Influence of Curvature on Impurity Spectrum in Quantum Dot

Matěj Tušek tusekm1@km1.fjfi.cvut.cz joint work with V. Geyler and P. Šťovíček

December 13, 2006

V. Geyler, P. Šťovíček, M. Tušek Quantum dot with impurity

Outline

Introduction

- Quantum dot with impurity in Eucledian plane
 - Definition
 - Spectrum
 - Krein *Q*-function
- Quantum dot with impurity in Lobachevsky plane
 - Definition
 - Radial part of the Green function
 - Krein *Q*-function

Model of quantum dot

- We take the two-dimensional Laplace-Beltrami operator and we choose the harmonic oscillator potential to take the confinement into the account.
- The impurity si modelled by a point potential (δ -interaction).
- The point potential is introduced with the help of the self-adjoint extension method which yields a boundary condition.

Problem

- At first we consider the flat case (Euclidian plane) and an arbitrary position of the impurity.
- Next we deal with a non-zero curvature (Lobachevsky plane), but we restrict ourselves to the case when the impurity is localized in the center of the potential. This problem still remains open.
- In both cases we find an explicit formula for the Green function of the total hamiltonian.
- Moreover we try to analyze the spectrum in dependence of the problem parameters.

Definition Spectrum Krein Q-function

Quantum dot with impurity in Eucledian plane-model

Two-dimensional isotropic harmonic oscillator:

$$egin{aligned} \mathcal{H} &= -\Delta + rac{1}{4}\omega^2 x^2, & ext{where } \omega \geq 0 \ \mathcal{D}om(\mathcal{H}) &= span \left\{ x_1^{n_1} x_2^{n_2} \mathrm{e}^{-rac{\omega x^2}{4}} \mid n_1, n_2 \in \mathbb{N}_0
ight\} \end{aligned}$$

Perturbed hamiltonian $H_{\alpha}(q), \ \alpha \in \mathbb{R}$, is a selfadjoint extension of the following symmetric operator:

$$Dom(H(q)) := \{f \in Dom(H) | f(q) = 0\}, \quad H(q) := H \upharpoonright_{Dom(H(q))}$$

Spectrum

Krein formula:

$$\mathcal{G}_{z}^{\alpha,q}(x,y) = \mathcal{G}_{z}^{\mathsf{ho}}(x,y) - [Q(z,q) - \alpha]^{-1} \mathcal{G}_{z}^{\mathsf{ho}}(x,q) \mathcal{G}_{z}^{\mathsf{ho}}(q,y),$$

Spectrum

where $Q(z,q) = \mathcal{G}_{z,\text{reg}}^{\text{ho}}(q,q)$ is the regularized Green function of H evaluated in x = y = q (so-called Krein *Q*-function).

- An eigenvalue λ_n of H of the multiplicity k_n is an eigenvalue of H_α of the multiplicity k_n + 1, k_n or k_n - 1.
- Additional eigenvalues different from λ_n are solutions to the equation

$$Q(z,q)=\alpha.$$

(日)

Definition Spectrum Krein Q-function

Green function of two-dimensional isotropic harmonic oscillator

In the polar coordinates:

$$\begin{aligned} \mathcal{G}_{z}^{\text{ho}}(r\hat{\varphi}, r'\hat{\varphi}') &= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \mathcal{G}_{n}^{z}(r, r') e^{in(\varphi - \varphi')} \\ \mathcal{G}_{n}^{z}(r, r') &= \frac{\Gamma\left(\frac{1}{2}(|n|+1-\frac{z}{\omega})\right)}{\omega\Gamma(|n|+1)} \frac{1}{rr'} \mathcal{M}_{\frac{z}{2\omega}, \frac{|n|}{2}}\left(\frac{\omega}{2}r_{<}^{2}\right) \mathcal{W}_{\frac{z}{2\omega}, \frac{|n|}{2}}\left(\frac{\omega}{2}r_{>}^{2}\right) \\ (H-z) \mathcal{G}_{z}^{\text{ho}}(x, y) &= \delta(x-y), \quad \text{for } z \in \mathbb{C} \setminus \sigma(H), \end{aligned}$$

where $M_{a,b}$ and $W_{a,b}$ denote the Whittaker functions and $r_{<}, r_{>}$ are the smaller and the greater of r and r', respectively. • The divergent part: $-\frac{1}{2\pi} \ln |x - y|$ Quantum dot with impurity in Eucledian plane Spectrum Quantum dot with impurity in Lobachevsky plane Krein Q-function

