Influence of Curvature on Impurity Spectrum in Quantum Dot

Matěj Tušek

tusekm1@km1.fjfi.cvut.cz joint work with V. Geyler and P. Št'ovíček

December 13, 2006

Outline

(1) Introduction
(2) Quantum dot with impurity in Eucledian plane

- Definition
- Spectrum
- Krein Q-function
(3) Quantum dot with impurity in Lobachevsky plane
- Definition
- Radial part of the Green function
- Krein Q-function

Model of quantum dot

- We take the two-dimensional Laplace-Beltrami operator and we choose the harmonic oscillator potential to take the confinement into the account.
- The impurity si modelled by a point potential (δ-interaction).
- The point potential is introduced with the help of the self-adjoint extension method which yields a boundary condition.

Problem

- At first we consider the flat case (Euclidian plane) and an arbitrary position of the impurity.
- Next we deal with a non-zero curvature (Lobachevsky plane), but we restrict ourselves to the case when the impurity is localized in the center of the potential. This problem still remains open.
- In both cases we find an explicit formula for the Green function of the total hamiltonian.
- Moreover we try to analyze the spectrum in dependence of the problem parameters.

Quantum dot with impurity in Eucledian plane-model

Two-dimensional isotropic harmonic oscillator:

$$
\begin{aligned}
& H=-\Delta+\frac{1}{4} \omega^{2} x^{2}, \quad \text { where } \omega \geq 0 \\
& \operatorname{Dom}(H)=\operatorname{span}\left\{\left.x_{1}^{n_{1}} x_{2}^{n_{2}} \mathrm{e}^{-\frac{\omega x^{2}}{4}} \right\rvert\, n_{1}, n_{2} \in \mathbb{N}_{0}\right\}
\end{aligned}
$$

Perturbed hamiltonian $H_{\alpha}(q), \alpha \in \mathbb{R}$, is a selfadjoint extension of the following symmetric operator:
$\operatorname{Dom}(H(q)):=\{f \in \operatorname{Dom}(H) \mid f(q)=0\}, \quad H(q):=\left.H\right|_{\operatorname{Dom}(H(q))}$

Spectrum

Krein formula:

$$
\mathcal{G}_{z}^{\alpha, q}(x, y)=\mathcal{G}_{z}^{\mathrm{ho}}(x, y)-[Q(z, q)-\alpha]^{-1} \mathcal{G}_{z}^{\mathrm{ho}}(x, q) \mathcal{G}_{z}^{\mathrm{ho}}(q, y)
$$

where $Q(z, q)=\mathcal{G}_{z, \text { reg }}^{\text {ho }}(q, q)$ is the regularized Green function of H evaluated in $x=y=q$ (so-called Krein Q-function).

- An eigenvalue λ_{n} of H of the multiplicity k_{n} is an eigenvalue of H_{α} of the multiplicity $k_{n}+1, k_{n}$ or $k_{n}-1$.
- Additional eigenvalues different from λ_{n} are solutions to the equation

$$
Q(z, q)=\alpha
$$

Green function of two-dimensional isotropic harmonic oscillator

- In the polar coordinates:

$$
\begin{aligned}
& \mathcal{G}_{z}^{\mathrm{ho}}\left(r \hat{\varphi}, r^{\prime} \hat{\varphi}^{\prime}\right)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \mathcal{G}_{n}^{z}\left(r, r^{\prime}\right) \mathrm{e}^{i n\left(\varphi-\varphi^{\prime}\right)} \\
& \mathcal{G}_{n}^{z}\left(r, r^{\prime}\right)=\frac{\Gamma\left(\frac{1}{2}\left(|n|+1-\frac{z}{\omega}\right)\right)}{\omega \Gamma(|n|+1)} \frac{1}{r r^{\prime}} M_{\frac{z}{2 \omega}}, \frac{|n|}{2}\left(\frac{\omega}{2} r_{<}^{2}\right) W_{\frac{z}{2 \omega}, \left.\frac{n \mid}{2} \right\rvert\,}\left(\frac{\omega}{2} r_{>}^{2}\right) \\
& (H-z) \mathcal{G}_{z}^{\mathrm{ho}}(x, y)=\delta(x-y), \quad \text { for } z \in \mathbb{C} \backslash \sigma(H),
\end{aligned}
$$

where $M_{a, b}$ and $W_{a, b}$ denote the Whittaker functions and $r_{<}, r_{>}$are the smaller and the greater of r and r^{\prime}, respectively.

