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Introduction

On Cn consider for a Hermitian matrix H

[x , y ] := (Hx , y)Cn .

Let A be a matrix.
H regular: Define A[∗] via

[x , Ay ] =
[
A[∗]x , y

]
Define H-selfadjoint (A[∗] = A) H-unitary (A[∗] = A−1) and
H-normal (A[∗]A = AA[∗]) as usual.

H singular: ??
In this case one defines H-selfadjoint and H-unitary via

A∗H = HA resp. A∗HA = H. (1)

Here A∗ denotes the usual adjoint with respect to (., .).
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H-normal Matrices

Question: How to define H-normal matrices if H is singular?

In [Li,Tsing,Uhlig ’96], [Mehl,Ran,Rodman ’04] via the
Moore-Penrose inverse H† of H:

HAH†A∗H = A∗HA (2)

Definition
We call a matrix A satisfying (2) Moore-Penrose H-normal.

Our approach:
1 Define the H-adjoint in the sense of linear relations.
2 Define then H-normal matrices.
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Linear relations

Assume always: H singular Hermitian and A is a matrix.

[x , y ] := (Hx , y)Cn .

Identify A ←→ graph A Then A is a linear relation.

dom A =

{
x :

(
x
y

)
∈ A

}
, the domain of A,

mul A =

{
y :

(
0
y

)
∈ A

}
, the multivalued part of A,

A−1 =

{(
y
x

)
:

(
x
y

)
∈ A

}
, the inverse of A

Definition

The linear relation A[∗] is called the H-adjoint of A,

A[∗] =

{(
y
z

)
∈ C2n : [y , w ]H = [z, x ]H for all

(
x
w

)
∈ A

}
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Properties

A[∗] =

{(
y
z

)
∈ C2n : [y , w ]H = [z, x ]H for all

(
x
w

)
∈ A

}
Lemma

1 We have A[∗] = H−1A∗H (similar to the case H regular).
2 We have mul A[∗] = ker H.
3 Hence A[∗] is a matrix if and only if H is regular.

Example

H =

(
1 0
0 0

)
, and A =

(
1 1
0 1

)
.

Then

dom A[∗] = {0} × C, mul A[∗] = {0} × C.
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H-symmetric and H-isometric matrices

Definition
1 We call A H-symmetric if A ⊂ A[∗].
2 We call A H-isometric if A−1 ⊂ A[∗].

First task: Compare this with (1), i.e.

A∗H = HA resp. A∗HA = H.

Choosing a basis of Cn, we may always assume that H and A
have the forms, with H1 is regular,

H =

(
H1 0
0 0

)
and A =

(
A1 A2
A3 A4

)
. (3)

Lemma

We have dom A[∗] = Cn ⇐⇒ ran (A∗H) ⊆ ran H ⇐⇒ A2 = 0.
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H-symmetric matrices

Write A and H in the form

H =

(
H1 0
0 0

)
and A =

(
A1 A2
A3 A4

)
.

Theorem
The following statements are equivalent.

(i) A is H-symmetric, A ⊂ A[∗].
(ii) A∗H = HA (that is (1)).

(iii) A1 is H1-selfadjoint and A2 = 0,
(iv) A[∗] = (A[∗])[∗] (i.e. the relation A[∗] is H-selfadjoint).
(v) A[∗] = A + (ker H × ker H).

In particular, ker H is A-invariant.
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H-isometric matrices

Write A and H in the form

H =

(
H1 0
0 0

)
and A =

(
A1 A2
A3 A4

)
.

Theorem
The following statements are equivalent.

(i) A is H-isometric, A−1 ⊂ A[∗].
(ii) A∗HA = H (that is (1)).

(iii) A1 is H1-unitary and A2 = 0,
(iv) (A−1)[∗] = (A[∗])[∗] (i.e. the relation A[∗] is H-unitary).
In particular, ker H is A-invariant.
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H-normal matrices

Definition

A matrix A in Cn is called H-normal if AA[∗] ⊆ A[∗]A.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem
A is H-normal⇐⇒ A1 is H1-normal and A2 = 0⇐⇒
A is Moore-Penrose H-normal and A[∗](A[∗])[∗] = (A[∗])[∗]A[∗].
Moreover, ker H is A-invariant.

Remarks:
H-symmetric and H-isometric matrices are H-normal.
[Mehl, Ran, Rodman ’04]: Exists Moore-Penrose H-normal
matrices A such that ker H is not A-invariant.
H-normal matrices is a strict subset of the set of
Moore-Penrose H-normal matrices.
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matrices A such that ker H is not A-invariant.
H-normal matrices is a strict subset of the set of
Moore-Penrose H-normal matrices.
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Invariant subspaces

With [L ’71] it is easy to see:

Theorem
Let A be H-normal andM0 be an H-nonnegative A-invariant
subspace that is also invariant for A[∗]. Then there exists an A-
and A[∗]-invariant maximal H-nonnegative subspaceM with

M0 ⊆M.

Next Step: Drop invariance with respect to A[∗].

In [Mehl, Ran, Rodman ’04]: Exists H-normal matrix (even if H
is regular) with invariant H-nonnegative subspace that cannot
be extended to an invariant maximal H-nonnegative subspace.
Thus, stronger conditions.
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Invariant subspaces II

Theorem
Let A be H-normal and letM0 be an H-positive A-invariant
subspace. LetMcom such thatM[⊥]

0 =Mcom+̇ ker H. Define

X := PA|Mcom :Mcom →Mcom,

where P is the projection ontoMcom alongM0+̇ ker H.
Assume that

σ(X + X [∗]) ⊆ R or σ(X − X [∗]) ⊆ iR.

Then there exists an A-invariant maximal H-nonnegative
subspaceM that containsM0 and that is also A[∗]-invariant.
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Hyponormal matrices

In a definition the foolowing line should appear:

A[∗]A− AA[∗] is H-nonpositive. (4)

Recall: A linear relation B is H-nonpositive if B is H-symmetric
and

[y , x ] ≤ 0 for all
(

x
y

)
∈ B.

Problem: . Let H1 and A2 regular n × n matrices,

H =

(
H1 0
0 0

)
and A =

(
A1 A2
A3 A4

)
.

Then dom
(
AA[∗]) ∩ dom

(
A[∗]A

)
= {0} and (4) is always true.

(→ unbounded operators) Remember:

Lemma

We have dom A[∗] = Cn ⇐⇒ ran (A∗H) ⊆ ran H ⇐⇒ A2 = 0.
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Hyponormal matrices: Definitions

H =

(
H1 0
0 0

)
and A =

(
A1 A2
A3 A4

)
.

Lemma
Let A be a matrix as above. The following are equivalent.

(i) The domain of the linear relation A[∗]A is Cn.
(ii) A∗2H1A1 = 0 and A∗2H1A2 = 0.

Definition

A linear relation A is called H-hyponormal if A[∗]A has full
domain and if A[∗]A− AA[∗] is H-nonpositive.

Definition
A linear relation A is called strongly H-hyponormal if A is
H-hyponormal and if (A[∗])nAn has full domain for all n ∈ N.
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