Normal and Hyponormal Matrices in Inner Product Spaces

Carsten Trunk joint work with Christian Mehl

Technische Universität Berlin

Introduction

On \mathbb{C}^{n} consider for a Hermitian matrix H

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}}
$$

Let A be a matrix.
 H regular: Define $A^{[*]}$ via
 $$
[x, A y]=\left[A^{[*]} x, y\right]
$$

Define H-selfadjoint $\left(A^{[*]}=A\right) H$-unitary $\left(A^{[*]}=A^{-1}\right)$ and H-normal $\left(A^{[*]} A=A A^{[*]}\right)$ as usual.
H singular: ??
In this case one defines H-selfadjoint and H-unitary via

$$
\begin{equation*}
A^{*} H=H A \quad \text { resp. } \quad A^{*} H A=H . \tag{1}
\end{equation*}
$$

Here A^{*} denotes the usual adjoint with respect top $(2, i)=$

Introduction

On \mathbb{C}^{n} consider for a Hermitian matrix H

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}} .
$$

Let A be a matrix.
H regular: Define $A^{[*]}$ via

$$
[x, A y]=\left[A^{[*]} x, y\right]
$$

Define H-selfadjoint $\left(A^{[*]}=A\right) H$-unitary $\left(A^{[*]}=A^{-1}\right)$ and H-normal ($\left.A^{[*]} A=A A^{[*]}\right)$ as usual.

H singular: ??
In this case one defines H-selfadjoint and H-unitary via

$$
A^{*} H=H A \quad \text { resp. } \quad A^{*} H A=H .
$$

Here A^{*} denotes the usual adjoint with respect tos

On \mathbb{C}^{n} consider for a Hermitian matrix H

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}}
$$

Let A be a matrix.
H regular: Define $A^{[*]}$ via

$$
[x, A y]=\left[A^{[*]} x, y\right]
$$

Define H-selfadjoint $\left(A^{[*]}=A\right) H$-unitary $\left(A^{[*]}=A^{-1}\right)$ and H-normal $\left(A^{[*]} A=A A^{[*]}\right)$ as usual.
H singular: ??
In this case one defines H-selfadjoint and H-unitary via

$$
\begin{equation*}
A^{*} H=H A \quad \text { resp. } \quad A^{*} H A=H . \tag{1}
\end{equation*}
$$

Here A^{*} denotes the usual adjoint with respect to (\cdot, \cdot).

H-normal Matrices

Question: How to define H-normal matrices if H is singular?

In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H :

$$
\begin{equation*}
H A H^{\dagger} A^{*} H=A^{*} H A \tag{2}
\end{equation*}
$$

[^0]Question: How to define H-normal matrices if H is singular?
In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H :

$$
\begin{equation*}
H A H^{\dagger} A^{*} H=A^{*} H A \tag{2}
\end{equation*}
$$

[^1]Question: How to define H-normal matrices if H is singular?
In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H :

$$
\begin{equation*}
H A H^{\dagger} A^{*} H=A^{*} H A \tag{2}
\end{equation*}
$$

Definition

We call a matrix A satisfying (2) Moore-Penrose H-normal.
Our approach:
(1) Define the H -adjoint in the sense of linear relations.
(2) Define then H -normal matrices.

Question: How to define H-normal matrices if H is singular?
In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H :

$$
\begin{equation*}
H A H^{\dagger} A^{*} H=A^{*} H A \tag{2}
\end{equation*}
$$

Definition

We call a matrix A satisfying (2) Moore-Penrose H-normal.
Our approach:
(1) Define the H -adjoint in the sense of linear relations.
(2) Define then H -normal matrices.

Question: How to define H-normal matrices if H is singular?
In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H :

$$
\begin{equation*}
H A H^{\dagger} A^{*} H=A^{*} H A \tag{2}
\end{equation*}
$$

Definition

We call a matrix A satisfying (2) Moore-Penrose H-normal.
Our approach:
(1) Define the H-adjoint in the sense of linear relations.
(2) Define then H-normal matrices.

Linear relations

Assume always: H singular Hermitian and A is a matrix.

