# A test for commutative $J$-symmetric families of $D_{\kappa}^{+}$-class. 

Vladimir Strauss

Simón Bolívar University, VENEZUELA

## Abstract

A goal of this report is a study of relations between commutative $J$-symmetric families of so-called $D_{\kappa}^{+}$-class and some spectral functions with peculiarities.

## 1. Preliminaries

Let $\mathcal{H}$ be a Hilbert space. If $\mathcal{Y} \subseteq \mathcal{H}$, then the symbol $\operatorname{Lin} \mathcal{Y}$ refers to the linear span of $\mathcal{Y}$, and by the symbol CLin $\mathcal{Y}$ we denote the closed linear span of $\mathcal{Y}$. The symbol $\operatorname{dim} \mathcal{X}$ is the linear dimension of a vector space $\mathcal{X}$. In what follows $\mathcal{H}$ is a Krein space with an indefinite sesquilinear form $[\cdot, \cdot]$. Let $\mathcal{H}=\mathcal{H}_{+}[\dot{+}] \mathcal{H}_{-}$ be a canonical decomposition of $\mathcal{H}$, let $P_{+}$and $P_{-}$ be canonical projections: $\mathcal{H}_{+}=P_{+} \mathcal{H}, \mathcal{H}_{-}=P_{-} \mathcal{H}$, let $J=P_{+}-P_{-}$be a canonical symmetry, and let $(\cdot, \cdot)=[J \cdot, \cdot]$ be a canonical scalar product. Note that one of these canonical objects uniquely determines the others. Everywhere below we fix on $\mathcal{H}$ a unique form $[x, y]=(J x, y)$. At the same time let us note that in the question we consider, a concrete choice of Hilbert scalar product is not really essential. One needs only to fix the topology (defined by the above mentioned scalar product) and the structure of $J$.

Below non-negative (especially maximal non-negative) subspaces will play an important role. The set of all maximal non-negative subspaces of the Krein space $\mathcal{H}$ is denoted $\mathfrak{M}^{+}(\mathcal{H})$.

A subspace $\mathcal{L}$ is called pseudo-regular ([7]) if it can be presented in the form

$$
\begin{equation*}
\mathcal{L}=\hat{\mathcal{L}}+\mathcal{L}_{1}, \tag{1.1}
\end{equation*}
$$

where $\hat{\mathcal{L}}$ is a regular subspace and $\mathcal{L}_{1}$ is an isotropic part of $\mathcal{L}$ (i.e. $\mathcal{L}_{1}=\mathcal{L} \cap \mathcal{L}^{[\perp]}$ ).

Proposition 1.1. ([3]) Let:

- $\mathcal{L}_{+} \in \mathfrak{M}^{+}(\mathcal{H})$ and be a pseudo-regular subspace;
- $\mathcal{L}_{1}$ be the isotropic subspace of $\mathcal{L}_{+}$;
- $(\cdot, \cdot)^{\prime}$ be a scalar product on $\mathcal{L}_{1}$, such that the norm $\sqrt{(x, x)^{\prime}}$ is equivalent to the original one;
- $\mathcal{L}_{-}=\mathcal{L}_{+}^{[\perp]}$;
and let

$$
\begin{equation*}
\mathfrak{L}_{+}=\hat{\mathfrak{L}}_{+}+\dot{+} \mathfrak{L}_{1}, \mathfrak{L}_{-}=\hat{\mathfrak{L}}_{-} \dot{+} \mathfrak{L}_{1} \tag{1.2}
\end{equation*}
$$

where $\hat{\mathfrak{L}}_{+}$and $\hat{\mathfrak{L}}_{-}$are uniformly definite subspaces. Then one can define on $\mathcal{H}$ a canonical scalar product $(\cdot, \cdot)$ such that:
$\left.\begin{array}{lll}\text { a) } & \text { on } \mathfrak{L}_{1} & : \\ \text { b) } & \mathfrak{L}_{1} \perp_{\hat{\mathfrak{L}}_{+}}, & , \cdot \cdot) \equiv(\cdot, \cdot)^{\prime} \\ \text { c) } & \text { on } \hat{\mathfrak{L}}_{+} \perp & : \\ \text { d) } & (\cdot, \cdot)=[\cdot, \cdot] \\ \text { d } & \hat{\mathfrak{L}}_{-} & : \\ \hline\end{array}\right\}$

Define a special case of pseudo-regular subspaces: a non-negative (non-positive) subspace $\mathcal{L}$ is called $a$ subspace of the class $h^{+}\left(h^{-}\right)$if it is pseudo-regular and $\operatorname{dim} \mathcal{L}_{1}<\infty$ for $\mathcal{L}_{1}$ as in (1.1). In Pontryagin spaces every subspace is pseudo-regular and every se-mi-definite subspace belongs to class $h^{+}$or $h^{-}$.

Here the term "operator" means "bounded linear operator". By the symbol $B^{\#}$ we denote the operator $J$-adjoint ( $J$-a.) to an operator $B$. For an operator $A$ symbols: $\sigma(A)$ and $\sigma_{p}(A)$ mean respectively its spectrum and point spectrum. If $\lambda_{0} \in \sigma_{p}(A)$ then the symbols $\mathfrak{N}_{\lambda_{0}}(A)$ and $\mathfrak{K}_{\lambda_{0}}(A)$ mean respectively the root linear manyfold (i.e. the set of all eigenvectors and root vectors) and the eigenspace of the operator $A$ corresponding to the eigenvalue $\lambda_{0}$. If $\lambda_{0}=0$ then the subspace $\mathfrak{K}_{\lambda_{0}}(A)$ is also denoted Ker $A$. Generally speaking $\mathfrak{N}_{\lambda_{0}}(A)$ can be a non-closed linear manyfold but for the type of $A$ that we consider it is a subspace (i.e. a closed linear manyfold). For an operator $A$ we set $\mathfrak{U}(A):=\cup_{\lambda \in \sigma_{p}(A)}\left\{\mathfrak{N}_{\lambda}(A)\right\}$ and $\mathfrak{U}_{1}(A):=\cup_{\lambda \in \sigma_{p}(A)}\left\{\mathfrak{K}_{\lambda}(A)\right\}$. In the same way for an operator family $\mathfrak{Y}$ we put $\mathfrak{I}(\mathfrak{Y}):=\cap_{A \in \mathfrak{Y}} \mathfrak{U}(A)$ and $\mathfrak{I}_{1}(\mathfrak{Y}):=\cap_{A \in \mathfrak{Y}} \mathfrak{U}_{1}(A)$. Now let a non-trivial $\mathfrak{Y}$ invariant linear manyfold $\mathcal{G} \subset \mathfrak{I}(\mathfrak{Y})$. Then for every $A \in \mathfrak{Y}$ there is a unique number $\lambda_{\mathcal{G}}(A)$ that is the eigenvalue of $\left.A\right|_{\mathcal{G}}$, i.e.

