Rows versus Columns

Franciszek Hugon Szafraniec

Uniwersytet Jagielloński, Kraków
reporting on the joint effort with Manfred Möller (WITS, SA)

My abstract

The anatomy of matrices of unbounded operators will be presented in some detail.

Declaration

The environment for this presentation is exclusively that of Hilbert spaces.

Declaration

The environment for this presentation is exclusively that of Hilbert spaces.

However the positive results are true in locally convex spaces as well.

Declaration

The environment for this presentation is exclusively that of Hilbert spaces.

However the positive results are true in locally convex spaces as well. In this way Krein spaces are included too.

Declaration

The environment for this presentation is exclusively that of Hilbert spaces.

However the positive results are true in locally convex spaces as well. In this way Krein spaces are included too.

On the other hand, the odd examples are unsurpassed as they are settled within the richest structure; the most exhaustive situation to happen.

Matrix: the pictograph and its meanings

Formal matrix - this is our INPUT
Loperator matrix versus . . $L_{\text {matrix operator }}$

Matrix: the pictograph and its meanings

This is a matrix

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

Formal matrix - this is our INPUT
Loperator matrix versus
$L_{\text {matrix operator }}$

Matrix: the pictograph and its meanings

This is a matrix

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

This is an operator matrix

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad A, B, C, D \text { (rather) unbounded operators }
$$

Matrix: the pictograph and its meanings

This is a matrix

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

This is an operator matrix

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad A, B, C, D \text { (rather) unbounded operators }
$$

This is a matrix operator

$$
\begin{gathered}
\mathscr{D}(\boldsymbol{A}) \stackrel{\text { def }}{=}(\mathscr{D}(A) \cap \mathscr{D}(C)) \oplus(\mathscr{D}(B) \cap \mathscr{D}(D)) \\
\boldsymbol{A}(f \oplus g) \stackrel{\text { def }}{=}(A f+B g) \oplus(C f+D g), \quad f, g \in \mathscr{D}(\boldsymbol{A})
\end{gathered}
$$

Matrix: the pictograph and its meanings

This is a matrix

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

This is an operator matrix

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad A, B, C, D \text { (rather) unbounded operators }
$$

This is a matrix operator

$$
\begin{gathered}
\mathscr{D}(\boldsymbol{A}) \stackrel{\text { def }}{=}(\mathscr{D}(A) \cap \mathscr{D}(C)) \oplus(\mathscr{D}(B) \cap \mathscr{D}(D)) \\
\boldsymbol{A}(f \oplus g) \stackrel{\text { def }}{=}(A f+B g) \oplus(C f+D g), \quad f, g \in \mathscr{D}(\boldsymbol{A})
\end{gathered}
$$

Formal
$\left\llcorner_{\text {operator matrix }}\right.$
$L_{\text {sometimes also a matrix operator with coupled domain }}$

Row and column operators

The heroes till 17:40 today
LRows and columns

$\mathscr{H}_{1}, \mathscr{H}_{2}$ and \mathscr{H} Hilbert spaces.

$\mathscr{H}_{1}, \mathscr{H}_{2}$ and \mathscr{H} Hilbert spaces.
Row operators
Given the operators $R_{i} \subset \mathscr{H}_{i} \oplus \mathscr{H}, i=1,2$.
$\mathscr{H}_{1}, \mathscr{H}_{2}$ and \mathscr{H} Hilbert spaces.
Row operators
Given the operators $R_{i} \subset \mathscr{H}_{i} \oplus \mathscr{H}, i=1,2$. Define

$$
\begin{gathered}
\mathscr{D}\left(\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\right) \stackrel{\text { def }}{=} \mathscr{D}\left(R_{1}\right) \oplus \mathscr{D}\left(R_{2}\right) \\
\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\left(f_{1} \oplus f_{2}\right) \stackrel{\text { def }}{=} R_{1} f_{1}+R_{2} f_{2}, \quad f_{1} \oplus f_{2} \in \mathscr{D}\left(\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\right)
\end{gathered}
$$