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}}
$$

Identify $A \longleftrightarrow$ graph A Then A is a linear relation.
$\operatorname{dom} A=\left\{x:\binom{x}{y} \in A\right\}, \quad$ the domain of A,
mul $A=\left\{y:\binom{0}{y} \in A\right\}, \quad$ the multivalued part of A.
$A^{-1}=\left\{\binom{y}{x}:\binom{x}{y} \in A\right\}, \quad$ the inverse of A

Definition

The linear relation $A^{[*]}$ is called the H -adjoint of A,

Linear relations

Assume always: H singular Hermitian and A is a matrix.

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}} .
$$

Identify $A \longleftrightarrow$ graph A Then A is a linear relation.

Definition

The linear relation $A^{* *]}$ is called the H-adjoint of A,

Linear relations

Assume always: H singular Hermitian and A is a matrix.

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}} .
$$

Identify $A \longleftrightarrow \operatorname{graph} A$ Then A is a linear relation.

$$
\operatorname{dom} A=\left\{x:\binom{x}{y} \in A\right\}, \quad \text { the domain of } A
$$

the multivalued part of A,

the inverse of A

Definition

The linear relation $A^{[*]}$ is called the H-adjoint of A,

Linear relations

Assume always: H singular Hermitian and A is a matrix.

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}} .
$$

Identify $A \longleftrightarrow$ graph A Then A is a linear relation.

$$
\operatorname{dom} A=\left\{x:\binom{x}{y} \in A\right\}, \quad \text { the domain of } A
$$

$\operatorname{mul} A=\left\{y:\binom{0}{y} \in A\right\}$,
the multivalued part of A,
$A^{-1}=\left\{\binom{y}{x}\right.$

the inverse of A

Definition

The linear relation $A^{[*]}$ is called the H-adjoint of A,

Linear relations

Assume always: H singular Hermitian and A is a matrix.

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}} .
$$

Identify $A \longleftrightarrow \operatorname{graph} A$ Then A is a linear relation.

$$
\operatorname{dom} A=\left\{x:\binom{x}{y} \in A\right\}, \quad \text { the domain of } A,
$$

$\operatorname{mul} A=\left\{y:\binom{0}{y} \in A\right\}, \quad$ the multivalued part of A,
$A^{-1}=\left\{\binom{y}{x}:\binom{x}{y} \in A\right\}, \quad$ the inverse of A

Definition

The linear relation $A^{[*]}$ is called the H-adjoint of A,

Linear relations

Assume always: H singular Hermitian and A is a matrix.

$$
[x, y]:=(H x, y)_{\mathbb{C}^{n}} .
$$

Identify $A \longleftrightarrow \operatorname{graph} A$ Then A is a linear relation.

$$
\operatorname{dom} A=\left\{x:\binom{x}{y} \in A\right\}, \quad \text { the domain of } A,
$$

$\operatorname{mul} A=\left\{y:\binom{0}{y} \in A\right\}$,
the multivalued part of A,
$A^{-1}=\left\{\binom{y}{x}:\binom{x}{y} \in A\right\}, \quad$ the inverse of A

Definition

The linear relation $A^{[*]}$ is called the H-adjoint of A,

$$
A^{[*]}=\left\{\binom{y}{z} \in \mathbb{C}^{2 n}:[y, w]_{H}=[z, x]_{H} \text { for all }\binom{x}{w} \in A\right\}
$$

Properties

$$
A^{[*]}=\left\{\binom{y}{z} \in \mathbb{C}^{2 n}:[y, w]_{H}=[z, x]_{H} \text { for all }\binom{x}{w} \in A\right\}
$$

Lemma
(1) We have $A^{[*]}=H^{-1} A^{*} H$ (similar to the case H regular).
(2) We have mul $A^{[*]}=\operatorname{ker} H$.
(3) Hence $A^{[*]}$ is a matrix if and only if H is regular.

Example

$$
H=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \text { and } \quad A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Then

$$
\operatorname{dom} A^{[*]}=\{0\} \times \mathbb{C}, \quad \operatorname{mul} A^{[*]}=\{0\} \times \mathbb{C} .
$$

Properties

$$
A^{[*]}=\left\{\binom{y}{z} \in \mathbb{C}^{2 n}:[y, w]_{H}=[z, x]_{H} \text { for all }\binom{x}{w} \in A\right\}
$$

Lemma

(1) We have $A^{[*]}=H^{-1} A^{*} H$ (similar to the case H regular).
(3) We have mul $A^{(*)}=\operatorname{ker} H$.
(3) Hence $A^{[*]}$ is a matrix if and only if H is regular.