$$
\begin{equation*}
\exists x \in \mathcal{G}: A x=\lambda_{\mathcal{G}}(A) x, x \neq 0 \tag{1.4}
\end{equation*}
$$

If an operator family $\mathfrak{Y}$ is such that the condition $A \in \mathfrak{Y}$ implies $A^{\#} \in \mathfrak{Y}$, then this family is said to be $J$-symmetric. Note that a group of $J$-unitary operators is $J$-symmetric. An operator algebra $\mathfrak{A}$ is said to be $W J^{*}$-algebra if it is closed in the weak operator topology, $J$-symmetric and contains the identity $I$.

The symbol $\operatorname{Alg} \mathfrak{Y}$ means the minimal $W J^{*}$-algebra which contains $\mathfrak{Y}$.

Definition 1.2. A $J$-symmetric operator family $\mathfrak{Y}$ belongs to the class $D_{\kappa}^{+}$if there is a subspace $\mathcal{L}_{+}$in $\mathcal{H}$, such that

- $\mathcal{L}_{+}$is $\mathfrak{Y}$-invariant,
- $\mathcal{L}_{+} \in \mathfrak{M}^{+}(\mathcal{H}) \cap h^{+}$,
- $\operatorname{dim}\left(\mathcal{L}_{+} \cap \mathcal{L}_{+}^{[\perp]}\right)=\kappa$.

Let $\Lambda=\left\{\lambda_{k}\right\}_{1}^{n}$ be a finite set of real numbers and let $\mathfrak{R}_{\Lambda}$ be the family $\{X\}$ of all Borel subsets of $\mathbb{R}$ such that $\partial X \cap \Lambda=\emptyset$, where $\partial X$ is the boundary of $X$ in $\mathbb{R}$. Let $E: X \mapsto E(X)$ be a countably additive (with respect to weak topology) function, that maps $\mathfrak{R}_{\Lambda}$ to a commutative algebra of projections in a Hilbert space $\mathcal{H}, \quad E(\mathbb{R})=I . E(X)$ is called a spectral function (on $\mathbb{R}$ ) with the peculiar spectral set $\Lambda$, the mention of $\Lambda$ can be omitted. The symbol $\operatorname{Supp}(E)$ means the minimal closed subset $S$ of $\mathbb{R}$, such that $E(X)=$ 0 for every $X: X \subset \mathbb{R} \backslash S$ and $X \in \mathfrak{R}_{\Lambda}$. Besides the symbol $E$ we shall use also as a notation of a spectral function the symbol $E_{\lambda}, \lambda \in \mathbb{R}$, where $E_{\lambda}=$ $E((-\infty, \lambda))$. Note that the notion of peculiar set has no any direct connection with the behavior of spectral function and it means only that some points on $\mathbb{R}$ are distinguished. See below Definition 1.3 for some explanations.

In what follows the symbol let $\mathfrak{R}_{\Lambda}^{(0)}$ means the collection of all numerical subsets $X$ such that $X \in \mathfrak{R}_{\Lambda}$ and $X \cap \Lambda=\emptyset$.

Definition 1.3. Let $E$ be a spectral function with a peculiar spectral set $\Lambda$. If $\lambda \in \Lambda$ then $\lambda$ will be called a peculiarity of $E$. Let $\lambda$ be a peculiarity. Fix a set $X \in \mathfrak{R}_{\Lambda}: X \cap \Lambda=\{\lambda\}$. The peculiarity $\lambda$ is called regular if the operator family $\{E(X \cap Y)\}_{Y \in \mathfrak{R}_{\Lambda}}$ is bounded, otherwise it is called singular.

A spectral function $E$ that acts in a Krein space, is said to be $J$-orthogonal ( $J$-orth.sp.f.) if $E(X)$ is a $J$-ortho-projection for every $X \in \mathfrak{R}_{\Lambda}$. The following theorem was announced in [11] and proved in [4].

Theorem 1.4. Let $\mathfrak{Y} \in D_{\kappa}^{+}$be a commutative family of $J$-s.a. operators with real spectra. Then there exists a J-orth.sp.f. E with a finite peculiar spectral set $\Lambda$ ( $\Lambda$ may be the empty set), such that the
following conditions hold
a) $E_{\lambda} \in \operatorname{Alg} \mathfrak{Y}$ for all $\lambda \in \mathbb{R} \backslash \Lambda$;
b) $\exists \mathfrak{Y}$-invariant $\mathcal{L}_{+} \in h^{+}: E(\Delta) \mathcal{H}=$ $E(\Delta) \mathcal{L}_{+}[\dot{+}] E(\Delta) \mathcal{L}_{-}, \Delta$ being any closed segment satisfying $\Delta \in \mathfrak{R}_{\Lambda}^{(0)}$;
c) $\forall A \in \mathfrak{Y}, \exists$ a defined almost everywhere function $\phi(\lambda)$, such that for every interval $\Delta \in \mathfrak{R}_{\Lambda}^{(0)}$ the descomposition $A E(\Delta)=\int_{\Delta} \phi(\lambda) E(d \lambda)$ is valid;
d) $\widetilde{\mathcal{H}}=\operatorname{CLin}_{\Delta \in \mathfrak{R}_{\Lambda}^{(0)}}\{E(\Delta) \mathcal{H}\}$ is pseudoregular and its isotropic part is iinite dimensional;
e) if $\mu \in \Lambda$, then $\forall A \in \mathfrak{A}$ the set $\sigma\left(\left.A\right|_{\mathcal{H}_{\mu}}\right)$, where $\mathcal{H}_{\mu}=\bigcap_{\mu \in \Delta} E(\Delta) \mathcal{H}$, is a singletone $\left\{\lambda_{A}\right\} ;$ moreover, there is a natural number $n$ (the same for all $A$ ) such that ( $A$ $\left.\lambda_{A} I\right)^{n} \mathcal{H}_{\mu}=\{0\} ;$
f) if $\lambda_{0} \in \Lambda$, then either $\limsup \left\|E_{\lambda}\right\|=\infty$ or at least $\lambda \rightarrow \lambda_{0}$
for one $A \in \mathfrak{Y}$ the operator $\left.A\right|_{\mathcal{H}_{\lambda_{0}}}$ isn't a sp. operator of scalar type.

