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My abstract

The anatomy of matrices of unbounded operators will be presented
in some detail.

Just to remind You, my dear PT Audience



Declaration

The environment for this presentation is exclusively that of Hilbert
spaces.

However the positive results are true in locally convex spaces as
well. In this way Krein spaces are included too.

On the other hand, the odd examples are unsurpassed as they are
settled within the richest structure; the most exhaustive situation
to happen.

Important notice!
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Matrix: the pictograph and its meanings

This is a matrix (
A B
C D

)
This is an operator matrix(

A B
C D

)
, A, B,C,D (rather) unbounded operators

This is a matrix operator

D(A) def= (D(A) ∩D(C))⊕ (D(B) ∩D(D))

A(f ⊕ g) def= (Af + Bg)⊕ (Cf + Dg), f, g ∈ D(A)

Formal matrix – this is our INPUT

operator matrix versus . . .

matrix operator
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Row and column operators

H1, H2 and H Hilbert spaces.

Row operators

Given the operators Ri ⊂ Hi ⊕H , i = 1, 2. Define

D(R(R1,R2))
def= D(R1)⊕D(R2),

R(R1,R2)(f1 ⊕ f2)
def= R1f1 + R2f2, f1 ⊕ f2 ∈ D(R(R1,R2)).

Column operators

Given the operators Ci ⊂ H ⊕Hi, i = 1, 2. Define

D(C(C1,C2))
def= D(C1) ∩D(C2),

C(R1,R2)f
def= C1f1 ⊕ C2f2, f ∈ D(C(R1,R2)).

The heroes till 17:40 today

Rows and columns
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The anatomy

The subject for dissection

Let (
A11 A12

A21 A22

)
be an operator matrix and A the matrix operator it generates
(with proper domains).
Then

A = C(R(A11,A21),R(A12,A22))

This is a rather formal (and elementary) linear algebra
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The lesson

The goal

Examine closures and adjoints (duals, remember: it has to serve
other than Hilbert spaces as well) of matrix operators.

The way

Examine those of row and column operators!

Warning

The case when at most of one of the operators in a row or/and in
a column is bounded is reluctantly not excluded (this is just trivial;
everything goes as someone might have dreamed of).

Now the essence enters
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Row operators

About ‘dashing’ or ‘overlining’

The ‘dash’ put over and aside of an operator stands as usually for
its closure.

About ‘crossing’

By × we denote always the adjoint operation applied entrywise
regardless an object in question is: a row, a column or a matrix.

Rows and columns

Some notation, it’s never ending
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Row and column operators

The pleasure

R∗ = C(R∗
1 ,R∗

2)

A little bit less pleasant

For R(R1,R2) to be closable it is necessary R1 and R2 to be so.

To recompase you the above

If R(R2) ⊂ R(R1), R1 is injective and R1R
−1
2 extends to a

bounded operator K, say, then

R(R1,R2) = R(R1,0)

(
I K
0 I

)
.

In other words, the entrywise closure does the job!

Rows

Pretty well-mannered results
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Row and column operators

Entries are closed but the row operator is not

Be in `2 space with the usual ‘0− 1’ basis (en)n, please. Set

R1ek
def= βkek, R2ek

def= αke1 + βkek

and

D(R1)
def=

{
f =

∞∑
k=1

γkek :
∞∑

k=1

|γk|2 < ∞,
∞∑

k=1

|γkβk|2 < ∞

}
,

D(R2)
def=

{
f =

∞∑
k=1

γkek ∈ D(R1) :
∞∑

k=1

γkαk converges

}
.

Then the patient calculation makes it.

Rows

The odd example
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Column operators

This is the foretaste of what may happen

C×
(C1,C2) = R(C∗

1 ,C∗
2 ) ⊂ C∗

(C1,C2)

The troublemaker shows its real face

Let C1 and T be densely defined operators such that

D(C1) = D(T ) and D(C∗
1 )  D(T ∗).

Then, after C2
def= T − C1

D(C×
(C1,C2))  D(C∗

(C1,C2)).

Rows and columns

The foretaste
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Column operators

A little something again

Suppose D(C1) = D(C2) and C1 is injective with C2C
−1
1 having a

bounded extension. Let D0 be a subspace of D(C∗
(C1,C2)) such

that there exists (at least one) v0 ∈ H2 \ {0} for which
(−Kv0, v0) ∈ D0.

