 2.8 and Proposition 2.7
are essential. In the example given below a commu-
tative family Y of J -s.a. nilpotent operators is such
that I(Y) = H but I1(Y) = {0}. Moreover Alg(Y)
contains no nilpotent but quasinilpotent operators, so
I(Alg(Y)) 6= H.
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Example 2.10. Let {ej}
+∞
j=−∞ be an orthonormalized

basis in a Hilbert space H, Jej = e−j for all j. Set
A1e−1+3j = e3j, A1e3j = e1+3j, A1e1+3j = 0,
A2e−4+9j = e−1+9j, . . ., A2e1+9j = e4+9j, A2e2+9j =
A2e3+9j = A2e4+9j = 0, . . ., Ame(3mj−

∑m−1
p=0 3p) =

e(3mj+3m−1−
∑m−1

p=0 3p), . . ., Ame(3mj−3m−1+
∑m−1

p=0 3p) =

e(3mj+
∑m−1

p=0 3p), Ame(1+3mj−3m−1+
∑m−1

p=0 3p) = . . .

= Ame(3mj+
∑m−1

p=0 3p) = 0, j = . . . ,−1, 0, 1, . . ., m =

1, 2, . . .. It is easy to check that the family {Am}
∞
1 is

J -symmetric and commutative, A3
m = 0 for every m

but ∩∞
m=1 Ker(Am) = {0}.

Proposition 2.11. Let Y ∈ D+
κ be a family of J-

s.a. operators with real spectra, let Eλ be its e.s.f.
with a peculiar set Λ and let Ξ(E) : = {ξ : ξ ∈
Λ or (Eξ+0 − Eξ) 6= 0}. Then

I(Y) =
⋃

ξ∈Ξ(E)

Hξ, (2.5)

where Hξ =
⋂

ǫ>0 E([ξ − ǫ, ξ + ǫ])H.

Corollary 2.12. If E is an e.s.f. of a family Y ∈
D+

κ of J-s.a. operators with real spectra, then the
number of singular spectral peculiarities of E de-
pends only of Y.

Now let us go to a characterization of regular pe-
culiarities.



15

Proposition 2.13. Let E ∈ D+
κ be an e.s.f. of an

operator family Y ∈ D+
κ and let Hξ is defined by

(2.5). Then ξ is a regular peculiarity if and only if
simultaneously

• Hξ is a regular subspace;
• the subspace Hξ ∩ I1(Y) is degenerate.

Let Y be a commutative family of J -s.a. operators
with real spectra. As a first step we consider the set
I1(Y) ∩ I1(Y)[⊥]. This set has the representation

I1(Y) ∩ I1(Y)[⊥] =
⋃

ϑ∈Θ

Zϑ, (2.6)

where Θ is an index set and Zϑ is the isotropic part
of the corresponding joint eigen-space for Y, i.e. for
every A ∈ Y there is a number λZϑ

(A) such that
Ax = λZϑ

(A)x for all x ∈ Zϑ =
(
∩A∈Y Ker(A −

λZϑ
(A)I)

)
∩
(
∩A∈Y Ker(A − λZϑ

(A)I)
)[⊥]

. Let

P0(Y) : =
{
Zϑ

}
ϑ∈Θ

. (2.7)

Next, for Y we can consider Representation (2.3) that,
evidently, can be find for every commutative operator
family, but in the general case Gυ is not a subspace
but a linear manyfold. Due to the definition of Zϑ for
every θ ∈ Θ there is the unique index υϑ ∈ Υ such
that Zϑ ⊂ Gυϑ

. Let

P(Y) : =
{
Gυϑ

}
ϑ∈Θ

. (2.8)
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The next theorem is principal in this section and fol-
lows directly from Propositions 2.1 and 2.13.

Theorem 2.14. Let Y ∈ D+
κ be a family of J-s.a.

operators with real spectra, let Eλ be its e.s.f. with
a peculiar set Λ. Then cardinalities of Λ and Θ
from (2.6) coincide and

P(Y) = {Hλ}λ∈Λ, (2.9)

where P(Y) is defined by (2.8).

Corollary 2.15. Let Y ∈ D+
κ be a family of J-s.a.

operators with real spectra. Then both the number
of singular peculiarities and the number of regular
peculiarities are the same for all e.s.f. of Y.
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3. A test detecting D+

κ
-families

3.1. A particular case

In this subsection we consider a commutative oper-
ator family Y of J -s.a. nilpotent operators. We also
assume that Y contains the infinite number of linearly
independent members. Let us introduce a procedure
that will be used for checking if Y ∈ D+

κ .
Taking an arbitrary operator A1 ∈ Y such that

A1 6= 0, we set K1 : = Ker(A1). Since A1 is nilpotent,

K1 ∩ K
[⊥]
1 6= {0}. If for every A ∈ Y

AK1 ⊂ K1 ∩ K
[⊥]
1 ,

the procedure is finished, otherwise we go to the next
step, taking an arbitrary A2 ∈ Y, such that A2K1 6⊂

