Normal and Hyponormal Matrices in Inner Product Spaces

Carsten Trunk joint work with Christian Mehl

Technische Universität Berlin

1/13

Introduction

On \mathbb{C}^n consider for a Hermitian matrix H

 $[\mathbf{X},\mathbf{y}] := (\mathbf{H}\mathbf{X},\mathbf{y})_{\mathbb{C}^n}.$

Let A be a matrix. H regular: Define A^[*] via

$$[x, Ay] = \left[A^{[*]}x, y\right]$$

Define *H*-selfadjoint ($A^{[*]} = A$) *H*-unitary ($A^{[*]} = A^{-1}$) and *H*-normal ($A^{[*]}A = AA^{[*]}$) as usual.

H singular: ?? In this case one defines *H*-selfadjoint and *H*-unitary via

$$A^*H = HA \quad \text{resp.} \quad A^*HA = H. \tag{1}$$

Here A* denotes the usual adjoint with respect to (;,;), (;,;), (;,;)

2/13

On \mathbb{C}^n consider for a Hermitian matrix H

 $[\mathbf{X},\mathbf{y}] := (\mathbf{H}\mathbf{X},\mathbf{y})_{\mathbb{C}^n}.$

Let A be a matrix. H regular: Define $A^{[*]}$ via

$$[x, Ay] = \left[A^{[*]}x, y\right]$$

Define *H*-selfadjoint ($A^{[*]} = A$) *H*-unitary ($A^{[*]} = A^{-1}$) and *H*-normal ($A^{[*]}A = AA^{[*]}$) as usual.

H singular: ?? In this case one defines *H*-selfadjoint and *H*-unitary via

$$A^*H = HA \quad \text{resp.} \quad A^*HA = H. \tag{1}$$

On \mathbb{C}^n consider for a Hermitian matrix H

 $[\mathbf{X},\mathbf{y}] := (\mathbf{H}\mathbf{X},\mathbf{y})_{\mathbb{C}^n}.$

Let A be a matrix. H regular: Define $A^{[*]}$ via

$$[x, Ay] = \left[A^{[*]}x, y\right]$$

Define *H*-selfadjoint ($A^{[*]} = A$) *H*-unitary ($A^{[*]} = A^{-1}$) and *H*-normal ($A^{[*]}A = AA^{[*]}$) as usual.

H singular: ??

In this case one defines *H*-selfadjoint and *H*-unitary via

$$A^*H = HA \quad \text{resp.} \quad A^*HA = H. \tag{1}$$

Here A^* denotes the usual adjoint with respect to (\cdot, \cdot) .

In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H:

$$HAH^{\dagger}A^{*}H = A^{*}HA$$

Definition

We call a matrix A satisfying (2) Moore-Penrose H-normal.

- Define the H-adjoint in the sense of linear relations.
- 2 Define then *H*-normal matrices.

In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H:

$$HAH^{\dagger}A^{*}H = A^{*}HA \tag{2}$$

Definition

We call a matrix A satisfying (2) Moore-Penrose H-normal.

- Define the *H*-adjoint in the sense of linear relations.
- 2 Define then *H*-normal matrices.

In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H:

$$HAH^{\dagger}A^{*}H = A^{*}HA$$
 (2)

Definition

We call a matrix A satisfying (2) Moore-Penrose H-normal.

- Define the *H*-adjoint in the sense of linear relations.
- 2 Define then *H*-normal matrices.

In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H:

$$HAH^{\dagger}A^{*}H = A^{*}HA$$
 (2)

Definition

We call a matrix A satisfying (2) Moore-Penrose H-normal.

Our approach:

Define the *H*-adjoint in the sense of linear relations.

Define then H-normal matrices.

In [Li,Tsing,Uhlig '96], [Mehl,Ran,Rodman '04] via the Moore-Penrose inverse H^{\dagger} of H:

$$HAH^{\dagger}A^{*}H = A^{*}HA$$
 (2)

Definition

We call a matrix A satisfying (2) Moore-Penrose H-normal.

- Define the *H*-adjoint in the sense of linear relations.
- 2 Define then *H*-normal matrices.

Assume always: *H* singular Hermitian and A is a matrix.