Example

Then

$$
\operatorname{dom} A^{[*]}=\{0\} \times \mathbb{C}, \quad \operatorname{mul} A^{[*]}=\{0\}
$$

Properties

$$
A^{[*]}=\left\{\binom{y}{z} \in \mathbb{C}^{2 n}:[y, w]_{H}=[z, x]_{H} \text { for all }\binom{x}{w} \in A\right\}
$$

Lemma

(1) We have $A^{[*]}=H^{-1} A^{*} H$ (similar to the case H regular).
(2) We have mul $A^{[*]}=\operatorname{ker} H$.
(0) Hence $A^{[*]}$ is a matrix if and only if H is regular.

Example

Then

$$
\operatorname{dom} A^{[*]}=\{0\}
$$

Properties

$$
A^{[*]}=\left\{\binom{y}{z} \in \mathbb{C}^{2 n}:[y, w]_{H}=[z, x]_{H} \text { for all }\binom{x}{w} \in A\right\}
$$

Lemma

(1) We have $A^{[*]}=H^{-1} A^{*} H$ (similar to the case H regular).
(2) We have mul $A^{[*]}=\operatorname{ker} H$.
(3) Hence $A^{[*]}$ is a matrix if and only if H is regular.

Example

Then

Properties

$$
A^{[*]}=\left\{\binom{y}{z} \in \mathbb{C}^{2 n}:[y, w]_{H}=[z, x]_{H} \text { for all }\binom{x}{w} \in A\right\}
$$

Lemma

(1) We have $A^{[*]}=H^{-1} A^{*} H$ (similar to the case H regular).
(2) We have mul $A^{[*]}=\operatorname{ker} H$.
(3) Hence $A^{[*]}$ is a matrix if and only if H is regular.

Example

$$
H=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \text { and } \quad A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Then

$$
\operatorname{dom} A^{[*]}=\{0\} \times \mathbb{C}, \quad \operatorname{mul} A^{[*]}=\{0\} \times \mathbb{C}
$$

Properties

$$
A^{[*]}=\left\{\binom{y}{z} \in \mathbb{C}^{2 n}:[y, w]_{H}=[z, x]_{H} \text { for all }\binom{x}{w} \in A\right\}
$$

Lemma

(1) We have $A^{[*]}=H^{-1} A^{*} H$ (similar to the case H regular).
(2) We have mul $A^{[*]}=\operatorname{ker} H$.
(3) Hence $A^{[*]}$ is a matrix if and only if H is regular.

Example

$$
H=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \text { and } \quad A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Then

$$
\operatorname{dom} A^{[*]}=\{0\} \times \mathbb{C}, \quad \operatorname{mul} A^{[*]}=\{0\} \times \mathbb{C} .
$$

H-symmetric and H-isometric matrices

Definition

(1) We call $A H$-symmetric if $A \subset A^{[*]}$.
(8) We call A - -isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

$$
A^{*} H=H A \quad \text { resp. } \quad A^{*} H A=H .
$$

Choosing a basis of \mathbb{C}^{n}, we may always assume that H and A have the forms, with H_{1} is regular,

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \tag{3}\\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)
$$

Lemma

M/e have dom $A^{[*]}=\mathbb{C}^{n} \longleftrightarrow \operatorname{ran}\left(A^{*} H\right) \subseteq \tan H \longleftrightarrow A_{2}=0$.

H-symmetric and H-isometric matrices

Definition

(1) We call $A H$-symmetric if $A \subset A^{[*]}$.
(2) We call $A H$-isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

$$
A^{*} H=H A \quad \text { resp. } \quad A^{*} H A=H .
$$

Choosing a basis of \mathbb{C}^{n}, we may always assume that H and A have the forms, with H_{1} is regular,

Lemma

W/e have $\operatorname{dom} A^{[*]}=\mathbb{C}^{n} \longleftrightarrow \operatorname{ran}\left(A^{*} H\right) \subseteq \operatorname{ran} H \Longleftrightarrow A_{2}=0$.

