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Krešimir Veselić, Fernuniversität Hagen

December 15, 2006



Let H be selfadjoint and A symmetric. What

can be said on the discrete eigenvalues λk,

µk of H, T = H +A, respectively?

Depends on how the sum H+A is defined.

Known posibilities are

‖Aψ‖2 ≤ a‖ψ‖2 + b‖Hψ‖2, b < 1,

|(Aψ,ψ)| ≤ a‖ψ‖2 + b(Hψ,ψ), b < 1,

|(Aψ,ψ)| ≤ a‖ψ‖2 + b(|H|ψ,ψ), b < 1, (1)

— the most general case. Expected bound:

|µk − λk| ≤ a+ b|λk|

Is this true? When exactly (spectral gaps,

too)? How to compute |H|?

All our results are formulated more gener-

ally — for quadratic form sums (instead

of (Aψ,ψ) we have just a form α(ψ,ψ)).

We stick to the operator symbols for no-

tational simplicity.
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Today’s topics

• A general eigenvalue bound, covering

known results for finite matrices, uses

no variational principles, valid when-

ever feasible. Spectral gaps included.

• ’Krein space connection’: typical self-

adjoint indefinite operator is often given

as T = GJG∗ where all factors have

bounded inverses. If the associated J-

selfadjoint operator

S = JG∗G

is regular at infinity then it yields a new

attractive formula for |T |.

• Some new regularity criteria for such S

are derived.

• Some now types of operator matrices

are considered.
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The pseudo-Friedrichs construction (Kato):

|(Aψ,ψ)| ≤ ‖H1ψ‖2, H1 = a+ b|H|, b < 1.

T = H
−1/2
1 (signH + C)H

−1/2
1 ,

(Cψ, φ) = (AH
−1/2
1 ψ,H

−1/2
1 φ), ‖C‖ ≤ 1.

Theorem 1 The form bound above im-

plies

|µk − λk| ≤ a+ b|λk| (2)

in any ’firewalled’ interval W such that

W ∪ σess(H) = ∅. Here, depending on W,

both µk and λk are either increasingly or

decreasingly ordered

A ’firewall’ is a point d which is not crossed

by the spectral points of several analytic

operator families used in the proof, in par-

ticular of Tε = H + εA. Possible W’s are

(d1, d2), (d,∞), (−∞, d), (−∞,∞).
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An ’optimally placed’ firewall d in a maxi-

mal resolvent interval λ+, λ− of H is

d =


2bλ+λ−+a(λ++λ−)

b(λ++λ−)+2a , λ− ≥ 0

a(λ++λ−)
b(λ+−λ−)+2a, λ− ≤ 0

(3)

if the constants a, b satisfy

b(λ++λ−)+2a
λ+−λ−

< 1, λ− ≥ 0

b+ 2a
λ+−λ−

< 1, λ− ≤ 0

(4)

Here, for definiteness, λ+ > 0. The proof

of the theorem uses the analyticity of the

operator families

Tε = H+εA, T̃ε = (1−ε)T+ε(H+a+b|H|)

−1 ≤ ε ≤ 1,

Now the monotonicity of T̃ε carries over to

the eigenvalues

λk − a− b|λk| ≤ µk ≤ λk + a+ b|λk|.
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In fact, the full strength of the obtained

estimate is

minσ(C)(a+b|λk|) ≤ µk−λk ≤ maxσ(C)(a+b|λk|)

with C from

T = H
−1/2
1 (signH + C)H

−1/2
1 .

For b = 0, a = ‖A‖ this recovers the known

sharp estimate

minσ(A) ≤ µk − λk ≤ maxσ(A)

for the eigenvalues of T = H +A.
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Typical way of constructing an unbounded

indefinite selfadjoint T with a spectral gap

at zero is a factorisation:

T = GJG∗.

E.g. the pseudo-Friedrichs construction

for ”T = H +A” reads

T = |H|−1/2(signH + C)|H|−1/2,

(Cψ, φ) = (A|H|−1/2ψ, |H|−1/2φ), ‖C‖ ≤ 1.

The associated operator

S = JG∗G

is J-selfadjoint and has the same spectrum

as T . Moreover, S is J-positive definite

(take for simplicity J as a symmetry: J =

J−1).

A closer connection between T and S holds,

if S is ’regular at infinity’, that is,

S0 = F−1SF, with J-unitary F

is selfadjoint i.e. commutes with J (J-unitary

diagonalisability).
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Theorem 2 Let G−1 be bounded,

T = GJG∗, J = J∗ = J−1

and let S be J-diagonalisable:

S0 = F−1SF, S0J = JS0, F J-unitary.

Then JS0 = |S0| is positive definite and

U−1TU = S0 (5)

where U = GF (JS0)
−1/2 is unitary. More-

over,

|T | =
√
T2 = GFF ∗G∗ (6)

and

D(G∗) = D(|T |1/2). (7)

Conversely, (7) implies the J-unitary diag-
onalisability of S.

Application: for S = JP , P pos. definite,
take G = P1/2, T = P1/2JP1/2.