K1 ∩ K
[⊥]
1 , and setting K2 : = K1 ∩ Ker(A2), etc. In

general case, if for the step j the relation

AKj ⊂ Kj ∩ K
[⊥]
j (3.1)

holds for every A ∈ Y, this step is final, otherwise we

fix some Aj+1 ∈ Y such that Aj+1Kj 6⊂ Kj ∩ K
[⊥]
j ,

and set Kj+1 : = Kj ∩ Ker(Aj+1). The constructed
procedure will be called null-descended. It can contain
finite or infinite number of steps. It is clear that the
choice of the (finite or infinite) sequence A1, A2, . . .
is ambiguous but this sequence uniquely defines the
sequence K1, K2, . . ..
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Proposition 3.1. If a commutative operator fam-
ily Y of J-s.a. nilpotent operators belongs to D+

κ -
class, then for every choice of A1, A2, . . . the corre-
sponding null-descended procedure contains a finite
number of steps.

Proof. Let us assume the contrary, i.e., that the null-
descended procedure generates an infinite sequence
{Aj}

∞
j=1.

Now we set

L0 : = JL1, L2 : =
(
L0

.
+ L1

)[⊥]
∩ L+,

L3 : =
(
L0

.
+ L1

)[⊥]
∩ L1. (3.2)

With no loss of generality one can assume (see Propo-
sition 1.1) that the subspaces Lj, j = 0, 1, 2, 3, are
mutually orthogonal, (·, ·)|L2 = [·, ·]|L2 and (·, ·)|L3 =
−[·, ·]|L3. Then the decomposition H = L0 ⊕ L1 ⊕
L2 ⊕ L3 yields the matrix representations

J =




0 Ṽ −1 0 0

Ṽ 0 0 0
0 0 I2 0
0 0 0 −I3


 , (3.3)

Aj =
(
A(j)

pq

)3
p,q=0

, (3.4)



19

where A
(j)
01 = A

(j)
02 = A

(j)
03 = A

(j)
21 = A

(j)
22 = A

(j)
23 =

A
(j)
31 = A

(j)
32 = A

(j)
33 = 0. Note that bloc-matrices
(

A
(j)
00 0

A
(j)
10 A

(j)
11

)

act in a finite-dimensional vector space, so they also
belong to a (different) real vector space and only a
finite number of them are linearly independent. Let
m1 be a number such that every bloc-matrix with j >
m1 is a linear combination of first m1 bloc-matrices,
i.e.(

A
(j)
00 0

A
(j)
10 A

(j)
11

)
=

m1∑

l=1

α
(j)
l

(
A

(l)
00 0

A
(l)
10 A

(l)
11

)
, α

(j)
l = α

(j)
l .

Since A1|Km1
= A2|Km1

= . . . = Am1|Km1
= 0, the

subspaces Km1+1, Km1+2, . . . will be the same if we
change Am1+1, Am1+2, . . . for, respectively,

Am1+1−

m1∑

l=1

α
(m1+1)
l Al, Am1+2−

m1∑

l=1

α
(m1+2)
l Al, . . . .

Thus, with no loss of generality we can assume that
in Representation (3.4) the conditions

A
(j)
00 = A

(j)
10 = A

(j)
11 = 0, j ≥ m1 + 1

hold. Moreover, the subspace L1 is finite-dimensional,
so there is a number m2 such that for every j > m2,
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vectors x+ ∈ L2 and x− ∈ L3 we have

Aj(x+ + x−) ∈ L̂ : = Lin
y+∈L2, y−∈L3
l=m1+1,...m2

{Al(y+ + y−)}.

(3.5)

Let K̂ : = ∩m2
j=m1+1 Ker(Aj). Then K̂ ⊂ L̂[⊥] =

(
L̂[⊥]∩

L0

)
⊕ L1 ⊕ L2 ⊕ L3. If y+ ∈ L2, y− ∈ L3 and x ∈(

L̂[⊥]∩L0

)
, then by (3.5) we have [Am2+1x, y++y−] =

[x,Am2+1(y+ + y−)] = 0. Thus, Am2+1x = 0 and,

therefore, Am2+1L̂
[⊥] ⊂ L̂. Since L̂ is the isotropic

part of L̂[⊥], Km2 ⊂ K̂ ⊂ L̂[⊥] and Am2+1Km2 ⊂ Km2,

the relation Am2+1Km2 ⊂ Km2 ∩ K
[⊥]
m2 is now evident.

The latter, nevertheless, contradicts to the hypothesis
that no for one Aj Relation (3.1) holds. �
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Now let us consider the relation between the follow-
ing conditions (Y is a commutative nilpotent family
of J -s.a. operators):

Y ∈ D+
κ for some κ; (3.6)

a) for every A ∈ Y the lin-
ear manyfold AH is finite-
dimensional;

b) for every realization of the
null-descended procedure for
Y the number of steps is finite;





(3.7)

a) for every A ∈ Y the lin-
ear manyfold AH is finite-
dimensional;

b) for some realization of the
null-descended procedure for
Y the number of steps is finite.





