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Abstract

A goal of this report is a study of relations between com-
mutative J-symmetric families of so-called D -class and
some spectral functions with peculiarities.
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1. Preliminaries

Let ‘'H be a Hilbert space. If J C 'H, then the sym-
bol Lin ) refers to the linear span of ), and by the
symbol CLin ) we denote the closed linear span of ).
The symbol dim X is the linear dimension of a vector
space X. In what follows H is a Krein space with an
indefinite sesquilinear form [-,-]. Let H = H_ [+|H_
be a canonical decomposition of ‘H, let P, and P_
be canonical projections: H, = P.H, H_ = P_H,
let J = P, — P_ be a canonical symmetry, and let
(+,-) = [J+, ] be a canonical scalar product. Note that
one of these canonical objects uniquely determines the
others. Everywhere below we fix on ‘H a unique form
[z, y] = (Jx,y). At the same time let us note that in
the question we consider, a concrete choice of Hilbert
scalar product is not really essential. One needs only
to fix the topology (defined by the above mentioned
scalar product) and the structure of J.

Below non-negative (especially maximal non-nega-
tive) subspaces will play an important role. The set
of all maximal non-negative subspaces of the Krein
space H is denoted MM (H).

A subspace L is called pseudo-regular (|7]) if it can
be presented in the form

L=L+L, (1.1)

where L is a regular subspace and £ is an isotropic

part of £ (i.e. £; = LN LH).



Proposition 1.1. ([3]) Let:

o L, €M (H) and be a pseudo-reqular subspace;
e L1 be the isotropic subspace of L. ;
o (-,-) be a scalar product on Ly, such that the

norm +\/(x, ) is equivalent to the original one;
Y ELLL] ;
and let
e =8, 48,8 =2 18, (1.2)

where 2+ and £_ are uniformly definite subspaces.
Then one can define on 'H a canonical scalar pro-
duct (-, ) such that:

a) on £y () =) \

b) £ L £, , £ L L

c) on i}+ () =[] ( (13)
Donf i ()=l |

Define a special case of pseudo-regular subspaces:
a non-negative (non-positive) subspace L is called a
subspace of the class h™ ( h™) if it is pseudo-regular
and dim £, < oo for £; as in (1.1). In Pontryagin
spaces every subspace is pseudo-regular and every se-
mi-definite subspace belongs to class At or h™.



Here the term "operator” means ”"bounded linear
operator”. By the symbol B7 we denote the operator
J-adjoint (J-a.) to an operator B. For an operator A
symbols: 0(A) and 0,(A) mean respectively its spec-
trum and point spectrum. If Ay € o0,(A) then the
symbols Iy (A) and R),(A) mean respectively the
root linear manyfold (i.e. the set of all eigenvectors
and root vectors) and the eigenspace of the opera-
tor A corresponding to the eigenvalue A\y. If Ay = 0
then the subspace £),(A) is also denoted Ker A. Gen-
erally speaking M),(A) can be a non-closed linear
manyfold but for the type of A that we consider it
is a subspace (i.e. a closed linear manyfold). For an
operator A we set U(A): = Uyeq ({9 (A)} and
Ui(A): = User,(18a(A4)}. In the same way for
an operator family ) we put J()): = Naegih(A)
and J1(): = Naegthi(A). Now let a non-trivial -
invariant linear manyfold G C J(2)). Then for every
A € 9 there is a unique number A\g(A) that is the
eigenvalue of Alg, i.e.

dr e G: Ax = Mg(A)x, x # 0. (1.4)

If an operator family Q) is such that the condition
A € 9 implies A" € ), then this family is said to
be J-symmetric. Note that a group of J-unitary op-
erators is J-symmetric. An operator algebra 2l is said
to be W J*-algebra if it is closed in the weak opera-
tor topology, J-symmetric and contains the identity 1.
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The symbol Alg%) means the minimal W J*-algebra
which contains %).

Definition 1.2. A J-symmetric operator family ) be-
longs to the class D if there is a subspace £, in 'H,
such that

o L. is Y-invariant,

o L. eM(H)NAT,

o dim(L, N E[j]) = K.