A spectral function $E$ with a peculiar spectral set $\Lambda$ satisfying Conditions (1.5) are called an eigen spectral function (e.s.f.) of the operator family $\mathfrak{Y}$.
2. On the cardinality of a peculiarity set for a $J$-symmetric family of $D_{\kappa}^{+}$-class

It is evident that an e.s.f. $E$ of an operator family $\mathfrak{Y} \in D_{\kappa}^{+}$is not uniquely defined. At the same time there are some invariants related to $E$ that depend of $\mathfrak{Y}$ only.

Proposition 2.1. Let $E \in D_{\kappa}^{+}$be a J-orthogonal spectral function with a peculiar spectral set $\Lambda$ and let $\lambda_{0} \in \Lambda$. The peculiarity $\lambda_{0}$ is singular if and only if the isotropic part the subspace

$$
\mathcal{H}_{\lambda_{0}}=\bigcap_{\Delta: \lambda_{0} \in \Delta \in \mathfrak{R}_{\Lambda}} E(\Delta) \mathcal{H}
$$

is non-trivial.
For the next step we need the following result from [3].

Proposition 2.2. Let $A \in D_{k}^{+}$be a J-s.a. operator such that $\sigma(A) \subset \mathbb{R}$ and let $\mathcal{L}_{+} \in h^{+} \cap \mathfrak{M}^{+}(\mathcal{H})$ be $A$-invariant. Then there is on $\mathbb{R}$ the spectral function $E_{\lambda}^{A}$ with a finite peculiar spectral set $\Lambda$, such that $\left(X \in \mathfrak{R}_{\Lambda}\right)$
a) $E_{\lambda} \in \operatorname{Alg} A$ for every $\lambda \in \mathbb{R} \backslash \Lambda$;
b) $\sigma\left(\left.A\right|_{E(X) \mathcal{H})} \subset \bar{X}\right.$;
c) if $X \cap \Lambda=\emptyset$ then the operator $A E(X)$ is a scalar spectral operator and $A E(X)=\int_{X} \xi E(d \xi)$;
d) if $X \cap \Lambda \neq \emptyset$ then $A E(X)$ is not a scalar spectral operator;
e) if $\Delta \in \mathfrak{R}_{\Lambda}$ and $\Delta \cap \Lambda=\emptyset$ then $E(\Delta) \mathcal{H}=\mathcal{H}_{\Delta}^{+}[+] \mathcal{H}_{\Delta}^{-}, A \mathcal{H}_{\Delta}^{+} \subset \mathcal{H}_{\Delta}^{+}$,
$A \mathcal{H}_{\Delta}^{-} \subset \mathcal{H}_{\Delta}^{-}, \mathcal{H}_{\Delta}^{+}$is uniformly posi-
five and $\mathcal{H}_{\Delta}^{-}$is uniformly negative (each of the subspaces $\mathcal{H}_{\Delta}^{+}$and $\mathcal{H}_{\Delta}^{-}$ can be equal to $\{0\}$ );
f) if $\Delta \in \mathfrak{R}_{\Lambda}$ and $\Delta \cap \Lambda \neq \emptyset$ then
$E(\Delta) \mathcal{L}_{+} \cap \mathcal{L}_{1} \neq\{0\}$.

Remark 2.3. If $\sigma\left(\left.A\right|_{E^{A}(X) \mathcal{H}}\right) \cap \sigma\left(\left.A\right|_{\mathcal{L}_{1}}\right)=\emptyset$, then in Representation (2.1e) one can take $\mathcal{H}_{X}^{+}=E^{A}(X) \mathcal{L}_{+}$ and $\mathcal{H}_{X}^{-}=E^{A}(X) \mathcal{L}_{-}$.

Proposition 2.4. Let $A \in D_{\kappa}^{+}$be a J-s.a. operator with $\sigma(A) \subset \mathbb{R}$, let $E_{\lambda}^{A}$ be its e.s.f. and let $\lambda \in \sigma_{p}(A), \widetilde{\mathcal{H}}_{\lambda}^{A}:=\cap_{\Delta: \lambda \in \Delta \in \mathfrak{R}_{\Lambda}} E^{A}(\Delta) \mathcal{H}$. Then dimension of the subspace $(A-\lambda I) \widetilde{\mathcal{H}}_{\lambda}^{A}$ does not exceed $3 \kappa-1$.

Corollary 2.5. Let $\mathfrak{Y} \in D_{\kappa}^{+}$be a family of J-s.a. operators with real spectra and let a non-trivial $\mathfrak{Y}$ invariant linear manyfold $\mathcal{G} \subset \mathfrak{I}(\mathfrak{Y})$. Then its closure $\overline{\mathcal{G}}$ is also $\mathfrak{Y}$-invariant, $\overline{\mathcal{G}} \subset \mathfrak{I}(\mathfrak{Y})$ and there is a number $m$ such that for every set of operators $A_{1}, A_{2}, \ldots, A_{m} \in \mathfrak{Y}$ the equality $\left(A_{1}-\lambda_{\mathcal{G}}\left(A_{1}\right) I\right)$. $\left.\left(A_{2}-\lambda_{\mathcal{G}}\left(A_{2}\right) I\right) \cdot \ldots \cdot\left(A_{m}-\lambda_{\mathcal{G}}\left(A_{m}\right) I\right)\right|_{\overline{\mathcal{G}}}=0$ holds. Here $\lambda_{\mathcal{G}}\left(A_{j}\right)$ is defined by (1.4).