H-symmetric and H-isometric matrices

Definition

(1) We call $A H$-symmetric if $A \subset A^{[*]}$.
(2) We call $A H$-isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

$$
A^{*} H=H A \quad \text { resp. } \quad A^{*} H A=H .
$$

Choosing a basis of \mathbb{C}^{n}, we may always assume that H and A have the forms, with H_{1} is regular,

Lemma

INE have $\operatorname{dom} A^{[*]}=\mathbb{C}^{n} \longleftrightarrow \operatorname{ran}\left(A^{*} H\right) \subseteq \operatorname{ran} H \longleftrightarrow A_{2}=0$

H-symmetric and H-isometric matrices

Definition

(1) We call $A H$-symmetric if $A \subset A^{[*]}$.
(2) We call $A H$-isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

$$
A^{*} H=H A \quad \text { resp. } \quad A^{*} H A=H
$$

Choosing a basis of \mathbb{C}^{n}, we may always assume that H and A have the forms, with H_{1} is regular,

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \tag{3}\\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)
$$

Lemma
We have dom $A^{[*]}=\mathbb{C}^{n} \longleftrightarrow \operatorname{ran}\left(A^{*} H\right) \subseteq \tan H \longleftrightarrow A_{2}=0$.

H-symmetric and H-isometric matrices

Definition

(1) We call $A H$-symmetric if $A \subset A^{[*]}$.
(2) We call $A H$-isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

$$
A^{*} H=H A \quad \text { resp. } \quad A^{*} H A=H
$$

Choosing a basis of \mathbb{C}^{n}, we may always assume that H and A have the forms, with H_{1} is regular,

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \tag{3}\\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Lemma

We have $\operatorname{dom} A^{[*]}=\mathbb{C}^{n} \Longleftrightarrow \operatorname{ran}\left(A^{*} H\right) \subseteq \operatorname{ran} H \Longleftrightarrow A_{2}=0$.

H-symmetric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-symmetric, $A \subset A^{[*]}$.
(ii) $A^{*} H=H A$ (that is (1)).
(iii) A_{1} is H_{1}-selfadjoint and $A_{2}=0$,
(iv) $A^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-selfadjoint).
(v) $A^{[*]}=A+(\operatorname{ker} H \times \operatorname{ker} H)$.

In particular, ker H is A-invariant.

H-symmetric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-symmetric, $A \subset A^{[*]}$.
(ii) $A^{*} H=H A$ (that is (1)).
(iii) A_{1} is H_{1}-selfadjoint and $A_{2}=0$,
(iv) $A^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-selfadjoint).
(v) $A^{[*]}=A+(\operatorname{ker} H \times \operatorname{ker} H)$.

In particular, ker H is A-invariant.

H-symmetric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-symmetric, $A \subset A^{[*]}$.
(ii) $A^{*} H=H A$ (that is (1)).
(iii) A_{1} is H_{1}-selfadjoint and $A_{2}=0$,
(iv) $A^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H -selfadjoint).
(v) $A^{[*]}=A+(\operatorname{ker} H \times \operatorname{ker} H)$.

In particular, ker H is A-invariant.

H-symmetric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-symmetric, $A \subset A^{[*]}$.
(ii) $A^{*} H=H A$ (that is (1)).
(iii) A_{1} is H_{1}-selfadjoint and $A_{2}=0$,
(iv) $A^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-selfadjoint).

In particular, ker H is A-invariant.

H-symmetric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-symmetric, $A \subset A^{[*]}$.
(ii) $A^{*} H=H A$ (that is (1)).
(iii) A_{1} is H_{1}-selfadjoint and $A_{2}=0$,
(iv) $A^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-selfadjoint).

In particular, ker H is A-invariant.

H-symmetric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-symmetric, $A \subset A^{[*]}$.
(ii) $A^{*} H=H A$ (that is (1)).
(iii) A_{1} is H_{1}-selfadjoint and $A_{2}=0$,
(iv) $A^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-selfadjoint).
(v) $A^{[*]}=A+(\operatorname{ker} H \times \operatorname{ker} H)$.

In particular, ker H is A-invariant.

H-isometric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-isometric, $A^{-1} \subset A^{[*]}$.
(ii) $A^{*} H A=H$ (that is (1)).
(iii) A_{1} is H_{1}-unitary and $A_{2}=0$,
(iv) $\left(A^{-1}\right)^{[*]}=\left(A^{[* *}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-unitary).

In particular, $\operatorname{ker} H$ is A-invariant.