Row and column operators

$\mathscr{H}_{1}, \mathscr{H}_{2}$ and \mathscr{H} Hilbert spaces.
Row operators
Given the operators $R_{i} \subset \mathscr{H}_{i} \oplus \mathscr{H}, i=1,2$. Define

$$
\begin{gathered}
\mathscr{D}\left(\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\right) \stackrel{\text { def }}{=} \mathscr{D}\left(R_{1}\right) \oplus \mathscr{D}\left(R_{2}\right), \\
\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\left(f_{1} \oplus f_{2}\right) \stackrel{\text { def }}{=} R_{1} f_{1}+R_{2} f_{2}, \quad f_{1} \oplus f_{2} \in \mathscr{D}\left(\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\right) .
\end{gathered}
$$

Column operators
Given the operators $C_{i} \subset \mathscr{H} \oplus \mathscr{H}_{i}, i=1,2$.
$\mathscr{H}_{1}, \mathscr{H}_{2}$ and \mathscr{H} Hilbert spaces.
Row operators
Given the operators $R_{i} \subset \mathscr{H}_{i} \oplus \mathscr{H}, i=1,2$. Define

$$
\begin{gathered}
\mathscr{D}\left(\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\right) \stackrel{\text { def }}{=} \mathscr{D}\left(R_{1}\right) \oplus \mathscr{D}\left(R_{2}\right), \\
\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\left(f_{1} \oplus f_{2}\right) \stackrel{\text { def }}{=} R_{1} f_{1}+R_{2} f_{2}, \quad f_{1} \oplus f_{2} \in \mathscr{D}\left(\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}\right) .
\end{gathered}
$$

Column operators
Given the operators $C_{i} \subset \mathscr{H} \oplus \mathscr{H}_{i}, i=1,2$. Define

$$
\begin{gathered}
\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}\right) \stackrel{\text { def }}{=} \mathscr{D}\left(C_{1}\right) \cap \mathscr{D}\left(C_{2}\right), \\
\boldsymbol{C}_{\left(R_{1}, R_{2}\right)} f \stackrel{\text { def }}{=} C_{1} f_{1} \oplus C_{2} f_{2}, \quad f \in \mathscr{D}\left(\boldsymbol{C}_{\left(R_{1}, R_{2}\right)}\right) .
\end{gathered}
$$

The anatomy

This is a rather formal (and elementary) linear algebra

The anatomy

The subject for dissection
Let

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

be an operator matrix and \boldsymbol{A} the matrix operator it generates (with proper domains).

The anatomy

The subject for dissection
Let

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

be an operator matrix and \boldsymbol{A} the matrix operator it generates (with proper domains).
Then

$$
\boldsymbol{A}=\boldsymbol{C}_{\left(\boldsymbol{R}_{\left(A_{11}, A_{21}\right)}, \boldsymbol{R}_{\left(A_{12}, A_{22}\right)}\right)}
$$

The lesson

The lesson

The goal
Examine closures and adjoints (duals, remember: it has to serve other than Hilbert spaces as well) of matrix operators.

The lesson

The goal
Examine closures and adjoints (duals, remember: it has to serve other than Hilbert spaces as well) of matrix operators.

The way
Examine those of row and column operators!

The lesson

The goal
Examine closures and adjoints (duals, remember: it has to serve other than Hilbert spaces as well) of matrix operators.

The way
Examine those of row and column operators!

Warning

The case when at most of one of the operators in a row or/and in a column is bounded is reluctantly not excluded (this is just trivial;

The lesson

The goal
Examine closures and adjoints (duals, remember: it has to serve other than Hilbert spaces as well) of matrix operators.

The way
Examine those of row and column operators!

Warning

The case when at most of one of the operators in a row or/and in a column is bounded is reluctantly not excluded (this is just trivial; everything goes as someone might have dreamed of).

Row operators

Rows and columns
LSome notation, it's never ending

Row operators

About 'dashing' or 'overlining'
The 'dash' put over and aside of an operator stands as usually for its closure.

Row operators

About 'dashing' or 'overlining'
The 'dash' put over and aside of an operator stands as usually for its closure.

About 'crossing'
By \times we denote always the adjoint operation applied entrywise regardless an object in question is: a row, a column or a matrix.