Corollary 2.6. Let $\mathfrak{Y} \in D_{\kappa}^{+}$be a family of J-s.a. operators with real spectra and let a non-trivial $\mathfrak{Y}$ invariant subspace $\mathcal{G} \subset \mathfrak{I}(\mathfrak{Y})$. Then $\mathcal{K}_{\mathcal{G}}(\mathfrak{Y}):=$ $\cap_{A \in \mathfrak{Y}} \operatorname{Ker}\left(\left.\left(A-\lambda_{\mathcal{G}}(A) I\right)\right|_{\mathcal{G}}\right) \neq\{0\}$.

Let us consider under the same hypothesis along with operators from $\mathfrak{Y}$ also operators from $\operatorname{Alg}(\mathfrak{Y})$. If a subspace $\mathcal{G} \subset \mathfrak{I}(\mathfrak{Y})$ is $\mathfrak{Y}$-invariant, then it is also $\operatorname{Alg}(\mathfrak{Y})$-invariant and due to Corollary 2.6 for every $A \in \operatorname{Alg}(\mathfrak{Y})$ there is (cf. (1.4)) a unique number $\lambda_{\mathcal{G}}(A)$ such that

$$
\begin{equation*}
\left.A\right|_{\mathcal{K}_{\mathcal{G}}(\mathfrak{Y})}=\left.\lambda_{\mathcal{G}}(A) I\right|_{\mathcal{K}_{\mathcal{G}}(\mathfrak{Y})} \tag{2.2}
\end{equation*}
$$

Proposition 2.7. Let $\mathfrak{Y} \in D_{\kappa}^{+}$be a family of $J-$ s.a. operators with real spectra and let a non-trivial $\mathfrak{Y}$-invariant subspace $\mathcal{G}$ be such that $\mathcal{G} \subset \mathfrak{I}(\mathfrak{Y})$. Then (see (2.2)) there is a number $m$ such that for every set of operators $A_{1}, A_{2}, \ldots, A_{m} \in \operatorname{Alg}(\mathfrak{Y})$ the equality $\left(A_{1}-\lambda_{\mathcal{G}}\left(A_{1}\right) I\right) \cdot\left(A_{2}-\lambda_{\mathcal{G}}\left(A_{2}\right) I\right) \cdot \ldots \cdot\left(A_{m}-\right.$ $\left.\lambda_{\mathcal{G}}\left(A_{m}\right) I\right)\left.\right|_{\mathcal{G}}=0$ holds.

Corollary 2.8. Let $\mathfrak{Y} \in D_{\kappa}^{+}$be a family of J-s.a. operators with real spectra. Then

$$
\mathfrak{I}(\mathfrak{Y})=\mathfrak{I}(\operatorname{Alg}(\mathfrak{Y}))
$$

Proof. Indeed,

$$
\begin{equation*}
\mathfrak{I}(\mathfrak{Y})=\bigcup_{v \in \mathfrak{Y}} \mathcal{G}_{v}, \tag{2.3}
\end{equation*}
$$

there $\Upsilon$ is an index set with finite or infinite cardinality and $\mathcal{G}_{v}$ is a $\mathfrak{Y}$-invariant subspace such that
a) $\mathcal{G}_{v}$ is maximal in the following sense: if a linear manyfold $\widetilde{\mathcal{G}}$ is such that $\mathcal{G}_{v} \subset \widetilde{\mathcal{G}} \subset \mathfrak{I}(\mathfrak{Y})$, then $\widetilde{\mathcal{G}}=\mathcal{G}_{v}$,
$b$ ) for every $A \in \mathfrak{Y}$ the set $\sigma\left(\left.A\right|_{\mathcal{G}_{v}}\right)$ is a singleton $\left\{\lambda_{\mathcal{G}_{v}}(A)\right\}$,
and we need to show that for every $A \in \operatorname{Alg}(\mathfrak{Y})$ and $\mathcal{G}_{v}$ there is a number $m_{v}$ such that $\left.\left(A-\lambda_{\mathcal{G}_{v}}(A) I\right)^{m_{v}}\right|_{\mathcal{G}_{v}}$ $=0$, but this follows from Proposition 2.7.

Remark 2.9. The condition $\mathfrak{Y} \in D_{\kappa}^{+}$in the assertions of Corollaries 2.5, 2.6, 2.8 and Proposition 2.7 are essential. In the example given below a commutative family $\mathfrak{Y}$ of $J$-s.a. nilpotent operators is such that $\mathfrak{I}(\mathfrak{Y})=\mathcal{H}$ but $\mathfrak{I}_{1}(\mathfrak{Y})=\{0\}$. Moreover $\operatorname{Alg}(\mathfrak{Y})$ contains no nilpotent but quasinilpotent operators, so $\mathfrak{I}(\operatorname{Alg}(\mathfrak{Y})) \neq \mathcal{H}$.