H-isometric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-isometric, $A^{-1} \subset A^{[*]}$.

(ii) $A^{*} H A=H$ (that is (1)).

(iii) A_{1} is H_{1}-unitary and $A_{2}=0$,
(iv) $\left(A^{-1}\right)^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-unitary).

In particular, ker H is A-invariant.

H-isometric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-isometric, $A^{-1} \subset A^{[*]}$.
(ii) $A^{*} H A=H$ (that is (1)).
(iii) A_{1} is H_{1}-unitary and $A_{2}=0$,
(iv) $\left(A^{-1}\right)^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-unitary).

In particular, ker H is A-invariant.

H-isometric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-isometric, $A^{-1} \subset A^{[*]}$.
(ii) $A^{*} H A=H$ (that is (1)).
(iii) A_{1} is H_{1}-unitary and $A_{2}=0$,
(iv) $\left(A^{-1}\right)^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-unitary).

In particular, ker H is A-invariant.

H-isometric matrices

Write A and H in the form

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Theorem

The following statements are equivalent.
(i) A is H-isometric, $A^{-1} \subset A^{[*]}$.
(ii) $A^{*} H A=H$ (that is (1)).
(iii) A_{1} is H_{1}-unitary and $A_{2}=0$,
(iv) $\left(A^{-1}\right)^{[*]}=\left(A^{[*]}\right)^{[*]}$ (i.e. the relation $A^{[*]}$ is H-unitary).

In particular, ker H is A-invariant.

H-normal matrices

Definition

A matrix A in \mathbb{C}^{n} is called H-normal if $A A^{[*]} \subseteq A^{[*]} A$.
Rem.: Other inclusion does not include all H-sym. matrices.
Theorem
A is H-normal $\Longleftrightarrow A_{1}$ is H_{1}-normal and $A_{2}=0 \Longleftrightarrow$
A is Moore-Penrose H-normal and $A^{[*]}\left(A^{[*]}\right)^{[*]}=\left(A^{[*]}\right)^{[[]} A^{[*]}$. Moreover, ker H is A-invariant.

Remarks:

- H-symmetric and H-isometric matrices are H-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose H-normal matrices A such that ker H is not A-invariant.
- H-normal matrices is a strict subset of the set of Moore-Penrose H-normal matrices.

H-normal matrices

Definition

A matrix A in \mathbb{C}^{n} is called H-normal if $A A^{[*]} \subseteq A^{[*]} A$.
Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is H-normal $\quad A_{1}$ is H_{1}-normal and $A_{2}=0$

A is Moore-Penrose H-normal and $A^{[*]}\left(A^{[*]}\right)^{[*]}=\left(A^{[*]}\right)^{[*]} A^{[*]}$ Moreover, ker H is A-invariant.

Remarks:

- H-symmetric and H-isometric matrices are H-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose H-normal matrices A such that ker H is not A-invariant.
- H-normal matrices is a strict subset of the set of Moore-Penrose H-normal matrices.

H-normal matrices

Definition

A matrix A in \mathbb{C}^{n} is called H-normal if $A A^{[*]} \subseteq A^{[*]} A$.
Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is H-normal $\Longleftrightarrow A_{1}$ is H_{1}-normal and $A_{2}=0$
A is Moore-Penrose H-normal and $A^{[*]}\left(A^{[* *}\right)^{[*]}=\left(A^{[* *}\right)^{[*]} A^{[*]}$ Moreover, ker H is A-invariant.

Remarks:

- H-symmetric and H-isometric matrices are H-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose H-normal matrices A such that ker H is not A-invariant.
- H-normal matrices is a strict subset of the set of Moore-Penrose H-normal matrices.

H-normal matrices

Definition

A matrix A in \mathbb{C}^{n} is called H-normal if $A A^{[*]} \subseteq A^{[*]} A$.
Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is H-normal $\Longleftrightarrow A_{1}$ is H_{1}-normal and $A_{2}=0$ A is Moore-Penrose H-normal and $A^{[*]}\left(A^{[* *}\right)^{[*]}=\left(A^{[*]}\right)^{[*]} A^{[*]}$.

```
Moreover, ker H is A-invariant.
Remarks
- H-symmetric and H -isometric matrices are H -normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose H-normal matrices \(A\) such that ker \(H\) is not \(A\)-invariant.
- H-normal matrices is a strict subset of the set of Moore-Penrose H -normal matrices.
```


H-normal matrices

Definition

A matrix A in \mathbb{C}^{n} is called H-normal if $A A^{[*]} \subseteq A^{[*]} A$.
Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is H-normal $\Longleftrightarrow A_{1}$ is H_{1}-normal and $A_{2}=0$ A is Moore-Penrose H-normal and $A^{[*]}\left(A^{[*]}\right)^{[*]}=\left(A^{[*]}\right)^{[*]} A^{[*]}$. Moreover, ker H is A-invariant.