 $[\mathbf{X},\mathbf{y}] := (\mathbf{H}\mathbf{X},\mathbf{y})_{\mathbb{C}^n}.$

Identify $A \leftrightarrow \text{graph } A$ Then A is a linear relation.

dom
$$A = \left\{ x : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\},$$

mul $A = \left\{ y : \begin{pmatrix} 0 \\ y \end{pmatrix} \in A \right\},$
 $A^{-1} = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\}$

the domain of A,

the multivalued part of A,

the inverse of A

Definition

$$A^{[*]} = \left\{ \begin{pmatrix} y \\ z \end{pmatrix} \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \begin{pmatrix} x \\ w \end{pmatrix} \in A \right\}$$

Assume always: *H* singular Hermitian and A is a matrix.

 $[x, y] := (Hx, y)_{\mathbb{C}^n}.$ Identify $A \longleftrightarrow$ graph A Then A is a linear relation. $\operatorname{dom} A = \left\{ x : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\}, \quad \text{the domain of } A,$ $\operatorname{mul} A = \left\{ y : \begin{pmatrix} 0 \\ y \end{pmatrix} \in A \right\}, \quad \text{the multivalued part of } A,$ $A^{-1} = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\}, \quad \text{the inverse of } A$

Definition

$$A^{[*]} = \left\{ \begin{pmatrix} y \\ z \end{pmatrix} \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \begin{pmatrix} x \\ w \end{pmatrix} \in A \right\}$$

Assume always: *H* singular Hermitian and A is a matrix.

 $[\mathbf{X},\mathbf{Y}] := (\mathbf{H}\mathbf{X},\mathbf{Y})_{\mathbb{C}^n}.$

Identify $A \leftrightarrow \text{graph } A$ Then A is a linear relation.

dom
$$A = \left\{ x : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\},$$

the domain of A,

 $\operatorname{mul} A = \left\{ y : \begin{pmatrix} 0 \\ v \end{pmatrix} \in A \right\}, \quad \text{the multivalued part of } A,$

 $A^{-1} = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\},$ the inverse of A

Definition

$$A^{[*]} = \left\{ \begin{pmatrix} y \\ z \end{pmatrix} \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \begin{pmatrix} x \\ w \end{pmatrix} \in A \right\}$$

Assume always: *H* singular Hermitian and A is a matrix.

 $[\mathbf{X},\mathbf{Y}] := (\mathbf{H}\mathbf{X},\mathbf{Y})_{\mathbb{C}^n}.$

Identify $A \leftrightarrow \text{graph } A$ Then A is a linear relation.

dom
$$A = \left\{ x : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\},$$

mul $A = \left\{ y : \begin{pmatrix} 0 \\ y \end{pmatrix} \in A \right\},$

the domain of A,

the multivalued part of A,

 $A^{-1} = \left\{ \left(\begin{array}{c} y \\ x \end{array} \right) : \left(\begin{array}{c} x \\ y \end{array} \right) \in A \right\},$ the inverse of A

Definition

$$A^{[*]} = \left\{ \begin{pmatrix} y \\ z \end{pmatrix} \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \begin{pmatrix} x \\ w \end{pmatrix} \in A \right\}$$

Assume always: *H* singular Hermitian and A is a matrix.

 $[\mathbf{X},\mathbf{Y}] := (\mathbf{H}\mathbf{X},\mathbf{Y})_{\mathbb{C}^n}.$

Identify $A \leftrightarrow \text{graph } A$ Then A is a linear relation.

dom
$$A = \left\{ x : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\},$$
 the domain of A ,
mul $A = \left\{ y : \begin{pmatrix} 0 \\ y \end{pmatrix} \in A \right\},$ the multivalued part of A ,
 $A^{-1} = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\},$ the inverse of A

Definition

$$A^{[*]} = \left\{ \begin{pmatrix} y \\ z \end{pmatrix} \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \begin{pmatrix} x \\ w \end{pmatrix} \in A \right\}$$

Assume always: *H* singular Hermitian and A is a matrix.