Example 2.10. Let $\left\{e_{j}\right\}_{j=-\infty}^{+\infty}$ be an orthonormalized basis in a Hilbert space $\mathcal{H}, J e_{j}=e_{-j}$ for all $j$. Set $A_{1} e_{-1+3 j}=e_{3 j}, A_{1} e_{3 j}=e_{1+3 j}, A_{1} e_{1+3 j}=0$,
$A_{2} e_{-4+9 j}=e_{-1+9 j}, \ldots, A_{2} e_{1+9 j}=e_{4+9 j}, \quad A_{2} e_{2+9 j}=$
$A_{2} e_{3+9 j}=A_{2} e_{4+9 j}=0, \quad \ldots, \quad A_{m} e_{\left(3^{m} j-\sum_{p=0}^{m-1} 3^{p}\right)}=$ $e_{\left(3^{m} j+3^{m-1}-\sum_{p=0}^{m-1} 3^{p}\right)}, \ldots, \quad A_{m} e_{\left(3^{m} j-3^{m-1}+\sum_{p=0}^{m-1} 3^{p}\right)}=$ $e_{\left(3^{m} j+\sum_{p=0}^{m-1} 3^{p}\right)}, A_{m} e_{\left(1+3^{m} j-3^{m-1}+\sum_{p=0}^{m-1} 3^{p}\right)}=\ldots$
$=A_{m} e_{\left(3^{m} j+\sum_{p=0}^{m-1} 3^{p}\right)}=0, j=\ldots,-1,0,1, \ldots, m=$ $1,2, \ldots$. It is easy to check that the family $\left\{A_{m}\right\}_{1}^{\infty}$ is $J$-symmetric and commutative, $A_{m}^{3}=0$ for every $m$ but $\cap_{m=1}^{\infty} \operatorname{Ker}\left(A_{m}\right)=\{0\}$.

Proposition 2.11. Let $\mathfrak{Y} \in D_{\kappa}^{+}$be a family of $J$ s.a. operators with real spectra, let $E_{\lambda}$ be its e.s.f. with a peculiar set $\Lambda$ and let $\Xi(E):=\{\xi: \xi \in$ $\Lambda$ or $\left.\left(E_{\xi+0}-E_{\xi}\right) \neq 0\right\}$. Then

$$
\begin{equation*}
\mathfrak{I}(\mathfrak{Y})=\bigcup_{\xi \in \Xi(E)} \mathcal{H}_{\xi}, \tag{2.5}
\end{equation*}
$$

where $\mathcal{H}_{\xi}=\bigcap_{\epsilon>0} E([\xi-\epsilon, \xi+\epsilon]) \mathcal{H}$.
Corollary 2.12. If $E$ is an e.s.f. of a family $\mathfrak{Y} \in$ $D_{k}^{+}$of J-s.a. operators with real spectra, then the number of singular spectral peculiarities of $E$ depends only of $\mathfrak{Y}$.

Now let us go to a characterization of regular peculiarities.

Proposition 2.13. Let $E \in D_{\kappa}^{+}$be an e.s.f. of an operator family $\mathfrak{Y} \in D_{\kappa}^{+}$and let $\mathcal{H}_{\xi}$ is defined by (2.5). Then $\xi$ is a regular peculiarity if and only if simultaneously

- $\mathcal{H}_{\xi}$ is a regular subspace;
- the subspace $\mathcal{H}_{\xi} \cap \mathfrak{I}_{1}(\mathfrak{Y})$ is degenerate.

Let $\mathfrak{Y}$ be a commutative family of $J$-s.a. operators with real spectra. As a first step we consider the set $\mathfrak{I}_{1}(\mathfrak{Y}) \cap \mathfrak{I}_{1}(\mathfrak{Y})^{[\perp]}$. This set has the representation

$$
\begin{equation*}
\mathfrak{I}_{1}(\mathfrak{Y}) \cap \mathfrak{I}_{1}(\mathfrak{Y})^{[\perp]}=\bigcup_{\vartheta \in \Theta} \mathcal{Z}_{\vartheta}, \tag{2.6}
\end{equation*}
$$

where $\Theta$ is an index set and $\mathcal{Z}_{\vartheta}$ is the isotropic part of the corresponding joint eigen-space for $\mathfrak{Y}$, i.e. for every $A \in \mathfrak{Y}$ there is a number $\lambda_{\mathcal{Z}_{\vartheta}}(A)$ such that $A x=\lambda_{\mathcal{Z}_{\vartheta}}(A) x$ for all $x \in \mathcal{Z}_{\vartheta}=\left(\cap_{A \in \mathfrak{Y}} \operatorname{Ker}(A-\right.$ $\left.\left.\lambda_{\mathcal{Z}_{\vartheta}}(A) I\right)\right) \cap\left(\cap_{A \in \mathfrak{Y}} \operatorname{Ker}\left(A-\lambda_{\mathcal{Z}_{\vartheta}}(A) I\right)\right)^{[\perp]}$. Let

$$
\begin{equation*}
\mathfrak{P}_{0}(\mathfrak{Y}):=\left\{\mathcal{Z}_{\vartheta}\right\}_{\vartheta \in \Theta} . \tag{2.7}
\end{equation*}
$$

Next, for $\mathfrak{Y}$ we can consider Representation (2.3) that, evidently, can be find for every commutative operator family, but in the general case $\mathcal{G}_{v}$ is not a subspace but a linear manyfold. Due to the definition of $\mathcal{Z}_{\vartheta}$ for every $\theta \in \Theta$ there is the unique index $v_{\vartheta} \in \Upsilon$ such that $\mathcal{Z}_{\vartheta} \subset \mathcal{G}_{v_{\vartheta}}$. Let

$$
\begin{equation*}
\mathfrak{P}(\mathfrak{Y}):=\left\{\mathcal{G}_{v_{\vartheta}}\right\}_{\vartheta \in \Theta} . \tag{2.8}
\end{equation*}
$$

The next theorem is principal in this section and follows directly from Propositions 2.1 and 2.13.

Theorem 2.14. Let $\mathfrak{Y} \in D_{\kappa}^{+}$be a family of J-s.a. operators with real spectra, let $E_{\lambda}$ be its e.s.f. with a peculiar set $\Lambda$. Then cardinalities of $\Lambda$ and $\Theta$ from (2.6) coincide and

$$
\begin{equation*}
\mathfrak{P}(\mathfrak{Y})=\left\{\mathcal{H}_{\lambda}\right\}_{\lambda \in \Lambda} \tag{2.9}
\end{equation*}
$$

where $\mathfrak{P}(\mathfrak{Y})$ is defined by (2.8).