(3.8)

Theorem 3.2. Conditions (3.6), (3.7) and (3.8) are
equivalent.
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3.2. General case

Let L be a pseudo-regular Y-invariant subspace with
finite-dimensional isotropic part and all operators A|L
are nilpotent. We need to adapt the definition of a
null-descended procedure for the family Y|L if the
isotropic part of L is not trivial (if this part is triv-
ial the procedure is practically the same as for the
whole space). For arbitrary operator A1 : A|L 6= 0 we
set K1 : = (A1L)[⊥] ∩ L and, in general, Kj+1 : =
Kj ∩ (Aj+1L)[⊥], the stopping rule and selection of a
sequence A1, A2, . . . are the same, i.e. they are related
to Condition (3.1).
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Theorem 3.3. The following conditions are equiv-
alent:

Y ∈ D+
κ in L for some κ; (3.9)

a) for every A ∈ Y the lin-
ear manyfold AL is finite-
dimensional;

b) for every realization of the
null-descended procedure for
Y the number of steps is fi-
nite;





(3.10)

a) for every A ∈ Y the lin-
ear manyfold AL is finite-
dimensional;

b) for some realization of the
null-descended procedure for
Y the number of steps is fi-
nite.





(3.11)
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Next, we need the following result from [4] (an op-
erator U : L 7→ L is said to be a (L, [·, ·])-unitary
operator, if UL = L and [Ux,Uy] = [x, y] for every
x, y ∈ L):

Theorem 3.4. Let H be a J-space and let W =
{W} be a commutative group of J-unitary opera-
tors. Then W ∈ D+

κ if and only if, there exists an
W-invariant pseudo-regular subspace L, such that:

(i) its isotropic part L0 = L ∩ L[⊥] is a finite di-
mensional subspace;

(ii) W1 = {W1 = W |L}W∈W is a group of (L, [·, ·])-
unitary operators belonging to D+

κ ;
(iii) for every x, y ∈ L[⊥], the set

Ωx,y = {[Wx, y]}W∈W

is bounded.



25

Denote Un(Y) the group of all J -unitary operators
from Alg(Y) and pass to the summarizing theorem.

Theorem 3.5. Let Y be a commutative family of
J-s.a. operators with real spectra and let the set
P(Y) be defined via (2.6), (2.7) and (2.8). Then
Y ∈ D+

κ for some κ if and only if the following
conditions hold:

• the cardinality of Θ is finite;
• all elements of P(Y) are regular or pseudo-re-

gular;
• if Gυϑ

is pseudo-regular, then its isotropic part
is finite-dimensional;

• for every ϑ ∈ Θ and A ∈ Y the linear manyfold(
A − λZϑ

(A)I
)
Gυϑ

is finite-dimensional;
• for every ϑ ∈ Θ and some (every) realization

of the null-descended procedure for the family{(
A− λZϑ

(A)I
)
|Gυϑ

}
A∈Y

the number of steps is

finite.
• for every x, y ∈ P(Y)[⊥] the set

{
[Ux, y]

}
U∈Un(Y)

is bounded.
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4. Closing remarks

J -unitary operators with invariant subspaces of the
type h+ were appeared firstly in the Helton′s paper [8]
and a successive development of this direction (cover-
ing so-called H and K(H) classes) was given by Azi-
zov (see [2] for details). The D+

κ -class was introduced
by Strauss [10]. A comparative analysis of different
classes of J -s.a. operators in Krein spaces (including
D+

κ -class) generating some kinds of spectral resolu-
tions can be found in [5]. Let us note also that some of
results of the presented paper, for instance, Corollary
2.5, are well known for the case of individual operators
(see [2], § III.5).
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67.

[4] T. Ya. Azizov, V. A. Strauss, On a spectral de-
composition of a commutative operator family in
spaces with indefinite metric. MFAT 11 (2005) No
1, 10–20.

[5] T. Ya. Azizov, L. I. Sukhocheva and V. A. Shtraus,
Operators in Krein Space. Math.Notes 76 (2004)
No 3-4, 306 – 314.

[6] J. Bognar, Indefinite inner product spaces.
Springer-Verlag, NY, 1974.

[7] A. Gheondea, Pseudo-regular spectral functions
in Krein spaces. J. of Oper.Th. 12 (1984), 349–358.



28

[8] J.W. Helton, Unitary operators on a space with
an indefinite inner product. J. Funct. Analysis 6

(1970) No 3, 412–440.
[9] I.S. Iokvidov, M.G. Krein, H. Langer, Introduction
to the spectral theory of operators in spaces with
an indefinite metric. Akademie-Verlag, Berlin,
1982.

[10] V.A. Strauss, On the structure of operators
doubly commuting with operators of K(H)-class.
Ukrain. Mat.Zh., 38 1986, No. 10, 805 (Russian).

[11] Strauss, V.A. The structure of a family of com-
muting J-self-adjoint operators Ukrain. Mat.Zh.,
bf 41 1989, No. 10, 1431–1433, 1441 (Russian).

[12] Strauss, V. A functional description for com-
mutative WJ∗-algebras of the class D+

κ , Vienna
Qolloquium.