Row and column operators

LPretty well-mannered results

Row and column operators

The pleasure

Row and column operators

The pleasure

$$
\boldsymbol{R}^{*}=\boldsymbol{C}_{\left(R_{1}^{*}, R_{2}^{*}\right)}
$$

The pleasure

$$
\boldsymbol{R}^{*}=\boldsymbol{C}_{\left(R_{1}^{*}, R_{2}^{*}\right)}
$$

A little bit less pleasant

Row and column operators

The pleasure

$$
\boldsymbol{R}^{*}=\boldsymbol{C}_{\left(R_{1}^{*}, R_{2}^{*}\right)}
$$

A little bit less pleasant
For $\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}$ to be closable it is necessary R_{1} and R_{2} to be so.

Row and column operators

The pleasure

$$
\boldsymbol{R}^{*}=\boldsymbol{C}_{\left(R_{1}^{*}, R_{2}^{*}\right)}
$$

A little bit less pleasant
For $\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}$ to be closable it is necessary R_{1} and R_{2} to be so.
To recompase you the above
If $\mathscr{R}\left(R_{2}\right) \subset \mathscr{R}\left(R_{1}\right), R_{1}$ is injective and $R_{1} R_{2}^{-1}$ extends to a bounded operator K, say, then

$$
\overline{\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}}=\boldsymbol{R}_{\left(\overline{R_{1}}, 0\right)}\left(\begin{array}{cc}
I & K \\
0 & I
\end{array}\right) .
$$

Row and column operators

The pleasure

$$
\boldsymbol{R}^{*}=\boldsymbol{C}_{\left(R_{1}^{*}, R_{2}^{*}\right)}
$$

A little bit less pleasant
For $\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}$ to be closable it is necessary R_{1} and R_{2} to be so.
To recompase you the above
If $\mathscr{R}\left(R_{2}\right) \subset \mathscr{R}\left(R_{1}\right), R_{1}$ is injective and $R_{1} R_{2}^{-1}$ extends to a bounded operator K, say, then

$$
\overline{\boldsymbol{R}_{\left(R_{1}, R_{2}\right)}}=\boldsymbol{R}_{\left(\overline{R_{1}}, 0\right)}\left(\begin{array}{cc}
I & K \\
0 & I
\end{array}\right) .
$$

In other words, the entrywise closure does the job!

Row and column operators

Entries are closed but the row operator is not

Entries are closed but the row operator is not
Be in ℓ^{2} space with the usual ' $0-1$ ' basis $\left(e_{n}\right)_{n}$, please. Set

$$
R_{1} e_{k} \stackrel{\text { def }}{=} \beta_{k} e_{k}, \quad R_{2} e_{k} \stackrel{\text { def }}{=} \alpha_{k} e_{1}+\beta_{k} e_{k}
$$

and

Row and column operators

Entries are closed but the row operator is not
Be in ℓ^{2} space with the usual ' $0-1$ ' basis $\left(e_{n}\right)_{n}$, please. Set

$$
R_{1} e_{k} \stackrel{\text { def }}{=} \beta_{k} e_{k}, \quad R_{2} e_{k} \stackrel{\text { def }}{=} \alpha_{k} e_{1}+\beta_{k} e_{k}
$$

and

$$
\begin{aligned}
& \mathscr{D}\left(R_{1}\right) \stackrel{\text { def }}{=}\left\{f=\sum_{k=1}^{\infty} \gamma_{k} e_{k}: \sum_{k=1}^{\infty}\left|\gamma_{k}\right|^{2}<\infty, \sum_{k=1}^{\infty}\left|\gamma_{k} \beta_{k}\right|^{2}<\infty\right\}, \\
& \mathscr{D}\left(R_{2}\right) \stackrel{\text { def }}{=}\left\{f=\sum_{k=1}^{\infty} \gamma_{k} e_{k} \in \mathscr{D}\left(R_{1}\right): \sum_{k=1}^{\infty} \gamma_{k} \alpha_{k} \text { converges }\right\} .
\end{aligned}
$$