Comparing the following expressions for the free hamiltonian Green function $\mathcal{G}_z(x-y) = \frac{i}{4}H_0^{(1)}(\sqrt{z}|x-y|)$ we obtain a series for the divergent part (z < 0):

•
$$\mathcal{G}_{z}(x-y) \overset{|x-y|\to 0}{\sim} -\frac{1}{2\pi} (\ln|x-y| + \ln \frac{\sqrt{-z}}{2} - \Psi(1))$$

•
$$\mathcal{G}_z(x-y) = \frac{i}{4} \sum_{n=-\infty}^{\infty} H_n^{(1)}(i\sqrt{-z}r_>) J_n(i\sqrt{-z}r_<) \cos[n(\varphi-\varphi')]$$

For Krein *Q*-function, we conclude:

$$Q(z,q) = \begin{cases} \sum_{n=1}^{\infty} \left(\frac{1}{\pi} \mathcal{G}_{n}^{z}(q,q) + \frac{1}{2} Y_{n}(\sqrt{z}q) J_{n}(\sqrt{z}q)\right) + \frac{1}{2\pi} \mathcal{G}_{0}^{z}(q,q) \\ + \frac{1}{4} Y_{0}(\sqrt{z}q) J_{0}(\sqrt{z}q) - \frac{1}{2\pi} (\ln \frac{\sqrt{z}}{2} - \Psi(1)) & \text{for } z > 0 \end{cases} \\ \sum_{n=1}^{\infty} \left(\frac{1}{\pi} \mathcal{G}_{n}^{z}(q,q) - \frac{i}{2} H_{n}^{(1)}(i\sqrt{-z}q) J_{n}(i\sqrt{-z}q)\right) \\ + \frac{1}{2\pi} \mathcal{G}_{0}^{z}(q,q) - \frac{i}{4} H_{0}^{(1)}(i\sqrt{-z}q) J_{0}(i\sqrt{-z}q) \\ - \frac{1}{2\pi} (\ln \frac{\sqrt{-z}}{2} - \Psi(1)) & \text{for } z < 0. \end{cases}$$

- 4 同 6 4 日 6 4 日 6

Introduction Definition Quantum dot with impurity in Eucledian plane Spectrum Quantum dot with impurity in Lobachevsky plane Krein Q-function

< ロ > < 同 > < 回 > < 回 >

2

Definition Spectrum Krein Q-function

Figure: Energy levels E_n for $\alpha = 2$, $\alpha = 0$, $\alpha = -2$

V. Geyler, P. Šťovíček, M. Tušek Quantum dot with impurity

з

Definition Radial part of the Green function Krein *Q*-function

< 口 > < 同 >

Quantum dot with impurity in Lobachevsky plane-model

Lobachevsky plane \mathbb{L}^2_a in polar coordinates

$$\mathrm{d}s^2 = \mathrm{d}\varrho^2 + a^2 \sinh^2\frac{\varrho}{a}\mathrm{d}\theta^2,$$

where $0 > const. = R = -\frac{2}{a^2}$ is scalar curvature

Hamiltonian of the two-dimensional isotropic harmonic oscillator with the central point interaction in the Lobachevsky plane is a s.a. extension of:

$$H = -\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}} \sqrt{g} g^{ij} \frac{\partial}{\partial x^{j}} - \frac{1}{4a^{2}} + \frac{1}{4}a^{2}\omega^{2}\sinh^{2}\left(\frac{\varrho}{a}\right)$$
$$Dom(H) = C_{0}^{\infty}(\mathbb{L}_{a}^{2} \setminus \{0\})$$

Definition Radial part of the Green function Krein *Q*-function

Partial wave decomposition

• Substitution
$$\xi = \cosh \frac{\varrho}{a}$$
 yields

$$H = \frac{1}{a^2} \left[(1-\xi^2) \frac{\partial^2}{\partial \xi^2} - 2\xi \frac{\partial}{\partial \xi} + (1-\xi^2)^{-1} \frac{\partial^2}{\partial \theta^2} + \frac{a^4 \omega^2}{2} (\xi^2 - 1) - \frac{1}{4} \right] = \frac{1}{a^2} \tilde{H}.$$

• $ilde{H}$ may be decomposed in the following way

$$\begin{split} \tilde{H} &= \bigoplus_{n=-\infty}^{\infty} \tilde{H}_n \\ \tilde{H}_n &= (1-\xi^2) \frac{\partial^2}{\partial \xi^2} - 2\xi \frac{\partial}{\partial \xi} - n^2 (1-\xi^2)^{-1} + \frac{a^4 \omega^2}{2} (\xi^2 - 1) - \frac{1}{4}, \quad Dom(\tilde{H}_n) = C_0^\infty(1,\infty) \end{split}$$