Let A={\}{ be a finite set of real numbers and let
R be the family { X} of all Borel subsets of R such
that 09X NA = (), where X is the boundary of X in
R. Let E: X +— FE(X) be a countably additive (with
respect to weak topology) function, that maps Ry to a
commutative algebra of projections in a Hilbert space
H, E(R) = 1. E(X) is called a spectral function
(on R) with the peculiar spectral set A, the mention
of A can be omitted. The symbol Supp(F) means the
minimal closed subset S of R, such that F(X) =
0 for every X: X C R\S and X € fRj). Besides
the symbol E we shall use also as a notation of a
spectral function the symbol F\, A € R, where F)=
E((—00,\)). Note that the notion of peculiar set has
no any direct connection with the behavior of spectral
function and it means only that some points on R
are distinguished. See below Definition 1.3 for some
explanations.



In what follows the symbol let %X)) means the col-
lection of all numerical subsets X such that X € Ry
and X NA=0.

Definition 1.3. Let E' be a spectral function with a
peculiar spectral set A. If A € A then A\ will be called
a peculiarity of E. Let A be a peculiarity. Fix a set
X € Ry X N A = {A}. The peculiarity A is called
reqular if the operator family {E(X NY)}yem, Is
bounded, otherwise it is called singular.

A spectral function E that acts in a Krein space,
is said to be J-orthogonal (J-orth.sp.f.) if E(X) is a
J-ortho-projection for every X € 2R,. The following
theorem was announced in [11] and proved in [4].

Theorem 1.4. Let ) € D be a commutative fam-
ily of J-s.a. operators with real spectra. Then there
erists a J-orth.sp.f. E with a finite peculiar spec-
tral set A (A may be the empty set), such that the



following conditions hold

a)
b)

f)

E, € Alg®) for all A € R\A;

3 Y-invariant L, € h": E(A)H =
E(N)L[+HEA)L_, A being any
closed segment satisfying A\ € 9{5\0);
VA €Y, 3 a defined almost every-

where function ¢(\), such that for

every interval A\ € 9“{5\0) the descom-

position AE(A) = [, ¢(A)E(dN) is
valid;

~

H = CLin{E(A)YH} is pseudo-
AE%E{))

reqular and its isotropic part is fi-

nite dimensional;

if w € A, then YA € U the set
o(Alw,), where H, = (| E(A)H,

JIISYAN
is a singletone {Aa}; moreover,

there is a natural number n (the
same for all A) such that (A —
Mal)"H, = {0};

if Ao € A, then either
limsup ||Ey|| = oo or at least

A— g

for one A € ) the operator A|H}\0
wsn’t a sp. operator of scalar type.

)

0

/

(1.5)



A spectral function E with a peculiar spectral set A
satisfying Conditions (1.5) are called an eigen spec-
tral function (e.s.f.) of the operator family ).



2. On the cardinality of a peculiarity set for a J-symmetric family of D -class

It is evident that an es.f. £ of an operator family
Y € D7 is not uniquely defined. At the same time
there are some invariants related to £ that depend of

) only.

Proposition 2.1. Let E € D} be a J-orthogonal
spectral function with a peculiar spectral set A and
let \g € N. The peculiarity Ay s singular if and
only if the isotropic part the subspace

Hw= ) EQH
A NeAER)
1S non-trivial.

For the next step we need the following result from
3]



10

Proposition 2.2. Let A € D} be a J-s.a. operator
such that o(A) C R and let L, € h™ NIMT(H)

be A-invariant. Then there is on R the spectral

function Ef with a finite peculiar spectral set A,
such that (X € Ry)

a) E, € Alg A for every A € R\A; )
b) o(Alpxyn) C X;

c) if X N A = ( then the operator
AFE(X) is a scalar spectral operator

and AE(X) = /XSE(CZS),

d) if XA # 0 then AE(X) is not a
scalar spectral operator;

e) if A € Ry and ANA = 0 then p (2.1)
E(AYH = HA[+HA, AHA C HA,

AHLN C Hy, HX is uniformly posi-

twe and H, is untformly negative

(each of the subspaces HX and Hx
can be equal to {0} );

f)if A € Ry and ANAN #£ O then
E(A)L,. N Ly #{0}.
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Remark 2.3.1f o(A|gacxyy) N o(Alg,) = 0, then in
Representation (2.1e) one can take Hi = B4 X)L,
and Hy = EAX)L_.

Proposition 2.4. Let A € D} be a J-s.a. opera-
tor with a(A) C R, let E{ be its e.s.f. and let

X e o,(A), Hi: = Na: reaem, BAAYH. Then di-

mension of the subspace (A — )\I)ﬁf does not ex-
ceed 3k — 1.