Row and column operators

Entries are closed but the row operator is not
Be in ℓ^{2} space with the usual ' $0-1$ ' basis $\left(e_{n}\right)_{n}$, please. Set

$$
R_{1} e_{k} \stackrel{\text { def }}{=} \beta_{k} e_{k}, \quad R_{2} e_{k} \stackrel{\text { def }}{=} \alpha_{k} e_{1}+\beta_{k} e_{k}
$$

and

$$
\begin{aligned}
& \mathscr{D}\left(R_{1}\right) \stackrel{\text { def }}{=}\left\{f=\sum_{k=1}^{\infty} \gamma_{k} e_{k}: \sum_{k=1}^{\infty}\left|\gamma_{k}\right|^{2}<\infty, \sum_{k=1}^{\infty}\left|\gamma_{k} \beta_{k}\right|^{2}<\infty\right\}, \\
& \mathscr{D}\left(R_{2}\right) \stackrel{\text { def }}{=}\left\{f=\sum_{k=1}^{\infty} \gamma_{k} e_{k} \in \mathscr{D}\left(R_{1}\right): \sum_{k=1}^{\infty} \gamma_{k} \alpha_{k} \text { converges }\right\} .
\end{aligned}
$$

Then the patient calculation makes it.

Column operators

Rows and columns
LThe foretaste

Column operators

This is the foretaste of what may happen

Rows and columns
LThe foretaste

Column operators

This is the foretaste of what may happen

$$
\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}=\boldsymbol{R}_{\left(C_{1}^{*}, C_{2}^{*}\right)} \subset C_{\left(C_{1}, C_{2}\right)}^{*}
$$

This is the foretaste of what may happen

$$
\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}=\boldsymbol{R}_{\left(C_{1}^{*}, C_{2}^{*}\right)} \subset C_{\left(C_{1}, C_{2}\right)}^{*}
$$

The troublemaker shows its real face Let C_{1} and T be densely defined operators such that

$$
\mathscr{D}\left(C_{1}\right)=\mathscr{D}(T) \quad \text { and } \quad \mathscr{D}\left(C_{1}^{*}\right) \varsubsetneqq \mathscr{D}\left(T^{*}\right) .
$$

Column operators

This is the foretaste of what may happen

$$
\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}=\boldsymbol{R}_{\left(C_{1}^{*}, C_{2}^{*}\right)} \subset C_{\left(C_{1}, C_{2}\right)}^{*}
$$

The troublemaker shows its real face
Let C_{1} and T be densely defined operators such that

$$
\mathscr{D}\left(C_{1}\right)=\mathscr{D}(T) \quad \text { and } \quad \mathscr{D}\left(C_{1}^{*}\right) \varsubsetneqq \mathscr{D}\left(T^{*}\right) .
$$

Then, after $C_{2} \stackrel{\text { def }}{=} T-C_{1}$

$$
\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}\right) \nsubseteq \mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}\right) .
$$

Column operators

A little something again
Suppose $\mathscr{D}\left(C_{1}\right)=\mathscr{D}\left(C_{2}\right)$ and C_{1} is injective with $C_{2} C_{1}^{-1}$ having a bounded extension. Let \mathscr{D}_{0} be a subspace of $\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}\right)$ such that there exists (at least one) $v_{0} \in \mathscr{H}_{2} \backslash\{0\}$ for which $\left(-K v_{0}, v_{0}\right) \in \mathscr{D}_{0}$.

Column operators

A little something again
Suppose $\mathscr{D}\left(C_{1}\right)=\mathscr{D}\left(C_{2}\right)$ and C_{1} is injective with $C_{2} C_{1}^{-1}$ having a bounded extension. Let \mathscr{D}_{0} be a subspace of $\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}\right)$ such that there exists (at least one) $v_{0} \in \mathscr{H}_{2} \backslash\{0\}$ for which $\left(-K v_{0}, v_{0}\right) \in \mathscr{D}_{0}$.
Then \mathscr{D}_{0} is a core of $C_{\left(C_{1}, C_{2}\right)}$ if and only if \mathscr{D}_{0} is dense in $\mathscr{H}_{1} \oplus \mathscr{H}_{2}$ and $C_{\left(I, K^{*}\right)}\left(\mathscr{D}_{0}\right) \cap \mathscr{D}\left(C_{1}^{*}\right)$ is a core for C_{1}^{*}.

Column operators

Rows and columns

Column operators

Still something

Rows and columns

Column operators

Still something

For $\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}$ to be closable it is sufficient C_{1} and C_{2} to be so.