- We conclude
 - \tilde{H}_n is e.s.a. for $n \neq 0$
 - \tilde{H}_0 has deficiency indices (1,1)

Definition Radial part of the Green function Krein *Q*-function

Radial part of Green function \mathcal{G}_z (d $\theta = 0$)

• To find the Krein *Q*-function, we may restrict ourselves to the radial part of the Green function since

$$Q(z) = \mathcal{G}_{z,reg}(1,0;1,0) \text{ and } \mathcal{G}_{z}(\xi,\theta;1,0) = \mathcal{G}_{z}(\xi),$$

• and hence $(\tilde{H}-z)\mathcal{G}_z(\xi) = (\tilde{H}_0 - z)\mathcal{G}_z(\xi) = 0$ for $\xi \in (1,\infty)$.

$$\begin{split} & (\tilde{H}_0 - z)\mathcal{G}_z \!=\! \left[(1 \!-\! \xi^2) \frac{\partial^2}{\partial \xi^2} \!-\! 2\xi \frac{\partial}{\partial \xi} \!-\! c^2 \xi^2 \!+\! \lambda_\nu(c) \right] \!\mathcal{G}_z \!=\! 0 \\ & \text{where } c^2 \!=\! -\frac{a^4 \omega^2}{2}, \quad \lambda_\nu(c) \!=\! -z \!-\! \frac{a^4 \omega^2}{2} \!-\! \frac{1}{4} \end{split}$$

The only solution which is in $L^2((1, \infty), a^2 d\xi)$ near infinity is the following combination of radial spheroidal functions:

 $R_{\nu}^{0(3)} = R_{\nu}^{0(1)} + i R_{\nu}^{0(2)}$

Definition Radial part of the Green function Krein *Q*-function

Asymptotic expansion for ${\cal R}_
u^{0(3)}$ as $\xi o 1+$

• We make use of the relation

$$R_{\nu}^{0(3)} = [i\cos(\nu\pi)]^{-1} \Big[R_{-\nu-1}^{0(1)} - e^{-i\pi(\nu+1/2)} R_{\nu}^{0(1)} \Big].$$

 Then we convert radial spheroidal functions to angular spheroidal functions with the help of so-called joining factor

$$\begin{split} R_{\nu}^{0(1)}(c,\xi) = & \kappa_{\nu}^{0(1)}(c) \frac{e^{-i\pi\nu}}{\pi} \frac{(c\xi)^{\nu}}{(c)^{\nu}(\xi)^{\nu}} \\ & \left[\frac{\pi}{2} \left(2\cos(\nu\pi) - \frac{\sqrt{-\xi-1}}{\sqrt{\xi+1}} \sin(\nu\pi) \right) S_{\nu}^{0(1)}(c,\xi) - \sin(\nu\pi) S_{\nu}^{0(2)}(c,\xi) \right] \end{split}$$

 Angular spheroidal functions may be written in infinite series of Legendre functions

$$S_{\nu}^{0(2)}(c,\xi) = \sum_{k=-\infty}^{\infty} d_{k}^{0\nu}(c) Q_{\nu+2k}^{0}(\xi)$$

 Introduction
 Definition

 Quantum dot with impurity in Eucledian plane
 Radial part of the Green function

 Quantum dot with impurity in Lobachevsky plane
 Krein Q-function

• Using the asymptotic expansion

$$Q^0_{
u}(\xi)^{\xi
ightarrow 1} - rac{1}{2} \ln \left(rac{\xi-1}{2}
ight) + \Psi(1) - \Psi(
u+1) - irac{\pi}{2} + O((\xi-1) \ln(\xi-1))$$

we conclude that

$$R^{0(3)}_{
u}(c,z) \stackrel{\xi o 1}{\sim} lpha \ln(\xi - 1) + eta + O((\xi - 1) \ln(\xi - 1)).$$