 $[\mathbf{X},\mathbf{Y}] := (\mathbf{H}\mathbf{X},\mathbf{Y})_{\mathbb{C}^n}.$

Identify $A \leftrightarrow \text{graph } A$ Then A is a linear relation.

dom
$$A = \left\{ x : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\},$$
 the domain of A ,
mul $A = \left\{ y : \begin{pmatrix} 0 \\ y \end{pmatrix} \in A \right\},$ the multivalued part of A ,
 $A^{-1} = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : \begin{pmatrix} x \\ y \end{pmatrix} \in A \right\},$ the inverse of A

Definition

The linear relation $A^{[*]}$ is called the *H*-adjoint of *A*,

$$\mathcal{A}^{[*]} = \left\{ \left(\begin{array}{c} y\\z\end{array}\right) \in \mathbb{C}^{2n} : [y,w]_H = [z,x]_H \text{ for all } \left(\begin{array}{c} x\\w\end{array}\right) \in \mathcal{A} \right\}$$

4/13

$$A^{[*]} = \left\{ \left(\begin{array}{c} y \\ z \end{array}\right) \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \left(\begin{array}{c} x \\ w \end{array}\right) \in A \right\}$$

Lemma

• We have $A^{[*]} = H^{-1}A^*H$ (similar to the case H regular).

② We have $mul A^{[*]} = ker H$.

Hence A^[*] is a matrix if and only if H is regular.

Example

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \text{and} \quad A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Then

dom $A^{[*]} = \{0\} \times \mathbb{C}$, mul $A^{[*]} = \{0\} \times \mathbb{C}$.

$$A^{[*]} = \left\{ \left(\begin{array}{c} y \\ z \end{array}\right) \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \left(\begin{array}{c} x \\ w \end{array}\right) \in A \right\}$$

Lemma

• We have
$$A^{[*]} = H^{-1}A^*H$$
 (similar to the case H regular).

2) We have mul
$$A^{[*]} = \ker H$$
.

3 Hence A^[*] is a matrix if and only if H is regular.

Example

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \text{and} \quad A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Then

 $\operatorname{dom} A^{[*]} = \{0\} \times \mathbb{C}, \qquad \operatorname{mul} A^{[*]} = \{0\} \times \mathbb{C}.$

$$A^{[*]} = \left\{ \left(\begin{array}{c} y \\ z \end{array}\right) \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \left(\begin{array}{c} x \\ w \end{array}\right) \in A \right\}$$

Lemma

- We have $A^{[*]} = H^{-1}A^*H$ (similar to the case H regular).
- 2 We have $\operatorname{mul} A^{[*]} = \ker H$.
 - Hence A^[*] is a matrix if and only if H is regular.

Example

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \text{and} \quad A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Then

 $\operatorname{dom} A^{[*]} = \{0\} \times \mathbb{C}, \qquad \operatorname{mul} A^{[*]} = \{0\} \times \mathbb{C}.$

$$A^{[*]} = \left\{ \left(\begin{array}{c} y \\ z \end{array}\right) \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \left(\begin{array}{c} x \\ w \end{array}\right) \in A \right\}$$

Lemma

- We have $A^{[*]} = H^{-1}A^*H$ (similar to the case H regular).
- 2 We have $\operatorname{mul} A^{[*]} = \ker H$.
- Hence A^[*] is a matrix if and only if H is regular.

Example

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \text{and} \quad A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Then

 $\operatorname{dom} A^{[*]} = \{0\} \times \mathbb{C}, \qquad \operatorname{mul} A^{[*]} = \{0\} \times \mathbb{C}.$

$$A^{[*]} = \left\{ \left(\begin{array}{c} y \\ z \end{array}\right) \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \left(\begin{array}{c} x \\ w \end{array}\right) \in A \right\}$$

Lemma

- We have $A^{[*]} = H^{-1}A^*H$ (similar to the case H regular).
- 2 We have $\operatorname{mul} A^{[*]} = \ker H$.
- Hence A^[*] is a matrix if and only if H is regular.

Example

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \text{and} \quad A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Then

dom $A^{[*]} = \{0\} \times \mathbb{C}$, mul $A^{[*]} = \{0\} \times \mathbb{C}$.

$$A^{[*]} = \left\{ \left(\begin{array}{c} y \\ z \end{array}\right) \in \mathbb{C}^{2n} : [y, w]_H = [z, x]_H \text{ for all } \left(\begin{array}{c} x \\ w \end{array}\right) \in A \right\}$$

Lemma

- We have $A^{[*]} = H^{-1}A^*H$ (similar to the case H regular).
- 2 We have $\operatorname{mul} A^{[*]} = \ker H$.
- Hence A^[*] is a matrix if and only if H is regular.