Corollary 2.15. Let $\mathfrak{Y} \in D_{\kappa}^{+}$be a family of J-s.a. operators with real spectra. Then both the number of singular peculiarities and the number of regular peculiarities are the same for all e.s.f. of $\mathfrak{Y}$.

## 3. A test detecting $D_{\kappa}^{+}$-families

### 3.1. A particular case

In this subsection we consider a commutative operator family $\mathfrak{Y}$ of $J$-s.a. nilpotent operators. We also assume that $\mathfrak{Y}$ contains the infinite number of linearly independent members. Let us introduce a procedure that will be used for checking if $\mathfrak{Y} \in D_{\kappa}^{+}$.

Taking an arbitrary operator $A_{1} \in \mathfrak{Y}$ such that $A_{1} \neq 0$, we set $\mathcal{K}_{1}:=\operatorname{Ker}\left(A_{1}\right)$. Since $A_{1}$ is nilpotent, $\mathcal{K}_{1} \cap \mathcal{K}_{1}^{[\perp]} \neq\{0\}$. If for every $A \in \mathfrak{Y}$

$$
A \mathcal{K}_{1} \subset \mathcal{K}_{1} \cap \mathcal{K}_{1}^{[\perp]}
$$

the procedure is finished, otherwise we go to the next step, taking an arbitrary $A_{2} \in \mathfrak{Y}$, such that $A_{2} \mathcal{K}_{1} \not \subset$ $\mathcal{K}_{1} \cap \mathcal{K}_{1}^{[\perp]}$, and setting $\mathcal{K}_{2}:=\mathcal{K}_{1} \cap \operatorname{Ker}\left(A_{2}\right)$, etc. In general case, if for the step $j$ the relation

$$
\begin{equation*}
A \mathcal{K}_{j} \subset \mathcal{K}_{j} \cap \mathcal{K}_{j}^{[\perp]} \tag{3.1}
\end{equation*}
$$

holds for every $A \in \mathfrak{Y}$, this step is final, otherwise we fix some $A_{j+1} \in \mathfrak{Y}$ such that $A_{j+1} \mathcal{K}_{j} \not \subset \mathcal{K}_{j} \cap \mathcal{K}_{j}^{[\perp]}$, and set $\mathcal{K}_{j+1}:=\mathcal{K}_{j} \cap \operatorname{Ker}\left(A_{j+1}\right)$. The constructed procedure will be called null-descended. It can contain finite or infinite number of steps. It is clear that the choice of the (finite or infinite) sequence $A_{1}, A_{2}, \ldots$ is ambiguous but this sequence uniquely defines the sequence $\mathcal{K}_{1}, \mathcal{K}_{2}, \ldots$.

Proposition 3.1. If a commutative operator family $\mathfrak{Y}$ of J-s.a. nilpotent operators belongs to $D_{\kappa}^{+}$class, then for every choice of $A_{1}, A_{2}, \ldots$ the corresponding null-descended procedure contains a finite number of steps.

Proof. Let us assume the contrary, i.e., that the nulldescended procedure generates an infinite sequence $\left\{A_{j}\right\}_{j=1}^{\infty}$.

Now we set

$$
\begin{gather*}
\mathcal{L}_{0}:=J \mathcal{L}_{1}, \mathcal{L}_{2}:=\left(\mathcal{L}_{0}+\mathcal{L}_{1}\right)^{[\perp]} \cap \mathcal{L}_{+}, \\
\mathcal{L}_{3}:=\left(\mathcal{L}_{0}+\mathcal{L}_{1}\right)^{[\perp]} \cap \mathcal{L}_{1} . \tag{3.2}
\end{gather*}
$$

With no loss of generality one can assume (see Proposition 1.1) that the subspaces $\mathcal{L}_{j}, j=0,1,2,3$, are mutually orthogonal, $\left.(\cdot, \cdot)\right|_{\mathcal{L}_{2}}=\left.[\cdot, \cdot]\right|_{\mathcal{L}_{2}}$ and $\left.(\cdot, \cdot)\right|_{\mathcal{L}_{3}}=$ $-\left.[\cdot, \cdot]\right|_{\mathcal{L}_{3}}$. Then the decomposition $\mathcal{H}=\mathcal{L}_{0} \oplus \mathcal{L}_{1} \oplus$ $\mathcal{L}_{2} \oplus \mathcal{L}_{3}$ yields the matrix representations

$$
\begin{gather*}
J=\left(\begin{array}{cccc}
0 & \tilde{V}^{-1} & 0 & 0 \\
\tilde{V} & 0 & 0 & 0 \\
0 & 0 & I_{2} & 0 \\
0 & 0 & 0 & -I_{3}
\end{array}\right),  \tag{3.3}\\
A_{j}=\left(A_{p q}^{(j)}\right)_{p, q=0}^{3}, \tag{3.4}
\end{gather*}
$$

where $A_{01}^{(j)}=A_{02}^{(j)}=A_{03}^{(j)}=A_{21}^{(j)}=A_{22}^{(j)}=A_{23}^{(j)}=$ $A_{31}^{(j)}=A_{32}^{(j)}=A_{33}^{(j)}=0$. Note that bloc-matrices

$$
\left(\begin{array}{cc}
A_{00}^{(j)} & 0 \\
A_{10}^{(j)} & A_{11}^{(j)}
\end{array}\right)
$$

act in a finite-dimensional vector space, so they also belong to a (different) real vector space and only a finite number of them are linearly independent. Let $m_{1}$ be a number such that every bloc-matrix with $j>$ $m_{1}$ is a linear combination of first $m_{1}$ bloc-matrices, i.e.

$$
\left(\begin{array}{cc}
A_{00}^{(j)} & 0 \\
A_{10}^{(j)} & A_{11}^{(j)}
\end{array}\right)=\sum_{l=1}^{m_{1}} \alpha_{l}^{(j)}\left(\begin{array}{cc}
A_{00}^{(l)} & 0 \\
A_{10}^{(l)} & A_{11}^{(l)}
\end{array}\right), \quad \alpha_{l}^{(j)}=\overline{\alpha_{l}^{(j)}} .
$$