Remarks

- H -symmetric and H -isometric matrices are H -normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose H-normal matrices A such that ker H is not A-invariant.
- H-normal matrices is a strict subset of the set of Moore-Penrose H -normal matrices.

H-normal matrices

Definition

A matrix A in \mathbb{C}^{n} is called H-normal if $A A^{[*]} \subseteq A^{[*]} A$.
Rem.: Other inclusion does not include all H -sym. matrices.

Theorem

A is H-normal $\Longleftrightarrow A_{1}$ is H_{1}-normal and $A_{2}=0$ A is Moore-Penrose H-normal and $A^{[*]}\left(A^{[*]}\right)^{[*]}=\left(A^{[*]}\right)^{[*]} A^{[*]}$. Moreover, ker H is A-invariant.

Remarks:

- H -symmetric and H -isometric matrices are H -normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose H-normal matrices A such that ker H is not A-invariant.
- H-normal matrices is a strict subset of the set of Moore-Penrose H-normal matrices.

H-normal matrices

Definition

A matrix A in \mathbb{C}^{n} is called H-normal if $A A^{[*]} \subseteq A^{[*]} A$.
Rem.: Other inclusion does not include all H -sym. matrices.

Theorem

A is H-normal $\Longleftrightarrow A_{1}$ is H_{1}-normal and $A_{2}=0$ A is Moore-Penrose H-normal and $A^{[*]}\left(A^{[*]}\right)^{[*]}=\left(A^{[*]}\right)^{[*]} A^{[*]}$. Moreover, ker H is A-invariant.

Remarks:

- H -symmetric and H -isometric matrices are H-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose H-normal matrices A such that ker H is not A-invariant.
- H-normal matrices is a strict subset of the set of
Moore-Penrose H-normal matrices.

H-normal matrices

Definition

A matrix A in \mathbb{C}^{n} is called H-normal if $A A^{[*]} \subseteq A^{[*]} A$.
Rem.: Other inclusion does not include all H -sym. matrices.

Theorem

A is H-normal $\Longleftrightarrow A_{1}$ is H_{1}-normal and $A_{2}=0$ A is Moore-Penrose H-normal and $A^{[*]}\left(A^{[*]}\right)^{[*]}=\left(A^{[*]}\right)^{[*]} A^{[*]}$. Moreover, ker H is A-invariant.

Remarks:

- H -symmetric and H -isometric matrices are H-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose H-normal matrices A such that ker H is not A-invariant.
- H-normal matrices is a strict subset of the set of Moore-Penrose H -normal matrices.

Invariant subspaces

With [L '71] it is easy to see:

Theorem

Let A be H-normal and \mathcal{M}_{0} be an H-nonnegative A-invariant subspace that is also invariant for $A^{[*]}$. Then there exists an A and $A^{[*]}$-invariant maximal H-nonnegative subspace \mathcal{M} with

$$
\mathcal{M}_{0} \subseteq \mathcal{M}
$$

Next Step: Drop invariance with respect to $A^{[*]}$
In [Mehl, Ran, Rodman '04]: Exists H-normal matrix (even if H
is regular) with invariant H-nonnegative subspace that cannot
be extended to an invariant maximal H-nonnegative subspace. Thus, stronger conditions.

Invariant subspaces

With [L '71] it is easy to see:

Theorem

Let A be H-normal and \mathcal{M}_{0} be an H-nonnegative A-invariant subspace that is also invariant for $A^{[*]}$. Then there exists an A and $A^{[*]}$-invariant maximal H-nonnegative subspace \mathcal{M} with

$$
\mathcal{M}_{0} \subseteq \mathcal{M}
$$

Next Step: Drop invariance with respect to $A^{[*]}$.
In [Mehl, Ran, Rodman '04]: Exists H-normal matrix (even if H
is regular) with invariant H-nonnegative subspace that cannot
be extended to an invariant maximal H-nonnegative subspace. Thus, stronger conditions.