Then D0 is a core of C(C1,C2) if and only if D0 is dense in
H1 ⊕H2 and C(I,K∗)(D0) ∩D(C∗

1 ) is a core for C∗
1 .

Rows and columns

Going on a bit
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Column operators

Still something

For C(C1,C2) to be closable it is sufficient C1 and C2 to be so.

Not too bad so far

1o C(C1,C2) is closed if so are C1 and C2;

2o C×
(C1,C2) = C∗

(C1,C2) if and only if C(C1,C2) = C(C̄1,C̄2).

Again some clouds are coming (next slide please).

Rows and columns

Some pleasure comes anyway
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Column operators

It has been known that there are closed column operators with at
least one of the entries not closable. Even more, it turns out this
situation is generic.

An eccentric example

Let C be a merely unbounded operator which is closable. Then C
decomposes as C(C1,C2) with C1 not closable.

Hint: take x /∈ D(C∗) and set C1
def= PC and C2

def= (I − P )C
where P is the rank one projection on {x}.
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Column operators

To factor or to factorize, again

Suppose D(C1) = D(C2). If C1 is injective with C2C
−1
1 having a

bounded extension. Then

C×
(C1,C2) = R(C∗

1 ,C∗
1K∗) but C∗

(C1,C2) = C(C∗
1 ,0)

(
I K∗

0 I

)
.

What is the difference in the above?
Look at

D(C×
(C1,C2)) = {f ⊕ g : f ∈ D(C∗

1 ), K∗g ∈ D(C∗
1 )}

D(C∗
(C1,C2)) = {f ⊕ g : f + K∗g ∈ D(C∗

1 )}

and notice the difference! The latter is like coupling, isn’t it?

Rows and columns

something to improve the mood a bit
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Matrix operators eventually

Just to remind

A = C(R(A11,A21),R(A12,A22))

Applying all the permissible procedures which help one gets

A× = R(C(A∗
11,A∗

21),C(A∗
12,A∗

22))
⊂ A∗.

This results in

1o A× is closable;

2o if A× is densely defined, A is closable;

3o even if all Aij are closed, A may not be closable (this comes
out from combining previous examples).

Matrix operators move into . . .

. . . to culminate



Matrix operators eventually

Just to remind

A = C(R(A11,A21),R(A12,A22))

Applying all the permissible procedures which help one gets

A× = R(C(A∗
11,A∗

21),C(A∗
12,A∗

22))
⊂ A∗.

This results in

1o A× is closable;

2o if A× is densely defined, A is closable;

3o even if all Aij are closed, A may not be closable (this comes
out from combining previous examples).

Matrix operators move into . . .

. . . to culminate



Matrix operators eventually

Just to remind

A = C(R(A11,A21),R(A12,A22))

Applying all the permissible procedures which help one gets

A× = R(C(A∗
11,A∗

21),C(A∗
12,A∗

22))
⊂ A∗.

This results in

1o A× is closable;

2o if A× is densely defined, A is closable;

3o even if all Aij are closed, A may not be closable (this comes
out from combining previous examples).

Matrix operators move into . . .

. . . to culminate



Matrix operators eventually

Just to remind

A = C(R(A11,A21),R(A12,A22))

Applying all the permissible procedures which help one gets

A× = R(C(A∗
11,A∗

21),C(A∗
12,A∗

22))
⊂ A∗.

This results in

1o A× is closable;

2o if A× is densely defined, A is closable;

3o even if all Aij are closed, A may not be closable (this comes
out from combining previous examples).

Matrix operators move into . . .

. . . to culminate



Matrix operators eventually

H1 = H2 = L 2(0, 1) and the operators Aij are defined by

D(A11) = {f ∈ W 1
2 (0, 1) : f(0) = 0}, A11f = f ′,

D(A12) = L2(0, 1), A12 = 0,

D(A21) = {f ∈ W 1
2 (0, 1) : f(1) = 0}, A21f = f ′,

A22 = −A21,

where W 1
2 (0, 1) denotes the usual Sobolev space of order 1.

The worst example for today

Then all Aij are closed, A as well as A× is densely defined but

A×  A′.

Matrix operators move into . . .

. . . to culminate
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