S regular at ∞ ⇔ D(P1/2) = D(|T |1/2).
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A more practical sufficient regularity crite-

rion:

Theorem 3 Let S be such that P = JS is

selfadjoint and positive definite for some

J = J∗ = J−1. Let Θ be positive definite

and such that its form domain coincides

with that of P and ΘJ = JΘ. Then S is

J-diagonalisable. All diagonalising F have

the same norm and

‖F‖2 = κ(F ) ≤ κ(P1/2Θ−1/2), (8)

for any such Θ. Here κ(A) = ‖A‖‖A−1‖
(the condition number).

Q: Is this condition necessary?
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Sketch of the proof of Th. 3. Step 1:

S = JP is bounded. Then the result is

known to hold (K. Veselić and I. Slapničar

2000). Here the regularity itself is trivial,

in fact F can be taken as

F = (J sign(S))1/2 ,

where J sign(S) is selfadjoint and positive

definite. The uniform bound

‖F‖2 = κ(F ) ≤ κ(P1/2Θ−1/2),

is nontrivial and quite technical.

Step 2: S is unbounded. By assumption

Π = (P1/2Θ−1/2)∗P1/2Θ−1/2

is bicontinuous. Approximate by cut-off:

Take d > 0 and

fd(t) =

{
t, t ≤ d,
d, t > d,

Θd = fd(Θ), Pd = Θ
1/2
d ΠΘ

1/2
d , Sd = JPd
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The (generalised) strong convegence

Sd → S, d→∞

and the uniform bound

κ(P
1/2
d Θ

−1/2
d ) ≤ κ(P1/2Θ−1/2)

allow the use of the classical approximation

result by G. Bade (1954) which implies the

strong convergence

Fd = (J sign(Sd))
1/2 →

F = (J sign(S))1/2 , d→∞.

Here F is non-negative; as a product of

two reflections it is positive definite, J-

unitary and F−1SF commutes with J (again

by strong convergence). Q.E.D.

Nice: The condition number above — a

measure of closeness of two equivalent topolo-

gies — gives a bound for the spectral mea-

sure of a J-positive operator S.
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Example:

Sψ(x) = − signx
d2

dx2
ψ(x), ψ(−1) = ψ(1) = 0.

This is known to be regular (Najman, Čurgus).

Does this S satisfy our sufficiency criterion

above? NO!

What is ‖F‖ here?

Numerical experiment: n-point discretisa-

tion:

n cond(F) eigenvalues...

50 3.5 21.4 115.5 283.3 521.9 827

100 3.7 21.9 118.3 291.7 541.1 865

500 4.2 22.2 120.4 297.3 552.8 886

1000 4.4 22.3 120.6 297.9 554.0 888

2000 4.5 22.3 120.7 298.2 554.6 889
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How to find a Θ for S = JP?

We call P J-strongly diagonally dominant,

if

JD(P1/2) ⊆ D(P1/2)

and

|(P1/2Q+ψ, P
1/2Q−φ)| ≤

β‖(P1/2Q+ψ‖‖, P1/2Q−φ)‖, ψ, φ ∈ D(P1/2)

where

Q± = (J ± 1)/2, and β < 1.

In this case take Θ as the diagonal block

of P and obtain

‖F‖2 ≤
√

1 + β

1− β
.
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Multiplicative perturbations.

The operator T = GJG∗ with J = J∗ =

J−1 and G−1 bounded, is perturbed into

T̃ = G̃JG∗, G̃ = G+ δG

and either

‖δG∗G−∗‖ ≤ β < 1 or ‖δGG−1‖ ≤ β < 1

Consider the first case (the second case is

very different):

G̃∗ = (1 + δG∗G−∗)G∗.

So, T̃ automatically selfadjoint.

Theorem 4 The eigenvalues of the oper-

ators T̃ , T , respectively, are bounded as

|µ̃k − µk| ≤ b|µk|.

in any window, provided that

b = (2β + β2)‖F‖2 < 1.
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An application to Sψ(x) = − signx d2

dx2
ψ(x).

We perturb signx into (1 + ρ(x)) signx,

|ρ(x)| small. This leads to

|µ̃k − µk| ≤ (2β + β2)‖F‖2|µk|.

with β = ‖ρ‖∞.

How realistic is this bound?
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Application to the ’quasidefinite’ operator

matrix

T =

[
A B
B∗ −C

]
(9)

A,C are symmetric non-negative. The main

special cases:

1. A,C are dominant, i.e. positive definite

and

‖A−1/2BC−1/2‖ <∞

2. B is dominant, i.e. bicontinuous and

‖(BB∗)−1/4A(BB∗)−1/4‖ <∞,

‖(B∗B)−1/4C(B∗B)−1/4‖ <∞.

In both cases the matrix defines a self-

adjoint operator. Applications to Stokes

and Dirac operators.
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In the first case

T =

[
A1/2 0

0 C1/2

] [
1 W

W ∗ −1

] [
A1/2 0

0 C1/2

]

with W = A−1/2BC−1/2. ’Relative bound’

‖W‖ is finite, but need not be < 1 !

Furthermore,

T = GJG∗,

G =

[
A1/2 0

0 C1/2

] [
1 0

W ∗ (1 +W ∗W )1/2

]
,

J =

[
1 0
0 −1

]
.

Theorem 5 If, in addition,

γ = ‖B∗A−1‖ <∞

then

‖F‖2 ≤
1

2
(2 + γ2 + γ

√
γ2 + 4).
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