Example

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \text{and} \quad A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Then

dom
$$A^{[*]} = \{0\} \times \mathbb{C}, \quad \text{ mul } A^{[*]} = \{0\} \times \mathbb{C}.$$

Definition

) We call
$$A \dashv symmetric$$
 if $A \subset A^{[*]}$.

We call A *H*-isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

 $A^*H = HA$ resp. $A^*HA = H$.

Choosing a basis of \mathbb{C}^n , we may always assume that *H* and *A* have the forms, with H_1 is regular,

$$H = \begin{pmatrix} H_1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}.$$
(3)

_emma

Definition

• We call A *H*-symmetric if
$$A \subset A^{[*]}$$
.

2 We call A *H*-isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

 $A^*H = HA$ resp. $A^*HA = H$.

Choosing a basis of \mathbb{C}^n , we may always assume that *H* and *A* have the forms, with H_1 is regular,

$$H = \begin{pmatrix} H_1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}.$$
(3)

_emma

Definition

• We call A *H*-symmetric if
$$A \subset A^{[*]}$$
.

2 We call A *H*-isometric if
$$A^{-1} \subset A^{[*]}$$
.

First task: Compare this with (1), i.e.

$A^*H = HA$ resp. $A^*HA = H$.

Choosing a basis of \mathbb{C}^n , we may always assume that H and A have the forms, with H_1 is regular,

$$H = \begin{pmatrix} H_1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}.$$
(3)

_emma

Definition

• We call A *H*-symmetric if
$$A \subset A^{[*]}$$
.

2 We call A *H*-isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

$$A^*H = HA$$
 resp. $A^*HA = H$.

Choosing a basis of \mathbb{C}^n , we may always assume that *H* and *A* have the forms, with H_1 is regular,

$$H = \begin{pmatrix} H_1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}.$$
(3)

_emma

Definition

• We call A *H*-symmetric if
$$A \subset A^{[*]}$$
.

2 We call A *H*-isometric if $A^{-1} \subset A^{[*]}$.

First task: Compare this with (1), i.e.

$$A^*H = HA$$
 resp. $A^*HA = H$.

Choosing a basis of \mathbb{C}^n , we may always assume that *H* and *A* have the forms, with H_1 is regular,

$$H = \begin{pmatrix} H_1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}.$$
(3)

Lemma

Write A and H in the form

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

(i) A is H-symmetric,
$$A \subset A^{[*]}$$
.

(ii)
$$A^*H = HA$$
 (that is (1)).

(iii)
$$A_1$$
 is H_1 -selfadjoint and $A_2 = 0$,

(iv) $A^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-selfadjoint).

(v)
$$A^{[*]} = A + (\ker H \times \ker H).$$

Write A and H in the form

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent. (i) *A* is *H*-symmetric, $A \subset A^{[*]}$. (ii) $A^*H = HA$ (that is (1)). (iii) A_1 is H_1 -selfadjoint and $A_2 = 0$, (iv) $A^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-selfadjoint (v) $A^{[*]} = A + (\ker H \times \ker H)$. In particular, ker *H* is *A*-invariant.

Write A and H in the form

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

(i) A is H-symmetric,
$$A \subset A^{[*]}$$
.

(ii) $A^*H = HA$ (that is (1)).

(iii) A_1 is H_1 -selfadjoint and $A_2 = 0$,

(iv) $A^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-selfadjoint).

(v)
$$A^{[*]} = A + (\ker H \times \ker H).$$

Write A and H in the form

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

- (i) A is H-symmetric, $A \subset A^{[*]}$.
- (ii) $A^*H = HA$ (that is (1)).
- (iii) A_1 is H_1 -selfadjoint and $A_2 = 0$,

(iv) $A^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-selfadjoint).

(v) $A^{[*]} = A + (\ker H \times \ker H).$

Write A and H in the form

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

(i) A is H-symmetric,
$$A \subset A^{[*]}$$
.

(ii) $A^*H = HA$ (that is (1)).

(iii)
$$A_1$$
 is H_1 -selfadjoint and $A_2 = 0$,

(iv) $A^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-selfadjoint).

(v) $A^{[*]} = A + (\ker H \times \ker H).$

Write A and H in the form

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

(i) A is H-symmetric,
$$A \subset A^{[*]}$$
.

(ii) $A^*H = HA$ (that is (1)).

