Kato decompositions for quasi - Fredholm relations

H. Winkler joint work with J.-Ph. Labrousse, A. Sandovici, H.S.V. de Snoo

Range space relations

 $(\mathfrak{H}, (\cdot, \cdot))$: Hilbert space

 $\mathfrak{M}\subset\mathfrak{H}$ range subspace of \mathfrak{H} if

 $\mathfrak{M} = \operatorname{ran} A$ for some $A \in L(\mathfrak{K}, \mathfrak{H})$

 \exists inner product $(\cdot, \cdot)_+$ on \mathfrak{M}

 $\|u\|_{+} \geq c \|u\|_{\mathfrak{H}}$, $u \in \mathfrak{M}$, c > 0

 $(\mathfrak{M}, (\cdot, \cdot)_+)$ Hilbert space

Note: If ${\mathfrak M}$ closed then ${\mathfrak M}$ range space

Neubauer's Lemma

 $\mathfrak{M}, \mathfrak{N}$ range subspaces of \mathfrak{H}

If $\mathfrak{M} + \mathfrak{N}, \ \mathfrak{M} \cap \mathfrak{N}$ closed then $\mathfrak{M}, \ \mathfrak{N}$ closed

- $A \subset \mathfrak{H} \times \mathfrak{H}$ is range space relation (RSR) if
- A is a range subspace of $\mathfrak{H} \times \mathfrak{H}$
- If A, B are RSR
- then A + B, AB are RSR and
- ker A, mul A, ran A, dom A range subspaces
- if dom A closed then ker A closed
- if ran A closed then mul A closed
- if ker A and ran A closed then A closed
- if mul A and dom A closed then A closed

The degree of a relation

 $\Delta(A) = \{n \in \mathbb{N} : \operatorname{ran} A^n \cap \ker A = \operatorname{ran} A^m \cap \ker A, \ \forall m \ge n\}$ $\delta(A) = \min \Delta(A) \quad \text{if} \quad \Delta(A) \neq \emptyset$ $\delta(A) = \infty \quad \text{if} \quad \Delta(A) = \emptyset$

Equivalent are

- $d \in \Delta(A)$

- ker $A^m \subseteq \ker A^d + \operatorname{ran} A^n$, $m, n \in \mathbb{N}$
- ran $A^d \cap \ker A^n \subseteq \operatorname{ran} A^m \cap \ker A^n$, $m, n \in \mathbb{N}$

Quasi-Fredholm relations

RSR A in \mathfrak{H} is quasi-Fredholm of degree d if (Q1) $d = \delta(A) < \infty$ (Q2) ran $A^d \cap \ker A$ closed in \mathfrak{H} ; (Q3) ran A + ker A^d closed in \mathfrak{H} . A is quasi-Fredholm of degree 0 iff ker $A \subset \operatorname{ran} A^m$, $m \in \mathbb{N}$ and ker A is closed in \mathfrak{H} and ran A is closed in \mathfrak{H} If A is quasi-Fredholm of degree 1 then

ker A, ran A are closed by Neubauer's Lemma

Theorem

- Let A be quasi-Fredholm of degree d.
- Then \exists closed subspaces $\mathfrak{M},\mathfrak{N}\subset\mathfrak{H}$
- (K1) $\mathfrak{H} = \mathfrak{M} + \mathfrak{N}, \ \mathfrak{M} \cap \mathfrak{N} = \{0\}$
- (K2) ran $A^d \subseteq \mathfrak{M}$
- (K3) $\mathfrak{N} \subseteq \ker A^d$, if $d \ge 1$, $\mathfrak{N} \not\subset \ker A^{d-1}$
- (K4) $A = A_{\mathfrak{M} \times \mathfrak{M}} + A_{\mathfrak{N} \times \mathfrak{N}}$, direct sum
- (K5) $A_{\mathfrak{M} \times \mathfrak{M}}$ quasi-Fredholm of degree 0
- (K6) $(A_{\mathfrak{N}\times\mathfrak{N}})^d = \mathfrak{N}\times\{0\}$