- The divergent part: $-\frac{1}{2 \pi} \ln |x-y|$

Comparing the following expressions for the free hamiltonian Green function $\mathcal{G}_{z}(x-y)=\frac{i}{4} H_{0}^{(1)}(\sqrt{z}|x-y|)$ we obtain a series for the divergent part $(z<0)$:

$$
\begin{aligned}
& \text { - } \mathcal{G}_{z}(x-y) \stackrel{|x-y| \rightarrow 0}{\sim}-\frac{1}{2 \pi}\left(\ln |x-y|+\ln \frac{\sqrt{-z}}{2}-\Psi(1)\right) \\
& \text { - } \mathcal{G}_{z}(x-y)=\frac{i}{4} \sum_{n=-\infty}^{\infty} H_{n}^{(1)}\left(i \sqrt{-z} r_{>}\right) J_{n}\left(i \sqrt{-z} r_{<}\right) \cos \left[n\left(\varphi-\varphi^{\prime}\right)\right]
\end{aligned}
$$

For Krein Q-function, we conclude:

$$
Q(z, q)=\left\{\begin{array}{l}
\sum_{n=1}^{\infty}\left(\frac{1}{\pi} \mathcal{G}_{n}^{z}(q, q)+\frac{1}{2} Y_{n}(\sqrt{z} q) J_{n}(\sqrt{z} q)\right)+\frac{1}{2 \pi} \mathcal{G}_{0}^{z}(q, q) \\
+\frac{1}{4} Y_{0}(\sqrt{z} q) J_{0}(\sqrt{z} q)-\frac{1}{2 \pi}\left(\ln \frac{\sqrt{z}}{2}-\Psi(1)\right) \quad \text { for } z>0 \\
\sum_{n=1}^{\infty}\left(\frac{1}{\pi} \mathcal{G}_{n}^{z}(q, q)-\frac{i}{2} H_{n}^{(1)}(i \sqrt{-z} q) J_{n}(i \sqrt{-z} q)\right) \\
+\frac{1}{2 \pi} \mathcal{G}_{0}^{z}(q, q)-\frac{i}{4} H_{0}^{(1)}(i \sqrt{-z} q) J_{0}(i \sqrt{-z} q) \\
-\frac{1}{2 \pi}\left(\ln \frac{\sqrt{-z}}{2}-\Psi(1)\right) \quad \text { for } z<0 .
\end{array}\right.
$$

Figure: Krein Q-function for several values of q

Figure: Energy levels E_{n} for $\alpha=2, \alpha=0, \alpha=-2$

Quantum dot with impurity in Lobachevsky plane-model

Lobachevsky plane \mathbb{L}_{a}^{2} in polar coordinates

$$
\mathrm{ds} s^{2}=\mathrm{d} \varrho^{2}+a^{2} \sinh ^{2} \frac{\varrho}{a} \mathrm{~d} \theta^{2},
$$

where $0>$ const. $=R=-\frac{2}{a^{2}}$ is scalar curvature

Hamiltonian of the two-dimensional isotropic harmonic oscillator with the central point interaction in the Lobachevsky plane is a s.a. extension of:

$$
\begin{aligned}
& H=-\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}} \sqrt{g} g^{i j} \frac{\partial}{\partial x^{j}}-\frac{1}{4 a^{2}}+\frac{1}{4} a^{2} \omega^{2} \sinh ^{2}\left(\frac{\varrho}{a}\right) \\
& \operatorname{Dom}(H)=C_{0}^{\infty}\left(\mathbb{L}_{a}^{2} \backslash\{0\}\right)
\end{aligned}
$$

Partial wave decomposition

- Substitution $\xi=\cosh \frac{\varrho}{a}$ yields

$$
H=\frac{1}{a^{2}}\left[\left(1-\xi^{2}\right) \frac{\partial^{2}}{\partial \xi^{2}}-2 \xi \frac{\partial}{\partial \xi}+\left(1-\xi^{2}\right)^{-1} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{a^{4} \omega^{2}}{2}\left(\xi^{2}-1\right)-\frac{1}{4}\right]=: \frac{1}{a^{2}} \tilde{H} .
$$