Corollary 2.5. Let ) € DI be a family of J-s.a.
operators with real spectra and let a non-trivial %)) -
invariant linear manyfold G C J()). Then its clo-
sure G is also P-invariant, G C J() and there is
a number m such that for every set of operators
Ay, Agy oo A €9 the equality (A — Ag(AT) -
(A — Ag(A2)D) - ... - (A, — Ag(An)I )|z = 0 holds.
Here \g(A;) is defined by (1.4).

Corollary 2.6. Let ) € DI be a family of J-s.a.
operators with real spectra and let a non-trivial %)) -
invariant subspace G C J(). Then Kg(Q): =

Naey Ker((A — Ag(A)1)|g) # {0}
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Let us consider under the same hypothesis along
with operators from ) also operators from Alg(%)).
If a subspace G C J(2) is Y-invariant, then it is
also Alg(%))-invariant and due to Corollary 2.6 for ev-
ery A € Alg()) there is (cf. (1.4)) a unique number
Ag(A) such that

Alics) = Ag(A) o) (2.2)

Proposition 2.7. Let Q) € DI be a family of J-
s.a. operators with real spectra and let a non-trivial
V-invariant subspace G be such that G C ().
Then (see (2.2)) there is a number m such that for
every set of operators Ay, As, ..., Ay € Alg() the
equality (A1 —Ag(A)T) - (As—Ag(A) ) ... - (A —
)\g( ) )‘g — 0 holds.
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Corollary 2.8. Let ) € D be a family of J-s.a.
operators with real spectra. Then

J() = I(Alg(D)).
Proof. Indeed,
) =g, (2:3)

there T is an index set with finite or infinite cardinality

and G, is a )-invariant subspace such that

a) G, is maximal in the following \

sense: if a linear m%nyfold g is
such that G, C G C J(D),

then G = G,,, % (2.4)
b) for every A € 9 the

set o(Alg,) is a singleton
{Agv (A)}7 /
and we need to show that for every A € Alg(%)) and

G, there is a number m,, such that (A—Ag, (A)1)™|g,
= 0, but this follows from Proposition 2.7. []

Remark 2.9. The condition P € D in the asser-
tions of Corollaries 2.5, 2.6, 2.8 and Proposition 2.7
are essential. In the example given below a commu-
tative family ) of J-s.a. nilpotent operators is such
that J()) = H but J1(Y) = {0}. Moreover Alg()

contains no nilpotent but quasinilpotent operators, so

J(Alg(D)) # H.
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Example 2.10. Let {e;} > __ be an orthonormalized

Jj=—00
basis in a Hilbert space H, Je; = e_; for all 7. Set
A1€—1+3j — €35, A1€3j — €143, A1€1+3j =0,

A26—4+9j = €_149j, - -+ A261+9j — €419, A262+9j —
= A e m—1qpy = 0, ] = —1 0,1,....m=
m (3m 3 3p) , ] = )

1,2,.... It is easy to check that the family {Am}cfo is
J-symmetric and commutative, A> = 0 for every m
but N%°_; Ker(A,,) = {0}.

Proposition 2.11. Let Q) € DI be a family of J-
s.a. operators with real spectra, let E\ be its e.s.f.
with a peculiar set A and let Z(F): = {&: & €
A or (Eerg — Eg) 7é O} Then

U Hg, (2.5)
E€=(F

where He = ().~ E(|€ — 6,€+ e|)H

Corollary 2.12. If E is an e.s.f. of a family Q) €
Dt of J-s.a. operators with real spectra, then the
number of singular spectral peculiarities of E de-

pends only of ).

Now let us go to a characterization of regular pe-
culiarities.
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Proposition 2.13. Let E € DI be an e.s.f. of an
operator family ) € D and let He is defined by
(2.5). Then & is a regular peculiarity if and only if
simultaneously

o H¢ 1s a reqular subspace;

o the subspace He N T1(2) is degenerate.