Construction of ${\mathfrak M}$ and ${\mathfrak N}$

$$\begin{split} \mathfrak{M}_{0} &= \mathfrak{H} \\ \mathfrak{M}_{j+1} &= (\operatorname{ran} A + \ker A^{d})^{\perp} + \left\{ v : \{u, v\} \in A, \, u \in \mathfrak{M}_{j} \right\} \\ \mathfrak{M}_{j+1} &\subset \mathfrak{M}_{j} \\ \mathfrak{N}_{0} &= \{0\} \\ \mathfrak{N}_{j+1} &= \left\{ u \in (\operatorname{ran} A^{d} \cap \ker A)^{\perp} : \{u, v\} \in A, \, v \in \mathfrak{N}_{j} \right\} \\ \mathfrak{N}_{j} &\subset \mathfrak{N}_{j+1} \\ \mathfrak{M}_{d} &= \mathfrak{M}_{j}, \, \mathfrak{N}_{d} = \mathfrak{N}_{j} \text{ for } j \geq d \\ \mathfrak{M} &= \mathfrak{M}_{d}, \, \mathfrak{N} = \mathfrak{N}_{d} \end{split}$$

Theorem

Let A be quasi-Fredholm of degree d. Then

- ran $A^n + \ker A^m$ closed for $n+m \geq d$
- mul A^n closed for $n \in \mathbb{N}$

Decompositions

- RSR A in \mathfrak{H} is Kato decomposable
- of degree d if \exists closed subspaces $\mathfrak{M}, \mathfrak{N} \subset \mathfrak{H}$

such that (K1-6) are satisfied.

RSR A in \mathfrak{H} is normally decomposable

of degree d if \exists RSR D, operator T with

(N1)
$$A = D + T$$
, $TD = \text{dom} A \times \{0\}$
 $DT = \mathfrak{H} \times \text{mul} A$;

(N2) D quasi-Fredholm of degree ≤ 1

(N3) $T^d = 0$

Theorem

- Equivalent are
- \boldsymbol{A} is Kato decomposable of degree \boldsymbol{d}
- \boldsymbol{A} is normally decomposable of degree \boldsymbol{d}
- A is quasi-Fredholm of degree d

Remark

 $D = A_{\mathfrak{M} \times \mathfrak{M}} P_{\mathfrak{M}}, \quad T = A_{\mathfrak{N} \times \mathfrak{N}} P_{\mathfrak{N}}$

If A is quasi-Fredholm then A is closed

Theorem

- Let A be a quasi-Fredholm of degree d. Then
- A^* is quasi-Fredholm relation of degree d
- ran A^n + ker A^m = (ker $A^{*n} \cap$ ran A^{*m})^{\perp} $n + m \ge d$
- ran A^{*n} + ker A^{*m} = (ker $A^n \cap$ ran A^m)^{\perp} $n + m \ge d$
- $(\ker A^n)^{\perp} = \operatorname{ran} A^{*n}$, $(\ker A^{*n})^{\perp} = \operatorname{ran} A^n$ $n \ge d$

Semi-Fredholm relations

Closed relation A in \mathfrak{H} is semi-Fredholm if

(S1) ran A closed;

(S2) dim ker $A < \infty$ or dim $(\mathfrak{H}/ran A) < \infty$

Semi-Fredholm implies quasi-Fredholm

If dim ker $A < \infty$

dim (ker $A \cap \operatorname{ran} A^n$) nonincreasing

 $\exists \ d \ \text{with } \ker A \cap \operatorname{ran} A^d = \ker A \cap \operatorname{ran} A^{d+k}$

dim ker $A^d < \infty \implies$ ran $A + \ker A^d$ closed

If dim $(\mathfrak{H}/\mathrm{ran}\,A) < \infty$

dim (ker $A/(\ker A \cap \operatorname{ran} A^m)$)

 $= \dim (\ker A^m + \operatorname{ran} A)/\operatorname{ran} A$

 $\leq \dim (\mathfrak{H}/\mathrm{ran}\,A) < \infty$