(iii)
$$A_1$$
 is H_1 -selfadjoint and $A_2 = 0$,

(iv) $A^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-selfadjoint).

(v)
$$A^{[*]} = A + (\ker H \times \ker H).$$

$$H = \left(egin{array}{cc} H_1 & 0 \\ 0 & 0 \end{array}
ight) \quad ext{and} \quad A = \left(egin{array}{cc} A_1 & A_2 \\ A_3 & A_4 \end{array}
ight).$$

Theorem

The following statements are equivalent.

(i) A is H-isometric,
$$A^{-1} \subset A^{[*]}$$
.

- (ii) $A^*HA = H$ (that is (1)).
- (iii) A_1 is H_1 -unitary and $A_2 = 0$,

(iv) $(A^{-1})^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-unitary).

$$H = \left(egin{array}{cc} H_1 & 0 \\ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \\ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

(i) A is H-isometric,
$$A^{-1} \subset A^{[*]}$$
.

(ii) $A^*HA = H$ (that is (1)).

(iii) A_1 is H_1 -unitary and $A_2 = 0$,

(iv) $(A^{-1})^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-unitary)

$$H = \left(egin{array}{cc} H_1 & 0 \\ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \\ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

(i) A is H-isometric,
$$A^{-1} \subset A^{[*]}$$
.

(ii)
$$A^*HA = H$$
 (that is (1)).

(iii) A_1 is H_1 -unitary and $A_2 = 0$,

(iv) $(A^{-1})^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-unitary)

$$H = \left(egin{array}{cc} H_1 & 0 \\ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \\ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

(i) A is H-isometric,
$$A^{-1} \subset A^{[*]}$$
.

(ii) $A^*HA = H$ (that is (1)).

(iii)
$$A_1$$
 is H_1 -unitary and $A_2 = 0$

(iv) $(A^{-1})^{[*]} = (A^{[*]})^{[*]}$ (i.e. the relation $A^{[*]}$ is *H*-unitary).

Write A and H in the form

$$H = \left(egin{array}{cc} H_1 & 0 \\ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \\ A_3 & A_4 \end{array}
ight).$

Theorem

The following statements are equivalent.

(i) A is H-isometric,
$$A^{-1} \subset A^{[*]}$$
.

(ii)
$$A^*HA = H$$
 (that is (1)).

(iii)
$$A_1$$
 is H_1 -unitary and $A_2 = 0$,

(iv)
$$(A^{-1})^{[*]} = (A^{[*]})^{[*]}$$
 (i.e. the relation $A^{[*]}$ is *H*-unitary)

In particular, ker *H* is *A*-invariant.

A matrix A in \mathbb{C}^n is called H-normal if $AA^{[*]} \subseteq A^{[*]}A$.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is *H*-normal $\iff A_1$ is H_1 -normal and $A_2 = 0 \iff$ A is Moore-Penrose *H*-normal and $A^{[*]}(A^{[*]})^{[*]} = (A^{[*]})^{[*]}A^{[*]}$. Moreover, ker *H* is *A*-invariant.

- *H*-symmetric and *H*-isometric matrices are *H*-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose *H*-normal matrices *A* such that ker *H* is not *A*-invariant.
- *H*-normal matrices is a strict subset of the set of Moore-Penrose *H*-normal matrices.

A matrix A in \mathbb{C}^n is called H-normal if $AA^{[*]} \subseteq A^{[*]}A$.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is H-normal $\iff A_1$ is H_1 -normal and $A_2 = 0 \iff$ A is Moore-Penrose H-normal and $A^{[*]}(A^{[*]})^{[*]} = (A^{[*]})^{[*]}A^{[*]}$. Moreover, ker H is A-invariant.

- *H*-symmetric and *H*-isometric matrices are *H*-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose *H*-normal matrices *A* such that ker *H* is not *A*-invariant.
- *H*-normal matrices is a strict subset of the set of Moore-Penrose *H*-normal matrices.

A matrix A in \mathbb{C}^n is called H-normal if $AA^{[*]} \subseteq A^{[*]}A$.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is H-normal \iff A_1 is H_1 -normal and $A_2 = 0 \iff$

A is Moore-Penrose H-normal and $A^{[*]}(A^{[*]})^{[*]} = (A^{[*]})^{[*]}A^{[*]}$. Moreover, ker H is A-invariant.