Invariant subspaces

With [L '71] it is easy to see:

Theorem

Let A be H-normal and \mathcal{M}_{0} be an H-nonnegative A-invariant subspace that is also invariant for $A^{[*]}$. Then there exists an A and $A^{[*]}$-invariant maximal H-nonnegative subspace \mathcal{M} with

$\mathcal{M}_{0} \subseteq \mathcal{M}$.

Next Step: Drop invariance with respect to $A^{[*]}$.
In [Mehl, Ran, Rodman '04]: Exists H-normal matrix (even if H is regular) with invariant H-nonnegative subspace that cannot be extended to an invariant maximal H-nonnegative subspace. Thus, stronger conditions.

Theorem

Let A be H-normal and let \mathcal{M}_{0} be an H-positive A-invariant subspace. Let $\mathcal{M}_{\text {com }}$ such that $\mathcal{M}_{0}^{[\perp]}=\mathcal{M}_{\text {com }} \dot{+} \operatorname{ker} H$. Define

$$
X:=\left.P A\right|_{\mathcal{M}_{c o m}}: \mathcal{M}_{c o m} \rightarrow \mathcal{M}_{c o m}
$$

where P is the projection onto $\mathcal{M}_{\text {com }}$ along $\mathcal{M}_{0} \dot{+} \operatorname{ker} H$. Assume that

$$
\sigma\left(X+X^{[*]}\right) \subseteq \mathbb{R} \quad \text { or } \quad \sigma\left(X-X^{[*]}\right) \subseteq i \mathbb{R}
$$

Then there exists an A-invariant maximal H-nonnegative subspace \mathcal{M} that contains \mathcal{M}_{0} and that is also $A^{[*]}$-invariant.

Hyponormal matrices

In a definition the foolowing line should appear:

$$
\begin{equation*}
A^{[*]} A-A A^{[*]} \text { is } H \text {-nonpositive. } \tag{4}
\end{equation*}
$$

Recall: A linear relation B is H -nonpositive if B is H -symmetric and

Problem: . Let H_{1} and A_{2} regular $n \times n$ matrices,

Then $\operatorname{dom}\left(A A^{[*]}\right) \cap \operatorname{dom}\left(A^{[*]} A\right)=\{0\}$ and (4) is always true.
$(\rightarrow$ unbounded operators) Remember:

Lemma

We have $\operatorname{dom} A^{[*]}=\mathbb{C}^{n} \Longleftrightarrow \operatorname{ran}\left(A^{*} H\right) \subseteq \operatorname{ran} H \Longleftrightarrow A_{2}=0$.

Hyponormal matrices

In a definition the foolowing line should appear:

$$
\begin{equation*}
A^{[*]} A-A A^{[*]} \text { is } H \text {-nonpositive. } \tag{4}
\end{equation*}
$$

Recall: A linear relation B is H -nonpositive if B is H -symmetric and

$$
[y, x] \leq 0 \quad \text { for all }\binom{x}{y} \in B .
$$

Problem: . Let H_{1} and A_{2} regular $n \times n$ matrices,

Then $\operatorname{dom}\left(A A^{[*]}\right) \cap \operatorname{dom}\left(A^{[*]} A\right)=\{0\}$ and (4) is always true. (\rightarrow unbounded operators) Remember:

Lemma

We have $\operatorname{dom} A^{[*]}=\mathbb{C}^{n} \Longleftrightarrow \operatorname{ran}\left(A^{*} H\right) \subseteq \operatorname{ran} H \Longleftrightarrow A_{2}=0$

Hyponormal matrices

In a definition the foolowing line should appear:

$$
\begin{equation*}
A^{[*]} A-A A^{[*]} \text { is } H \text {-nonpositive. } \tag{4}
\end{equation*}
$$

Recall: A linear relation B is H-nonpositive if B is H-symmetric and

$$
[y, x] \leq 0 \quad \text { for all }\binom{x}{y} \in B .
$$

Problem: . Let H_{1} and A_{2} regular $n \times n$ matrices,

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Then $\operatorname{dom}\left(A A^{[*]}\right) \cap \operatorname{dom}\left(A^{[*]} A\right)=\{0\}$ and (4) is always true. (\rightarrow unbounded operators) Remember:

Lemma

We have $\operatorname{dom} A^{[*]}=\mathbb{C}^{n} \Longleftrightarrow \operatorname{ran}\left(A^{*} H\right) \subseteq \operatorname{ran} H \Longleftrightarrow A_{2}=0$.