Let Q) be a commutative family of J-s.a. operators
with real spectra. As a first step we consider the set
3.1(D) N T (Y)H. This set has the representation

W) NHYH = 2, (2.6)

(SIS
where O is an index set and Zy is the isotropic part
of the corresponding joint eigen-space for %), i.e. for
every A € ) there is a number Az,(A) such that
Ax = Az (A)x for all z € Zy = (Naey Ker(A —

Az, (A1) N (Nacy Ker(A — Az, (A) D) Let
PoD): = {Zs},c0 (2.7)

Next, for ) we can consider Representation (2.3) that,
evidently, can be find for every commutative operator
family, but in the general case G, is not a subspace
but a linear manyfold. Due to the definition of Zy for
every # € © there is the unique index vy € T such
that Zy C G,,. Let

B): =190 ] jeo: (28)
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The next theorem is principal in this section and fol-
lows directly from Propositions 2.1 and 2.13.

Theorem 2.14. Let ) € D be a family of J-s.a.
operators with real spectra, let E be its e.s.f. with
a peculiar set \. Then cardinalities of A and ©
from (2.6) coincide and

BD) = {Habren, (2.9)
where B()) is defined by (2.8).

Corollary 2.15. Let Q) € D be a family of J-s.a.
operators with real spectra. Then both the number
of singular peculiarities and the number of reqular
peculiarities are the same for all e.s.f. of ).
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3. A test detecting D -families

3.1. A particular case

In this subsection we consider a commutative oper-
ator family ) of J-s.a. nilpotent operators. We also
assume that ) contains the infinite number of linearly
independent members. Let us introduce a procedure
that will be used for checking if @) € D

Taking an arbitrary operator A; € 2) such that
A1 # 0, weset Kp: = Ker(A;). Since Ay is nilpotent,
i /C[f] # {0}. If for every A € 9

AKy C Ky n K,

the procedure is finished, otherwise we go to the next
step, taking an arbitrary A, € ), such that AsK; &
Kin IC[lH, and setting KCo: = Ky N Ker(Ay), ete. In
general case, if for the step 7 the relation

AK; € KN (3.1)

holds for every A € ), this step is final, otherwise we
fix some Aj1; € Q such that A; 1 & ;N ICM,

and set [Cj11: = K; N Ker(A;41). The construcéed
procedure will be called null-descended. It can contain
finite or infinite number of steps. It is clear that the
choice of the (finite or infinite) sequence Ay, Ao, ...
is ambiguous but this sequence uniquely defines the

sequence K, ICo, .. ..
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Proposition 3.1. If a commutative operator fam-
ily ) of J-s.a. nilpotent operators belongs to D -
class, then for every choice of Ay, As, ... the corre-
sponding null-descended procedure contains a finite
number of steps.

Proof. Let us assume the contrary, i.e., that the null-
descended procedure generates an infinite sequence

{4,172

Now we set

Lot = JLy, Lo = (Lo + £1)M N L,

Ly = (Lo+ L) nLy. (3.2)

With no loss of generality one can assume (see Propo-
sition 1.1) that the subspaces £;, 7 = 0,1,2,3, are
mutually orthogonal, (-, )|z, =[]z, and (-, )|z, =
—|,*]|lz5- Then the decomposition H = Ly & L1 &
Lo @& L3 yields the matrix representations

Q V=0 0
Voo 0 0
J = 3.3
0O 0 I, 0 ’ (33)
0 0 0 —I3
A\ 3
A] — ( ](i]))p,q:()’ (3 4>
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where Af) = AY) = AY) = AY) = AY) = AY) =
Aéjl) = Aéj; = Aé‘? = 0. Note that bloc-matrices

(4 )
A A

act in a finite-dimensional vector space, so they also
belong to a (different) real vector space and only a
finite number of them are linearly independent. Let
my be a number such that every bloc-matrix with 5 >
mq 18 a linear combination of first m; bloc-matrices,
i.e.

A 0) () (Aff@ 0) ) _ )
' ] = Qy .0 Q@ =
(o8 ) S (2

=1
Since Al‘/gml = A2|1Cm1 = ... = Aml‘/gml = 0, the
subspaces KCpy 41, K +2, ... will be the same if we
change Ay, 41, Am 42, ... for, respectively,
mq mi
+1 +2
Apper= "™ AL A = ™AL
=1 =1

Thus, with no loss of generality we can assume that
in Representation (3.4) the conditions

AG = A =AY =0, G2t

hold. Moreover, the subspace £, is finite-dimensional,
so there is a number moy such that for every j7 > mo,
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vectors x, € L9 and x_ € L3 we have

AN

Aj(xs+z_)e L: = Lin {A(ys+y-)}
y+€Ly, y_€Lg
[=m1+1,...mo
R R (3.5)
Let K: =nN52, ,  Ker(A;). Then £ C L = (LN