- *H*-symmetric and *H*-isometric matrices are *H*-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose *H*-normal matrices *A* such that ker *H* is not *A*-invariant.
- *H*-normal matrices is a strict subset of the set of Moore-Penrose *H*-normal matrices.

A matrix A in \mathbb{C}^n is called H-normal if $AA^{[*]} \subseteq A^{[*]}A$.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is *H*-normal \iff A_1 is H_1 -normal and $A_2 = 0 \iff$ A is Moore-Penrose *H*-normal and $A^{[*]}(A^{[*]})^{[*]} = (A^{[*]})^{[*]}A^{[*]}$. Moreover, ker *H* is *A*-invariant.

- *H*-symmetric and *H*-isometric matrices are *H*-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose *H*-normal matrices *A* such that ker *H* is not *A*-invariant.
- *H*-normal matrices is a strict subset of the set of Moore-Penrose *H*-normal matrices.

A matrix A in \mathbb{C}^n is called H-normal if $AA^{[*]} \subseteq A^{[*]}A$.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is *H*-normal \iff A_1 is H_1 -normal and $A_2 = 0 \iff$ A is Moore-Penrose *H*-normal and $A^{[*]}(A^{[*]})^{[*]} = (A^{[*]})^{[*]}A^{[*]}$. Moreover, ker *H* is *A*-invariant.

- *H*-symmetric and *H*-isometric matrices are *H*-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose *H*-normal matrices *A* such that ker *H* is not *A*-invariant.
- *H*-normal matrices is a strict subset of the set of Moore-Penrose *H*-normal matrices.

A matrix A in \mathbb{C}^n is called H-normal if $AA^{[*]} \subseteq A^{[*]}A$.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is *H*-normal \iff A_1 is H_1 -normal and $A_2 = 0 \iff$ A is Moore-Penrose *H*-normal and $A^{[*]}(A^{[*]})^{[*]} = (A^{[*]})^{[*]}A^{[*]}$. Moreover, ker *H* is *A*-invariant.

- *H*-symmetric and *H*-isometric matrices are *H*-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose *H*-normal matrices *A* such that ker *H* is not *A*-invariant.
- *H*-normal matrices is a strict subset of the set of Moore-Penrose *H*-normal matrices.

A matrix A in \mathbb{C}^n is called H-normal if $AA^{[*]} \subseteq A^{[*]}A$.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is *H*-normal \iff A_1 is H_1 -normal and $A_2 = 0 \iff$ A is Moore-Penrose *H*-normal and $A^{[*]}(A^{[*]})^{[*]} = (A^{[*]})^{[*]}A^{[*]}$. Moreover, ker *H* is *A*-invariant.

Remarks:

- *H*-symmetric and *H*-isometric matrices are *H*-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose *H*-normal matrices *A* such that ker *H* is not *A*-invariant.
- *H*-normal matrices is a strict subset of the set of Moore-Penrose *H*-normal matrices.

ヘロト ヘ戸ト ヘヨト ヘヨト

A matrix A in \mathbb{C}^n is called H-normal if $AA^{[*]} \subseteq A^{[*]}A$.

Rem.: Other inclusion does not include all H-sym. matrices.

Theorem

A is *H*-normal \iff A_1 is H_1 -normal and $A_2 = 0 \iff$ A is Moore-Penrose *H*-normal and $A^{[*]}(A^{[*]})^{[*]} = (A^{[*]})^{[*]}A^{[*]}$. Moreover, ker *H* is *A*-invariant.

- *H*-symmetric and *H*-isometric matrices are *H*-normal.
- [Mehl, Ran, Rodman '04]: Exists Moore-Penrose *H*-normal matrices *A* such that ker *H* is not *A*-invariant.
- *H*-normal matrices is a strict subset of the set of Moore-Penrose *H*-normal matrices.

With [L '71] it is easy to see:

Theorem

Let A be H-normal and \mathcal{M}_0 be an H-nonnegative A-invariant subspace that is also invariant for $A^{[*]}$. Then there exists an A-and $A^{[*]}$ -invariant maximal H-nonnegative subspace \mathcal{M} with

 $\mathcal{M}_0\subseteq \mathcal{M}.$

Next Step: Drop invariance with respect to $A^{[*]}$.