Column operators

Still something
For $\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}$ to be closable it is sufficient C_{1} and C_{2} to be so.

Not too bad so far

Column operators

Still something

For $\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}$ to be closable it is sufficient C_{1} and C_{2} to be so.

Not too bad so far
$1^{\circ} \boldsymbol{C}_{\left(C_{1}, C_{2}\right)}$ is closed if so are C_{1} and C_{2};

Column operators

Still something

For $C_{\left(C_{1}, C_{2}\right)}$ to be closable it is sufficient C_{1} and C_{2} to be so.

Not too bad so far
$1^{\circ} \boldsymbol{C}_{\left(C_{1}, C_{2}\right)}$ is closed if so are C_{1} and C_{2};
$2^{\circ} \overline{\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}}=\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}$ if and only if $\overline{\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}}=\boldsymbol{C}_{\left(\bar{C}_{1}, \bar{C}_{2}\right)}$.

Column operators

Still something

For $\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}$ to be closable it is sufficient C_{1} and C_{2} to be so.

Not too bad so far
$1^{\circ} \boldsymbol{C}_{\left(C_{1}, C_{2}\right)}$ is closed if so are C_{1} and C_{2};
$2^{\circ} \overline{\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}}=\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}$ if and only if $\overline{\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}}=\boldsymbol{C}_{\left(\bar{C}_{1}, \bar{C}_{2}\right)}$.

Again some clouds are coming (next slide please).

Column operators

It has been known that there are closed column operators with at least one of the entries not closable. Even more, it turns out this situation is generic.

Column operators

It has been known that there are closed column operators with at least one of the entries not closable. Even more, it turns out this situation is generic.

An eccentric example
Let C be a merely unbounded operator which is closable. Then \boldsymbol{C} decomposes as $C_{\left(C_{1}, C_{2}\right)}$ with C_{1} not closable.

Column operators

It has been known that there are closed column operators with at least one of the entries not closable. Even more, it turns out this situation is generic.

An eccentric example
Let \boldsymbol{C} be a merely unbounded operator which is closable. Then \boldsymbol{C} decomposes as $C_{\left(C_{1}, C_{2}\right)}$ with C_{1} not closable.

Hint: take $x \notin \mathscr{D}\left(\boldsymbol{C}^{*}\right)$ and set $C_{1} \stackrel{\text { def }}{=} P \boldsymbol{C}$ and $C_{2} \stackrel{\text { def }}{=}(I-P) \boldsymbol{C}$ where P is the rank one projection on $\{x\}$.

Column operators

Rows and columns
$L_{\text {something to improve the mood a bit }}$

Column operators

To factor or to factorize, again
Suppose $\mathscr{D}\left(C_{1}\right)=\mathscr{D}\left(C_{2}\right)$. If C_{1} is injective with $C_{2} C_{1}^{-1}$ having a bounded extension. Then

Column operators

To factor or to factorize, again
Suppose $\mathscr{D}\left(C_{1}\right)=\mathscr{D}\left(C_{2}\right)$. If C_{1} is injective with $C_{2} C_{1}^{-1}$ having a bounded extension. Then

$$
\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}=\boldsymbol{R}_{\left(C_{1}^{*}, C_{1}^{*} K^{*}\right)} \quad \text { but } \quad \boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}=\boldsymbol{C}_{\left(C_{1}^{*}, 0\right)}\left(\begin{array}{cc}
I & K^{*} \\
0 & I
\end{array}\right)
$$

Column operators

To factor or to factorize, again
Suppose $\mathscr{D}\left(C_{1}\right)=\mathscr{D}\left(C_{2}\right)$. If C_{1} is injective with $C_{2} C_{1}^{-1}$ having a bounded extension. Then

$$
\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}=\boldsymbol{R}_{\left(C_{1}^{*}, C_{1}^{*} K^{*}\right)} \quad \text { but } \quad \boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}=\boldsymbol{C}_{\left(C_{1}^{*}, 0\right)}\left(\begin{array}{cc}
I & K^{*} \\
0 & I
\end{array}\right) .
$$

What is the difference in the above?