- \tilde{H} may be decomposed in the following way

$$
\begin{aligned}
& \tilde{H}=\bigoplus_{n=-\infty}^{\infty} \tilde{H}_{n} \\
& \tilde{H}_{n}=\left(1-\xi^{2}\right) \frac{\partial^{2}}{\partial \xi^{2}}-2 \xi \frac{\partial}{\partial \xi}-n^{2}\left(1-\xi^{2}\right)^{-1}+\frac{\partial^{4} \omega^{2}}{2}\left(\xi^{2}-1\right)-\frac{1}{4}, \quad \operatorname{Dom}\left(\tilde{H}_{n}\right)=C_{0}^{\infty}(1, \infty)
\end{aligned}
$$

- We conclude
- \tilde{H}_{n} is e.s.a. for $n \neq 0$
- \tilde{H}_{0} has deficiency indices $(1,1)$

Radial part of Green function $\mathcal{G}_{z}(\mathrm{~d} \theta=0)$

- To find the Krein Q-function, we may restrict ourselves to the radial part of the Green function since

$$
Q(z)=\mathcal{G}_{z, \text { reg }}(1,0 ; 1,0) \text { and } \mathcal{G}_{z}(\xi, \theta ; 1,0)=\mathcal{G}_{z}(\xi),
$$

- and hence $(\tilde{H}-z) \mathcal{G}_{z}(\xi)=\left(\tilde{H}_{0}-z\right) \mathcal{G}_{z}(\xi)=0 \quad$ for $\xi \in(1, \infty)$.

$$
\begin{aligned}
& \left(\tilde{H}_{0}-z\right) \mathcal{G}_{z}=\left[\left(1-\xi^{2}\right) \frac{\partial^{2}}{\partial \xi^{2}}-2 \xi \frac{\partial}{\partial \xi}-c^{2} \xi^{2}+\lambda_{\nu}(c)\right] \mathcal{G}_{z}=0 \\
& \text { where } c^{2}=-\frac{a^{4} \omega^{2}}{2}, \quad \lambda_{\nu}(c)=-z-\frac{a^{4} \omega^{2}}{2}-\frac{1}{4}
\end{aligned}
$$

The only solution which is in $L^{2}\left((1, \infty), a^{2} \mathrm{~d} \xi\right)$ near infinity is the following combination of radial spheroidal functions:

$$
R_{\nu}^{0(3)}=R_{\nu}^{0(1)}+i R_{\nu}^{0(2)}
$$

Asymptotic expansion for $R_{\nu}^{0(3)}$ as $\xi \rightarrow 1+$

- We make use of the relation

$$
R_{\nu}^{0(3)}=[i \cos (\nu \pi)]^{-1}\left[R_{-\nu-1}^{0(1)}-\mathrm{e}^{-i \pi(\nu+1 / 2)} R_{\nu}^{0(1)}\right] .
$$

- Then we convert radial spheroidal functions to angular spheroidal functions with the help of so-called joining factor

$$
\begin{aligned}
R_{\nu}^{0(1)}(c, \xi) & =\kappa_{\nu}^{0(1)}(c) \frac{\mathrm{e}^{-i \pi \nu}}{\pi} \frac{(c \xi)^{\nu}}{(c)^{\nu}(\xi)^{\nu}} \\
& {\left[\frac{\pi}{2}\left(2 \cos (\nu \pi)-\frac{\sqrt{-\xi-1}}{\sqrt{\xi+1}} \sin (\nu \pi)\right) S_{\nu}^{0(1)}(c, \xi)-\sin (\nu \pi) S_{\nu}^{0(2)}(c, \xi)\right] }
\end{aligned}
$$

- Angular spheroidal functions may be written in infinite series of Legendre functions

$$
S_{\nu}^{0(2)}(c, \xi)=\sum_{k=-\infty}^{\infty} d_{k}^{0 \nu}(c) Q_{\nu+2 k}^{0}(\xi)
$$

- Using the asymptotic expansion

$$
Q_{\nu}^{0}(\xi) \stackrel{\xi \rightarrow 1}{\sim}-\frac{1}{2} \ln \left(\frac{\xi-1}{2}\right)+\Psi(1)-\Psi(\nu+1)-i \frac{\pi}{2}+O((\xi-1) \ln (\xi-1))
$$

we conclude that

$$
R_{\nu}^{0(3)}(c, z)^{\xi \rightarrow 1} \sim \ln (\xi-1)+\beta+O((\xi-1) \ln (\xi-1))
$$