In [Mehl, Ran, Rodman '04]: Exists *H*-normal matrix (even if *H* is regular) with invariant *H*-nonnegative subspace that cannot be extended to an invariant maximal *H*-nonnegative subspace. Thus, stronger conditions.

With [L '71] it is easy to see:

Theorem

Let A be H-normal and \mathcal{M}_0 be an H-nonnegative A-invariant subspace that is also invariant for $A^{[*]}$. Then there exists an A-and $A^{[*]}$ -invariant maximal H-nonnegative subspace \mathcal{M} with

 $\mathcal{M}_0\subseteq \mathcal{M}.$

Next Step: Drop invariance with respect to $A^{[*]}$.

In [Mehl, Ran, Rodman '04]: Exists *H*-normal matrix (even if *H* is regular) with invariant *H*-nonnegative subspace that cannot be extended to an invariant maximal *H*-nonnegative subspace. Thus, stronger conditions.

With [L '71] it is easy to see:

Theorem

Let A be H-normal and \mathcal{M}_0 be an H-nonnegative A-invariant subspace that is also invariant for $A^{[*]}$. Then there exists an A-and $A^{[*]}$ -invariant maximal H-nonnegative subspace \mathcal{M} with

 $\mathcal{M}_0 \subseteq \mathcal{M}.$

Next Step: Drop invariance with respect to $A^{[*]}$.

In [Mehl, Ran, Rodman '04]: Exists *H*-normal matrix (even if *H* is regular) with invariant *H*-nonnegative subspace that cannot be extended to an invariant maximal *H*-nonnegative subspace. Thus, stronger conditions.

Theorem

Let *A* be *H*-normal and let \mathcal{M}_0 be an *H*-positive *A*-invariant subspace. Let \mathcal{M}_{com} such that $\mathcal{M}_0^{[\perp]} = \mathcal{M}_{com} \dot{+} \ker H$. Define

$$X:=PA|_{\mathcal{M}_{com}}:\mathcal{M}_{com}
ightarrow\mathcal{M}_{com},$$

where *P* is the projection onto \mathcal{M}_{com} along $\mathcal{M}_0 \dot{+} \ker H$. Assume that

$$\sigma(X + X^{[*]}) \subseteq \mathbb{R}$$
 or $\sigma(X - X^{[*]}) \subseteq i\mathbb{R}$.

Then there exists an *A*-invariant maximal *H*-nonnegative subspace \mathcal{M} that contains \mathcal{M}_0 and that is also $A^{[*]}$ -invariant.

Hyponormal matrices

In a definition the foolowing line should appear:

$$A^{[*]}A - AA^{[*]}$$
 is *H*-nonpositive. (4)

Recall: A linear relation *B* is *H*-nonpositive if *B* is *H*-symmetric and

$$[y,x] \leq 0$$
 for all $\begin{pmatrix} x \\ y \end{pmatrix} \in B$.

Problem: . Let H_1 and A_2 regular $n \times n$ matrices,

$$H = \begin{pmatrix} H_1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$.

Then dom $(AA^{[*]}) \cap \text{dom} (A^{[*]}A) = \{0\}$ and (4) is always true. (\rightarrow unbounded operators) Remember:

_emma

We have dom $A^{[*]} = \mathbb{C}^n \iff \operatorname{ran}(A^*H) \subseteq \operatorname{ran} H \iff A_2 = 0.$

Hyponormal matrices

In a definition the foolowing line should appear:

$$A^{[*]}A - AA^{[*]}$$
 is *H*-nonpositive. (4)

Recall: A linear relation *B* is *H*-nonpositive if *B* is *H*-symmetric and

$$[y,x] \leq 0$$
 for all $\begin{pmatrix} x \\ y \end{pmatrix} \in B$.

Problem: Let H_1 and A_2 regular $n \times n$ matrices,

$$H = \begin{pmatrix} H_1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$.

Then dom $(AA^{[*]}) \cap \text{dom} (A^{[*]}A) = \{0\}$ and (4) is always true. (\rightarrow unbounded operators) Remember:

_emma

We have dom $A^{[*]} = \mathbb{C}^n \iff \operatorname{ran}(A^*H) \subseteq \operatorname{ran} H \iff A_2 = 0.$

Hyponormal matrices

In a definition the foolowing line should appear:

$$A^{[*]}A - AA^{[*]}$$
 is *H*-nonpositive. (4)

Recall: A linear relation *B* is *H*-nonpositive if *B* is *H*-symmetric and

$$[y,x] \leq 0$$
 for all $\begin{pmatrix} x \\ y \end{pmatrix} \in B$.