Column operators

To factor or to factorize, again
Suppose $\mathscr{D}\left(C_{1}\right)=\mathscr{D}\left(C_{2}\right)$. If C_{1} is injective with $C_{2} C_{1}^{-1}$ having a bounded extension. Then

$$
\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}=\boldsymbol{R}_{\left(C_{1}^{*}, C_{1}^{*} K^{*}\right)} \quad \text { but } \quad \boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}=\boldsymbol{C}_{\left(C_{1}^{*}, 0\right)}\left(\begin{array}{cc}
I & K^{*} \\
0 & I
\end{array}\right)
$$

What is the difference in the above?
Look at

$$
\begin{gathered}
\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}\right)=\left\{f \oplus g: f \in \mathscr{D}\left(C_{1}^{*}\right), K^{*} g \in \mathscr{D}\left(C_{1}^{*}\right)\right\} \\
\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}\right)=\left\{f \oplus g: f+K^{*} g \in \mathscr{D}\left(C_{1}^{*}\right)\right\}
\end{gathered}
$$

and notice the difference! The latter is like coupling, isn't it?

Column operators

To factor or to factorize, again
Suppose $\mathscr{D}\left(C_{1}\right)=\mathscr{D}\left(C_{2}\right)$. If C_{1} is injective with $C_{2} C_{1}^{-1}$ having a bounded extension. Then

$$
\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}=\boldsymbol{R}_{\left(C_{1}^{*}, C_{1}^{*} K^{*}\right)} \quad \text { but } \quad \boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}=\boldsymbol{C}_{\left(C_{1}^{*}, 0\right)}\left(\begin{array}{cc}
I & K^{*} \\
0 & I
\end{array}\right)
$$

What is the difference in the above?
Look at

$$
\begin{gathered}
\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}\right)=\left\{f \oplus g: f \in \mathscr{D}\left(C_{1}^{*}\right), K^{*} g \in \mathscr{D}\left(C_{1}^{*}\right)\right\} \\
\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}\right)=\left\{f \oplus g: f+K^{*} g \in \mathscr{D}\left(C_{1}^{*}\right)\right\}
\end{gathered}
$$

and notice the difference!

Column operators

To factor or to factorize, again
Suppose $\mathscr{D}\left(C_{1}\right)=\mathscr{D}\left(C_{2}\right)$. If C_{1} is injective with $C_{2} C_{1}^{-1}$ having a bounded extension. Then

$$
\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}=\boldsymbol{R}_{\left(C_{1}^{*}, C_{1}^{*} K^{*}\right)} \quad \text { but } \quad C_{\left(C_{1}, C_{2}\right)}^{*}=\boldsymbol{C}_{\left(C_{1}^{*}, 0\right)}\left(\begin{array}{cc}
I & K^{*} \\
0 & I
\end{array}\right)
$$

What is the difference in the above?
Look at

$$
\begin{gathered}
\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{\times}\right)=\left\{f \oplus g: f \in \mathscr{D}\left(C_{1}^{*}\right), K^{*} g \in \mathscr{D}\left(C_{1}^{*}\right)\right\} \\
\mathscr{D}\left(\boldsymbol{C}_{\left(C_{1}, C_{2}\right)}^{*}\right)=\left\{f \oplus g: f+K^{*} g \in \mathscr{D}\left(C_{1}^{*}\right)\right\}
\end{gathered}
$$

and notice the difference! The latter is like coupling, isn't it?

Matrix operators eventually

Just to remind

$$
\boldsymbol{A}=\boldsymbol{C}_{\left(\boldsymbol{R}_{\left(A_{11}, A_{21}\right)}, \boldsymbol{R}_{\left(A_{12}, A_{22}\right)}\right)}
$$

Applying all the permissible procedures which help one gets

$$
\boldsymbol{A}^{\times}=\boldsymbol{R}_{\left(\boldsymbol{C}_{\left(A_{11}^{*}, A_{21}^{*}\right)}, \boldsymbol{C}_{\left(A_{12}^{*}, A_{22}^{*}\right)} \subset \boldsymbol{A}^{*}\right.}
$$

This results in

Matrix operators eventually

Just to remind

$$
\boldsymbol{A}=\boldsymbol{C}_{\left(\boldsymbol{R}_{\left(A_{11}, A_{21}\right)}, \boldsymbol{R}_{\left(A_{12}, A_{22}\right)}\right)}
$$