The ratio $\frac{\beta}{\alpha}$ is propotional to the Krein Q-function and holds

$$
Q\left(\lambda_{\nu}(c)\right) \propto \frac{\beta}{\alpha}=-\ln (2)-2 \Psi(1)+\frac{2}{A_{\nu}(c)} \Psi s_{\nu}(c)-\frac{2 \pi}{\tan (\nu \pi)}\left(\frac{\kappa_{-\nu-1}^{0(1)}(c)}{\kappa_{\nu}^{0(1)}(c)} \mathrm{e}^{i \pi(3 \nu+3 / 2)}-1\right)
$$

where $A_{\nu}(c)=\sum_{k=-\infty}^{\infty} d_{k}^{0 \nu}(c), \quad \Psi_{s_{\nu}}(c)=\sum_{k=-\infty}^{\infty} d_{k}^{0 \nu}(c) \Psi(\nu+2 k+1)$

Theorem

Let $d(x, y)$ denotes the geodesic distance between the points x, y of a two-dimensional manifold X of bounded geometry. Let $U \in \mathcal{P}(X):=\left\{U \mid U_{+}:=\max (U, 0) \in L_{\text {loc }}^{p_{0}}(X), U_{-}:=\max (-U, 0) \in \sum_{i=1}^{n} L^{p_{i}}(X)\right\}$ for an arbitrary $n \in \mathbb{N}$ and $2 \leq p_{i} \leq \infty$ and $A \in\left(C^{\infty}(X)\right)^{2}$. Then the Green function $\mathcal{G}_{A, U}$ of the Schrödinger operator $H_{A, U}=-\Delta_{A}+U$ has the same on-diagonal singularity as that for the Laplace-Beltrami operator, i.e.,

$$
\mathcal{G}_{A, U}(x, y ; \zeta)=\frac{1}{2 \pi} \ln \frac{1}{d(x, y)}+\mathcal{G}_{A, U}^{r e g}(x, y ; \zeta)
$$

where $\mathcal{G}_{A, U}^{\text {reg }}$ is continuous on $X \times X$. [BGP]

Krein Q-function

Using the previous theorem we conclude for the Krein Q-function

$$
Q\left(\lambda_{\nu}(c)\right)=-\frac{1}{2 \pi}\left(-\ln (2)-2 \Psi(1)+\frac{2}{A_{\nu}(c)} \Psi_{S_{\nu}}(c)\right)+\frac{1}{\tan (\nu \pi)}\left(\frac{\kappa_{-\nu-1}^{0(1)}(c)}{\kappa_{\nu}^{0(1)}(c)} e^{i \pi(3 \nu+3 / 2)}-1\right)
$$

- We may ask for which ν the spheroidal eigenvalue $\lambda_{\nu}(c), c=i|c|$, is real.
- For those ν, the Krein Q-function should be real too.
- Knowing dependencies of $\lambda_{\nu}(c)$ and $Q\left(\lambda_{\nu}(c)\right)$ on ν, we may find Q-function as a function of spectral parameter.
- For numerical computation we use a Mathematica package Spheroidal.m by Peter Falloon, which I have modified a bit, but it still gives wrong numbers for some values of parameters!

Figure: Dependence of $\lambda_{\nu}(I)$ on ν. It can be proved that $\lambda_{\nu}(c) \in \mathbb{R}$ for $\nu \in \mathbb{R}$. Note the axial symmetry with respect to $\nu=-1 / 2$.

Figure: Dependence of $Q\left(\lambda_{\nu}(I)\right)$ on ν.

Figure: Krein Q-function as a function of the spectral parameter z. Unfortunately there are still 'white places'.

Fundamental references

BGL J. Brüning, V. Geyler, and I. Lobanov. Spectral Properties of a Short-Range Impurity in a Quantum Dot. Journal of Mathematical Physics
BGP J. Brüning, V. Geyler, and K. Pankrashkin. On-diagonal Singularities of the Green Functions for Schrödinger Operators. Journal of Mathematical Physics
AGG S. Albeverio, V. Geyler, and E.N. Grishanov. Point Perturbations in the Spaces of Constant Curvature preprint

Thank you for your attention!