The ratio $\frac{\beta}{\alpha}$ is propotional to the Krein Q-function and holds

$$Q(\lambda_{\nu}(c)) \propto \frac{\beta}{\alpha} = -\ln(2) - 2\Psi(1) + \frac{2}{A_{\nu}(c)} \Psi s_{\nu}(c) - \frac{2\pi}{\tan(\nu\pi)} \left(\frac{\kappa \frac{0(1)}{-\nu-1}(c)}{\kappa \frac{0(1)}{\nu}(c)} e^{i\pi(3\nu+3/2)} - 1 \right)$$

where $A_{\nu}(c) = \sum_{k=-\infty}^{\infty} d_{k}^{0\nu}(c), \quad \Psi s_{\nu}(c) = \sum_{k=-\infty}^{\infty} d_{k}^{0\nu}(c) \Psi(\nu+2k+1)$

Introduction	Definition
Quantum dot with impurity in Eucledian plane	Radial part of the Green function
Quantum dot with impurity in Lobachevsky plane	Krein <i>Q</i> -function

Theorem

Let d(x, y) denotes the geodesic distance between the points x, yof a two-dimensional manifold X of bounded geometry. Let $U \in \mathcal{P}(X) := \{ U \mid U_+ := \max(U, 0) \in L^{p_0}_{loc}(X), U_- := \max(-U, 0) \in \sum_{i=1}^{n} L^{p_i}(X) \}$ for an arbitrary $n \in \mathbb{N}$ and $2 \le p_i \le \infty$ and $A \in (C^{\infty}(X))^2$. Then the Green function $\mathcal{G}_{A,U}$ of the Schrödinger operator $H_{A,U} = -\Delta_A + U$ has the same on-diagonal singularity as that for the Laplace-Beltrami operator, i.e.,

$$\mathcal{G}_{A,U}(x,y;\zeta) = rac{1}{2\pi} \ln rac{1}{d(x,y)} + \mathcal{G}_{A,U}^{reg}(x,y;\zeta),$$

where $\mathcal{G}_{A,U}^{reg}$ is continuous on $X \times X$. [BGP]

Definition Radial part of the Green function Krein *Q*-function

Krein Q-function

Using the previous theorem we conclude for the Krein Q-function

$$Q(\lambda_{\nu}(c)) = -\frac{1}{2\pi} \left(-\ln(2) - 2\Psi(1) + \frac{2}{A_{\nu}(c)} \Psi s_{\nu}(c) \right) + \frac{1}{\tan(\nu\pi)} \left(\frac{\kappa_{-\nu-1}^{0(1)}(c)}{\kappa_{\nu}^{0(1)}(c)} e^{i\pi(3\nu+3/2)} - 1 \right)$$

- We may ask for which ν the spheroidal eigenvalue $\lambda_{\nu}(c), \ c = i|c|$, is real.
- For those ν , the Krein Q-function should be real too.
- Knowing dependencies of $\lambda_{\nu}(c)$ and $Q(\lambda_{\nu}(c))$ on ν , we may find Q-function as a function of spectral parameter.
- For numerical computation we use a Mathematica package Spheroidal.m by Peter Falloon, which I have modified a bit, but it still gives wrong numbers for some values of parameters!

Introduction	Definition
Quantum dot with impurity in Eucledian plane	Radial part of the Green function
Quantum dot with impurity in Lobachevsky plane	Krein Q-function

Figure: Dependence of $\lambda_{\nu}(I)$ on ν . It can be proved that $\lambda_{\nu}(c) \in \mathbb{R}$ for $\nu \in \mathbb{R}$. Note the axial symmetry with respect to $\nu = -1/2$.

Introduction	Definition
Quantum dot with impurity in Eucledian plane	
Quantum dot with impurity in Lobachevsky plane	Krein Q-function

3

Introduction Definition Quantum dot with impurity in Eucledian plane Radial part of the Green function Quantum dot with impurity in Lobachevsky plane Krein Q-function

Figure: Krein *Q*-function as a function of the spectral parameter *z*. Unfortunately there are still 'white places'.

< 口 > < 同

Definition Radial part of the Green function Krein *Q*-function

Fundamental references

- BGL J. Brüning, V. Geyler, and I. Lobanov. Spectral Properties of a Short-Range Impurity in a Quantum Dot. *Journal of Mathematical Physics*
- BGP J. Brüning, V. Geyler, and K. Pankrashkin. On-diagonal Singularities of the Green Functions for Schrödinger Operators. *Journal of Mathematical Physics*
- AGG S. Albeverio, V. Geyler, and E.N. Grishanov. Point Perturbations in the Spaces of Constant Curvature *preprint*

 Introduction
 Definition

 Quantum dot with impurity in Lobachevsky plane
 Radial part of the Green function

 Quantum dot with impurity in Lobachevsky plane
 Krein Q-function

Thank you for your attention!

< □ > < 同 >

< ∃ >

B) 3