EO) PLLBL P L Iy, € Lo,y € Lyand z €
(EMHEO) , then by (3.5) we have [A,,, 112, y++y_| =

[z, Apyr1(yy + y-)] = 0. Thus, Apyp1z = 0 and,
therefore, AmQHZ[ C L. Since L is the isotropic
part of LI KC,, € K € LH and Ay 1Ky C Koy,
the relation A, 11/, C Ky N K| 2] 1S now evident.
The latter, nevertheless, contradicts to the hypothesis

that no for one A; Relation (3.1) holds. [
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Now let us consider the relation between the follow-
ing conditions () is a commutative nilpotent family
of J-s.a. operators):

2 € D for some k; (3.6)

a) for every A € ) the lin-
ear manyfold AH is finite-
dimensional;

C(37)

b) for every realization of the
null-descended procedure for
) the number of steps is finite;

a) for every A € ) the lin-
ear manyfold AH is finite-
dimensional;

L (3.8)

b) for some realization of the
null-descended procedure for
) the number of steps is finite. |

Theorem 3.2. Conditions (3.6), (3.7) and (3.8) are
equivalent.
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3.2. General case

Let £ be a pseudo-regular )-invariant subspace with
finite-dimensional isotropic part and all operators A| .
are nilpotent. We need to adapt the definition of a
null-descended procedure for the family )|, if the
isotropic part of £ is not trivial (if this part is triv-
ial the procedure is practically the same as for the
whole space). For arbitrary operator A;: Alz # 0 we
set ICi: = (Alﬁ)m N L and, in general, Kj11: =
KC; N (A L) the stopping rule and selection of a
sequence Ay, Ag, ... are the same, i.e. they are related
to Condition (3.1).
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Theorem 3.3. The following conditions are equiv-

alent:

2 € D! in L for some ;

a) for every A € %) the lin-
ear manyfold AL 1is finite-
dimensional;

b) for every realization of the
null-descended procedure for

) the number of steps is fi-
nite;

a) for every A € ) the lin-
ear manyfold AL 1is finite-
dimensional;

b) for some realization of the
null-descended procedure for

Y) the number of steps is fi-
nite.

(3.9)
L (3.10)
s (3.11)
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Next, we need the following result from [4] (an op-

erator U . L — L is said to be a (L, [+, ])-unitary
operator, if UL = L and [Ux,Uy| = |z, y] for every
x,y € L):

Theorem 3.4. Let 'H be a J-space and let 0 =
{W} be a commutative group of J-unitary opera-
tors. Then 20 € D if and only if, there ezists an
Q0 -invariant pseudo-reqular subspace L, such that:

() its isotropic part Lo = LN LY is a finite di-
mensional subspace;

(22) W1 = {W1 = W/ wew is a group of (L, [, "])-
unitary operators belonging to D ;
(#31) for every x,y € LI, the set

Quy ={Wx,ylfwew

18 bounded.
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Denote Un(%)) the group of all J-unitary operators
from Alg(%)) and pass to the summarizing theorem.

Theorem 3.5. Let Q) be a commutative family of
J-s.a. operators with real spectra and let the set
B(Y) be defined via (2.6), (2.7) and (2.8). Then
Y € D for some k if and only if the following
conditions hold:

e the cardinality of © is finite;

e all elements of P()) are reqular or pseudo-re-
qular,

o if G, is pseudo-regular, then its isotropic part
s finite-dimensional;

e for every v € © and A € %)) the linear manyfold
(A — Az, (A)I)G,, is finite-dimensional;

o for every ¥ € © and some (every) realization
of the null-descended procedure for the famaly

{ (A— Xz, (A)]) ‘g“ﬁ}Ae@ the number of steps is
finate.

o for every x,y € P(Y) the set {[Ux, y]}UeUn(@)
is bounded.
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4. Closing remarks

J-unitary operators with invariant subspaces of the
type h™ were appeared firstly in the Heltons paper [§]
and a successive development of this direction (cover-
ing so-called H and K (H) classes) was given by Azi-
zov (see 2] for details). The D -class was introduced
by Strauss [10]. A comparative analysis of different
classes of J-s.a. operators in Krein spaces (including
D -class) generating some kinds of spectral resolu-
tions can be found in [5]. Let us note also that some of
results of the presented paper, for instance, Corollary

2.5, are well known for the case of individual operators
(see [2], § TI1.5).
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