Hyponormal matrices: Definitions

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \text { and } A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Lemma

Let A be a matrix as above. The following are equivalent.
The domain of the linear relation $A^{[*]} A$ is \mathbb{C}^{n}.
(ii) $A_{2}^{*} H_{1} A_{1}=0$ and $A_{2}^{*} H_{1} A_{2}=0$.

Definition

A linear relation A is called H-hyponormal if $A^{[*]} A$ has full domain and if $A^{[*]} A-A A^{[*]}$ is H-nonpositive.

Definition

A linear relation A is called strongly H-hyponormal if A is
H-hyponormal and if

Hyponormal matrices: Definitions

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \text { and } A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Lemma
Let A be a matrix as above. The following are equivalent.
(i) The domain of the linear relation $A^{[*]} A$ is \mathbb{C}^{n}.
(ii) $A_{2}^{*} H_{1} A_{1}=0$ and $A_{2}^{*} H_{1} A_{2}=0$.

Definition

A linear relation A is called H-hyponormal if $A^{[*]} A$ has full domain and if $A^{[*]} A-A A^{[*]}$ is H-nonpositive.

Definition

A linear relation A is called strongly H-hyponormal if A is
H-hyponormal and if $\left(A^{* *}\right)^{n} A^{n}$ has full domain for all n

Hyponormal matrices: Definitions

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \text { and } A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Lemma
Let A be a matrix as above. The following are equivalent.
(i) The domain of the linear relation $A^{[*]} A$ is \mathbb{C}^{n}.
(ii) $A_{2}^{*} H_{1} A_{1}=0$ and $A_{2}^{*} H_{1} A_{2}=0$.

Definition

A linear relation A is called H-hyponormal if $A^{[*]} A$ has full domain and if $A^{[*]} A-A A^{[*]}$ is H-nonpositive.

Definition

A linear relation A is called strongly H-hyponormal if A is
H-hyponormal and if $\left(A^{[*]}\right)^{n} A^{n}$ has full domain for all n

Hyponormal matrices: Definitions

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \text { and } A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Lemma

Let A be a matrix as above. The following are equivalent.
(i) The domain of the linear relation $A^{[*]} A$ is \mathbb{C}^{n}.
(ii) $A_{2}^{*} H_{1} A_{1}=0$ and $A_{2}^{*} H_{1} A_{2}=0$.

Definition

A linear relation A is called H-hyponormal if $A^{[*]} A$ has full domain and if $A^{[*]} A-A A^{[*]}$ is H-nonpositive.

[^2]
Hyponormal matrices: Definitions

$$
H=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) .
$$

Lemma

Let A be a matrix as above. The following are equivalent.
(i) The domain of the linear relation $A^{[*]} A$ is \mathbb{C}^{n}.
(ii) $A_{2}^{*} H_{1} A_{1}=0$ and $A_{2}^{*} H_{1} A_{2}=0$.

Definition

A linear relation A is called H-hyponormal if $A^{[*]} A$ has full domain and if $A^{[*]} A-A A^{[*]}$ is H-nonpositive.

Definition

A linear relation A is called strongly H-hyponormal if A is H-hyponormal and if $\left(A^{[*]}\right)^{n} A^{n}$ has full domain for all $n \in \mathbb{N}$.

[^0]: Definition
 We call a matrix A satisfying (2) Moore-Penrose H-normal.
 Our approach:
 © Define the H -adjoint in the sense of linear relations.
 (2) Define then H-normal matrices.

[^1]: Definition
 We call a matrix A satisfying (2) Moore-Penrose H-normal.
 Our approach:
 (1) Define the H -adjoint in the sense of linear relations.
 (2) Define then H -normal matrices.

[^2]: Definition
 A linear relation A is called strongly H-hyponormal if A is
 H-hyponormal and if $\left(A^{[*]}\right)^{n} A^{n}$ has full domain for all n