Problem: Let H_1 and A_2 regular $n \times n$ matrices,

$$H = \left(egin{array}{cc} H_1 & 0 \\ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \\ A_3 & A_4 \end{array}
ight).$

Then dom $(AA^{[*]}) \cap \text{dom} (A^{[*]}A) = \{0\}$ and (4) is always true. (\rightarrow unbounded operators) Remember:

Lemma

We have dom
$$A^{[*]} = \mathbb{C}^n \iff \operatorname{ran}(A^*H) \subseteq \operatorname{ran} H \iff A_2 = 0.$$

$$H = \left(egin{array}{cc} H_1 & 0 \\ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \\ A_3 & A_4 \end{array}
ight)$.

_emma

Let A be a matrix as above. The following are equivalent.

(i) The domain of the linear relation $A^{[*]}A$ is \mathbb{C}^n .

(ii)
$$A_2^*H_1A_1 = 0$$
 and $A_2^*H_1A_2 = 0$.

Definition

A linear relation A is called *H-hyponormal* if $A^{[*]}A$ has full domain and if $A^{[*]}A - AA^{[*]}$ is *H*-nonpositive.

Definition

A linear relation A is called *strongly* H-hyponormal if A is H-hyponormal and if $(A^{[*]})^n A^n$ has full domain for all $n \in \mathbb{N}$

13/13

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Lemma

Let A be a matrix as above. The following are equivalent.

(i) The domain of the linear relation $A^{[*]}A$ is \mathbb{C}^n .

(ii) $A_2^*H_1A_1 = 0$ and $A_2^*H_1A_2 = 0$.

Definition

A linear relation A is called *H-hyponormal* if $A^{[*]}A$ has full domain and if $A^{[*]}A - AA^{[*]}$ is *H*-nonpositive.

Definition

A linear relation A is called strongly H-hyponormal if A is H-hyponormal and if $(A^{[*]})^n A^n$ has full domain for all $n \in \mathbb{N}$

13/13

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Lemma

Let A be a matrix as above. The following are equivalent.

(i) The domain of the linear relation $A^{[*]}A$ is \mathbb{C}^n .

(ii)
$$A_2^*H_1A_1 = 0$$
 and $A_2^*H_1A_2 = 0$.

Definition

A linear relation A is called *H-hyponormal* if $A^{[*]}A$ has full domain and if $A^{[*]}A - AA^{[*]}$ is *H*-nonpositive.

Definition

A linear relation A is called *strongly* H-hyponormal if A is H-hyponormal and if $(A^{[*]})^n A^n$ has full domain for all $n \in \mathbb{N}$

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Lemma

Let A be a matrix as above. The following are equivalent.

(i) The domain of the linear relation $A^{[*]}A$ is \mathbb{C}^n .

(ii)
$$A_2^*H_1A_1 = 0$$
 and $A_2^*H_1A_2 = 0$.

Definition

A linear relation A is called *H*-hyponormal if $A^{[*]}A$ has full domain and if $A^{[*]}A - AA^{[*]}$ is *H*-nonpositive.

Definition

A linear relation A is called *strongly* H-hyponormal if A is H-hyponormal and if $(A^{[*]})^n A^n$ has full domain for all $n \in \mathbb{N}$

$$H = \left(egin{array}{cc} H_1 & 0 \ 0 & 0 \end{array}
ight)$$
 and $A = \left(egin{array}{cc} A_1 & A_2 \ A_3 & A_4 \end{array}
ight).$

Lemma

Let A be a matrix as above. The following are equivalent.

(i) The domain of the linear relation $A^{[*]}A$ is \mathbb{C}^n .

(ii)
$$A_2^*H_1A_1 = 0$$
 and $A_2^*H_1A_2 = 0$.

Definition

A linear relation A is called *H*-hyponormal if $A^{[*]}A$ has full domain and if $A^{[*]}A - AA^{[*]}$ is *H*-nonpositive.

Definition

A linear relation A is called *strongly H*-hyponormal if A is *H*-hyponormal and if $(A^{[*]})^n A^n$ has full domain for all $n \in \mathbb{N}$.

13/13