Since $\left.A_{1}\right|_{\mathcal{K}_{m_{1}}}=\left.A_{2}\right|_{\mathcal{K}_{m_{1}}}=\ldots=A_{m_{1}} \mid \mathcal{K}_{m_{1}}=0$, the subspaces $\mathcal{K}_{m_{1}+1}, \mathcal{K}_{m_{1}+2}, \ldots$ will be the same if we change $A_{m_{1}+1}, A_{m_{1}+2}, \ldots$ for, respectively,

$$
A_{m_{1}+1}-\sum_{l=1}^{m_{1}} \alpha_{l}^{\left(m_{1}+1\right)} A_{l}, A_{m_{1}+2}-\sum_{l=1}^{m_{1}} \alpha_{l}^{\left(m_{1}+2\right)} A_{l}, \ldots
$$

Thus, with no loss of generality we can assume that in Representation (3.4) the conditions

$$
A_{00}^{(j)}=A_{10}^{(j)}=A_{11}^{(j)}=0, \quad j \geq m_{1}+1
$$

hold. Moreover, the subspace $\mathcal{L}_{1}$ is finite-dimensional, so there is a number $m_{2}$ such that for every $j>m_{2}$,
vectors $x_{+} \in \mathcal{L}_{2}$ and $x_{-} \in \mathcal{L}_{3}$ we have

$$
A_{j}\left(x_{+}+x_{-}\right) \in \widehat{\mathcal{L}}:=\operatorname{Lin}_{\substack{y_{+} \in \mathcal{L}_{2}, y_{-} \in \mathcal{L}_{3} \\ l=m_{1}+1, \ldots m_{2}}}\left\{A_{l}\left(y_{+}+y_{-}\right)\right\}
$$

(3.5)

Let $\widehat{\mathcal{K}}:=\cap_{j=m_{1}+1}^{m_{2}} \operatorname{Ker}\left(A_{j}\right)$. Then $\widehat{\mathcal{K}} \subset \widehat{\mathcal{L}}^{[\perp]}=\left(\widehat{\mathcal{L}}^{[\perp]} \cap\right.$ $\left.\mathcal{L}_{0}\right) \oplus \mathcal{L}_{1} \oplus \mathcal{L}_{2} \oplus \mathcal{L}_{3}$. If $y_{+} \in \mathcal{L}_{2}, y_{-} \in \mathcal{L}_{3}$ and $x \in$ $\left(\widehat{\mathcal{L}}^{[\perp]} \cap \mathcal{L}_{0}\right)$, then by (3.5) we have $\left[A_{m_{2}+1} x, y_{+}+y_{-}\right]=$ $\left[x, A_{m_{2}+1}\left(y_{+}+y_{-}\right)\right]=0$. Thus, $A_{m_{2}+1} x=0$ and, therefore, $A_{m_{2}+1} \widehat{\mathcal{L}}^{[\perp]} \subset \widehat{\mathcal{L}}$. Since $\widehat{\mathcal{L}}$ is the isotropic part of $\widehat{\mathcal{L}}^{[\perp]}, \mathcal{K}_{m_{2}} \subset \widehat{\mathcal{K}} \subset \widehat{\mathcal{L}}^{[\perp]}$ and $A_{m_{2}+1} \mathcal{K}_{m_{2}} \subset \mathcal{K}_{m_{2}}$, the relation $A_{m_{2}+1} \mathcal{K}_{m_{2}} \subset \mathcal{K}_{m_{2}} \cap \mathcal{K}_{m_{2}}^{[\perp]}$ is now evident. The latter, nevertheless, contradicts to the hypothesis that no for one $A_{j}$ Relation (3.1) holds.

Now let us consider the relation between the following conditions ( $\mathfrak{Y}$ is a commutative nilpotent family of $J$-s.a. operators):

$$
\begin{equation*}
\mathfrak{Y} \in D_{\kappa}^{+} \text {for some } \kappa ; \tag{3.6}
\end{equation*}
$$

a) for every $A \in \mathfrak{Y}$ the linear manyfold $A \mathcal{H}$ is finitedimensional;
b) for every realization of the null-descended procedure for $\mathfrak{Y}$ the number of steps is finite;
(3.7)
a) for every $A \in \mathfrak{Y}$ the linear manyfold $A \mathcal{H}$ is finitedimensional;
b) for some realization of the null-descended procedure for $\mathfrak{Y}$ the number of steps is finite.

Theorem 3.2. Conditions (3.6), (3.7) and (3.8) are equivalent.

### 3.2. General case

Let $\mathcal{L}$ be a pseudo-regular $\mathfrak{Y}$-invariant subspace with finite-dimensional isotropic part and all operators $\left.A\right|_{\mathcal{L}}$ are nilpotent. We need to adapt the definition of a null-descended procedure for the family $\left.\mathfrak{Y}\right|_{\mathcal{L}}$ if the isotropic part of $\mathcal{L}$ is not trivial (if this part is trivial the procedure is practically the same as for the whole space). For arbitrary operator $A_{1}:\left.A\right|_{\mathcal{L}} \neq 0$ we set $\mathcal{K}_{1}:=\left(A_{1} \mathcal{L}\right)^{[\perp]} \cap \mathcal{L}$ and, in general, $\mathcal{K}_{j+1}:=$ $\mathcal{K}_{j} \cap\left(A_{j+1} \mathcal{L}\right)^{[\perp]}$, the stopping rule and selection of a sequence $A_{1}, A_{2}, \ldots$ are the same, i.e. they are related to Condition (3.1).

Theorem 3.3. The following conditions are equivlent:

$$
\begin{equation*}
\mathfrak{Y} \in D_{\kappa}^{+} \text {in } \mathcal{L} \text { for some } \kappa ; \tag{3.9}
\end{equation*}
$$

a) for every $A \in \mathfrak{Y}$ the linear manyfold $A \mathcal{L}$ is finitedimensional;
b) for every realization of the null-descended procedure for $\mathfrak{Y}$ the number of steps is $f$ nite;
a) for every $A \in \mathfrak{Y}$ the linear manyfold $A \mathcal{L}$ is finitedimensional;
b) for some realization of the null-descended procedure for $\mathfrak{Y}$ the number of steps is $f$ nite.