Applying all the permissible procedures which help one gets

$$
\boldsymbol{A}^{\times}=\boldsymbol{R}_{\left(\boldsymbol{C}_{\left(A_{11}^{*}, A_{21}^{*}\right)}, \boldsymbol{C}_{\left(A_{12}^{*}, A_{22}^{*}\right)} \subset \boldsymbol{A}^{*}\right.}
$$

This results in
$1^{0} \boldsymbol{A}^{\times}$is closable;

Matrix operators eventually

Just to remind

$$
\boldsymbol{A}=\boldsymbol{C}_{\left(\boldsymbol{R}_{\left(A_{11}, A_{21}\right)}, \boldsymbol{R}_{\left(A_{12}, A_{22}\right)}\right)}
$$

Applying all the permissible procedures which help one gets

$$
\boldsymbol{A}^{\times}=\boldsymbol{R}_{\left(\boldsymbol{C}_{\left(A_{11}^{*}, A_{21}^{*}\right)}, \boldsymbol{C}_{\left(A_{12}^{*}, A_{22}^{*}\right)} \subset \boldsymbol{A}^{*}\right.}
$$

This results in
$1^{0} \boldsymbol{A}^{\times}$is closable;
2° if \boldsymbol{A}^{\times}is densely defined, \boldsymbol{A} is closable;

Matrix operators eventually

Just to remind

$$
\boldsymbol{A}=\boldsymbol{C}_{\left(\boldsymbol{R}_{\left(A_{11}, A_{21}\right)}, \boldsymbol{R}_{\left(A_{12}, A_{22}\right)}\right)}
$$

Applying all the permissible procedures which help one gets

$$
\boldsymbol{A}^{\times}=\boldsymbol{R}_{\left(\boldsymbol{C}_{\left(A_{11}^{*}, A_{21}^{*}\right)}, \boldsymbol{C}_{\left(A_{12}^{*}, A_{22}^{*}\right)} \subset \boldsymbol{A}^{*}\right.}
$$

This results in
$1^{0} \boldsymbol{A}^{\times}$is closable;
2° if \boldsymbol{A}^{\times}is densely defined, \boldsymbol{A} is closable;
3° even if all $A_{i j}$ are closed, \boldsymbol{A} may not be closable (this comes out from combining previous examples).

Matrix operators eventually

$\mathscr{H}_{1}=\mathscr{H}_{2}=\mathscr{L}^{2}(0,1)$ and the operators $A_{i j}$ are defined by

$$
\begin{aligned}
\mathscr{D}\left(A_{11}\right) & =\left\{f \in W_{2}^{1}(0,1): f(0)=0\right\}, A_{11} f=f^{\prime}, \\
\mathscr{D}\left(A_{12}\right) & =L_{2}(0,1), A_{12}=0, \\
\mathscr{D}\left(A_{21}\right) & =\left\{f \in W_{2}^{1}(0,1): f(1)=0\right\}, A_{21} f=f^{\prime}, \\
A_{22} & =-A_{21},
\end{aligned}
$$

where $W_{2}^{1}(0,1)$ denotes the usual Sobolev space of order 1 .

Matrix operators eventually

$\mathscr{H}_{1}=\mathscr{H}_{2}=\mathscr{L}^{2}(0,1)$ and the operators $A_{i j}$ are defined by

$$
\begin{aligned}
\mathscr{D}\left(A_{11}\right) & =\left\{f \in W_{2}^{1}(0,1): f(0)=0\right\}, A_{11} f=f^{\prime}, \\
\mathscr{D}\left(A_{12}\right) & =L_{2}(0,1), A_{12}=0, \\
\mathscr{D}\left(A_{21}\right) & =\left\{f \in W_{2}^{1}(0,1): f(1)=0\right\}, A_{21} f=f^{\prime}, \\
A_{22} & =-A_{21},
\end{aligned}
$$

where $W_{2}^{1}(0,1)$ denotes the usual Sobolev space of order 1 .
The worst example for today
Then all $A_{i j}$ are closed, \boldsymbol{A} as well as \boldsymbol{A}^{\times}is densely defined but

$$
\overline{A^{\times}} \nsubseteq A^{\prime}
$$