Next, we need the following result from [4] (an operator $U: \mathcal{L} \mapsto \mathcal{L}$ is said to be a $(\mathcal{L},[\cdot, \cdot])$-unitary operator, if $U \mathcal{L}=\mathcal{L}$ and $[U x, U y]=[x, y]$ for every $x, y \in \mathcal{L})$ :

Theorem 3.4. Let $\mathcal{H}$ be a J-space and let $\mathfrak{W}=$ $\{W\}$ be a commutative group of $J$-unitary operators. Then $\mathfrak{W} \in D_{\kappa}^{+}$if and only if, there exists an $\mathfrak{W}$-invariant pseudo-regular subspace $\mathcal{L}$, such that:
(i) its isotropic part $\mathcal{L}_{0}=\mathcal{L} \cap \mathcal{L}^{[\perp]}$ is a finite dimensional subspace;
(ii) $\mathfrak{W}_{1}=\left\{W_{1}=\left.W\right|_{\mathcal{L}}\right\}_{W \in \mathfrak{W}}$ is a group of $(\mathcal{L},[\cdot, \cdot])$ unitary operators belonging to $D_{\kappa}^{+}$;
(iii) for every $x, y \in \mathcal{L}^{[\perp]}$, the set

$$
\Omega_{x, y}=\{[W x, y]\}_{W \in \mathfrak{W}}
$$

is bounded.

Denote $\operatorname{Un}(\mathfrak{Y})$ the group of all $J$-unitary operators from $\operatorname{Alg}(\mathfrak{Y})$ and pass to the summarizing theorem.

Theorem 3.5. Let $\mathfrak{Y}$ be a commutative family of $J-s . a$. operators with real spectra and let the set $\mathfrak{P}(\mathfrak{Y})$ be defined via (2.6), (2.7) and (2.8). Then $\mathfrak{Y} \in D_{\kappa}^{+}$for some $\kappa$ if and only if the following conditions hold:

- the cardinality of $\Theta$ is finite;
- all elements of $\mathfrak{P}(\mathfrak{Y})$ are regular or pseudo-regular;
- if $\mathcal{G}_{v_{\vartheta}}$ is pseudo-regular, then its isotropic part is finite-dimensional;
- for every $\vartheta \in \Theta$ and $A \in \mathfrak{Y}$ the linear manyfold $\left(A-\lambda_{\mathcal{Z}_{\vartheta}}(A) I\right) \mathcal{G}_{v_{\vartheta}}$ is finite-dimensional;
- for every $\vartheta \in \Theta$ and some (every) realization of the null-descended procedure for the family $\left\{\left.\left(A-\lambda_{\mathcal{Z}_{\vartheta}}(A) I\right)\right|_{\mathcal{G}_{v_{\vartheta}}}\right\}_{A \in \mathfrak{Y}}$ the number of steps is finite.
- for every $x, y \in \mathfrak{P}(\mathfrak{Y})^{[\perp]}$ the set $\{[U x, y]\}_{U \in \operatorname{Un}(\mathfrak{Y})}$ is bounded.


## 4. Closing remarks

$J$-unitary operators with invariant subspaces of the type $h^{+}$were appeared firstly in the Helton's paper [8] and a successive development of this direction (covering so-called $H$ and $K(H)$ classes) was given by Azizov (see [2] for details). The $D_{\kappa}^{+}$-class was introduced by Strauss [10]. A comparative analysis of different classes of $J$-s.a. operators in Krein spaces (including $D_{\kappa}^{+}$-class) generating some kinds of spectral resolutions can be found in [5]. Let us note also that some of results of the presented paper, for instance, Corollary 2.5 , are well known for the case of individual operators (see [2], § III.5).

## References

[1] T. Ya. Azizov, I. S. Iokhvidov, Linear operators in spaces with an indefinite metric. "Matematicheskii analiz" (Itogi nauki i tehniki, VINITI) 17 (1979) Moscow, 113-205 (Russian).
[2] T. Ya. Azizov, I. S. Iokhvidov, Foundation of the Theory of Linear Operators in Spaces with Indefinite Metric. Nauka: Moscow, 1986 (Russian); Linear Operators in Spaces with Indefinite Metric. Wiley: New York, 1989 (English).
[3] T. Ya. Azizov, V. A. Strauss, Spectral decompositions for special classes of self-adjoint and normal operators on Krein spaces. Spectral Theory and its Applications, Proceedings dedicated to the 70-th birthday of Prof. I.Colojoară, Theta 2003, 4567.
[4] T. Ya. Azizov, V. A. Strauss, On a spectral decomposition of a commutative operator family in spaces with indefinite metric. MFAT 11 (2005) No 1, 10-20.
[5] T. Ya. Azizov, L. I. Sukhocheva and V. A. Shtraus, Operators in Krein Space. Math.Notes 76 (2004) No 3-4, 306-314.
[6] J. Bognar, Indefinite inner product spaces. Springer-Verlag, NY, 1974.
[7] A. Gheondea, Pseudo-regular spectral functions in Krein spaces. J. of Oper.Th. 12 (1984), 349-358.
[8] J.W. Helton, Unitary operators on a space with an indefinite inner product. J. Funct. Analysis 6 (1970) No 3, 412-440.
[9] I.S. Iokvidov, M.G. Krein, H. Langer, Introduction to the spectral theory of operators in spaces with an indefinite metric. Akademie-Verlag, Berlin, 1982.
[10] V.A. Strauss, On the structure of operators doubly commuting with operators of $K(H)$-class. Ukrain. Mat.Zh., 38 1986, No. 10, 805 (Russian).
[11] Strauss, V.A. The structure of a family of commuting $J$-self-adjoint operators Ukrain. Mat.Zh., bf 41 1989, No. 10, 1431-1433, 1441 (Russian).
[12] Strauss, V. A functional description for commutative $W J^{*}$-algebras of the class $D_{\kappa}^{+}$, Vienna Qolloquium.

