Domination in Krein spaces

Michał Wojtylak

Institute of Mathematics of the Jagiellonian University

I. Motivation.

[A, B] := AB - BA (on the maximal domain)

THEOREM 1 [Cichoń, Stochel, Szafraniec 2004] $m \in \mathbb{N}$;

S-selfadjoint, A-symmetric in a Hilbert space, $\mathcal{D}(S^m) \subseteq \mathcal{D}(A)$, and

(1)
$$\sup_{n \in \mathbb{N}} \left\| \left[n^m (S - n \operatorname{i})^{-m}, A \right] \right\| < +\infty.$$

Then A is essentially selfadjoint on any core of S^m .

Note: 1. $\mathcal{D}(S^m) \subseteq \mathcal{D}(A)$ implies that $\|Af\| \le c \|f\| + d \|S^m f\|, \quad f \in \mathcal{D}(S^m).$

We do *not* assume that d < 1.

2. If A is e.g. a bounded perturbation of $S\mbox{,}$ then (1) holds.

3. Instead of $n^m (S - n i)^{-m}$ we could take $|z_n|^m (S - z_n)^{-m}$, where $(z_n)_{n=1}^{\infty}$ tends nontangentially to infinity.

 $\mathbf{2}$

II. Main thoeorem.

DEFINITION. \mathcal{K} -Krein space, A-symmetric in \mathcal{K} ; $(S_n)_{n=0}^{\infty} \subseteq \mathbf{B}(\mathcal{K})$ dominates A if

- $\forall n \in \mathbb{N}$ [S_n, A] is densely defined,
- $\overline{S_nA}, \overline{AS_n} \in \mathbf{B}(\mathcal{K});$
- $\forall n \in \mathbb{N}$ AS_n^+ is densely defined;
- WOTlim_{$n\to\infty$} $S_n = I_{\mathcal{K}}$.

THEOREM 2. A-symmetric operator in a Krein space \mathcal{K} ,

$$(S_n)_{n=0}^{\infty} \subseteq \mathbf{B}(\mathcal{K}) \text{ dominates } A \text{ and}$$

$$(2) \qquad \sup_{n \in \mathbb{N}} \left\| \overline{[S_n, A]} \right\| < +\infty.$$

Then A is essentially selfadjoint in \mathcal{K} .

III. Instances.

1. S-selfadjoint, A-symmetric in a Hilbert space \mathcal{H} , $\mathcal{D}(S^m) \subseteq \mathcal{D}(A)$ for some $m \in \mathbb{N}$. Then

$$S_n := n^m (S - n i)^{-m}, \quad n = 1, 2...$$

dominates A. (2)=(1). This together with Thm2. gives us a different proof of Thm1.

2. S-selfadjoint, A-symmetric in a Hilbert space \mathcal{H} , $\mathcal{D}(S^m) \subseteq \mathcal{D}(A)$ for some $m \in \mathbb{N}$, K is S-compact,

$$\mathcal{R}(K) \cup \mathcal{R}(K^*) \subseteq \mathcal{D}(S^{m-1}).$$

Then the sequence

4

 $S_n := n^m (S + K - n i)^{-m}, \quad n = k + 1, k + 2 \dots$ dominates A.

3. In particular, if
$$\mathcal{H} = \mathcal{H}_0 \times \mathcal{H}_1$$
,

$$S := \begin{pmatrix} S_0 & 0 \\ 0 & S_1 \end{pmatrix}, \quad K := \begin{pmatrix} 0 & -K_0^* \\ K_0 & 0 \end{pmatrix}$$
where $S_i = S_i^*$ ($i = 0, 1$),
 K_0 is S_0 -compact, K_0^* is S_1 -compact,
 $\mathcal{R}(K_0) \subseteq \mathcal{D}(S_1^{m-1}), \quad \mathcal{R}(K_0^*) \subseteq \mathcal{D}(S_0^{m-1}).$

Since every selfadjoint operator in a Pontriagin space is of the form S + K, Thm1 holds in a Pontriagin space.

4. S-selfadjoint, A-symmetric in a Krein space \mathcal{K} , S similar to a selfadjoint operator in a Hilbert space, $\mathcal{D}(S^m) \subseteq \mathcal{D}(A)$ for some $m \in \mathbb{N}$. Then

 $S_n := n^m (S - n i)^{-m}, \quad n = 1, 2...$

dominates A.

5. $(S_n)_{n=1}^{\infty}$ is a sequence of projections tending in WOT to $I_{\mathcal{K}}$, e.g. $S_n := E(\{|z| < n\})$, where E is a spectral function of a normal operator in a Hilbert space ([Nussbaum, 1969]).

IV. More on commutativity.

THEOREM 3.S-selfadjoint, A-symmetric in a Krein space,

$$\mathcal{D}(S^m) \subseteq \mathcal{D}(A), \text{ and}$$

$$\mathcal{D}(S) \subseteq \mathcal{D}\left(\overline{[S,A]}\right) \text{ then}$$

$$(3) \qquad \sup_{n \in \mathbb{N}} \left\| [n^m (S-n \, \mathrm{i})^{-m}, A] \right\| < \infty.$$

V. Example

 $\mathbf{6}$

$\begin{array}{l} \mathcal{H}\text{-Hilbert space,} \\ J: \mathcal{H} \times \mathcal{H} \to \mathcal{H} \times \mathcal{H}, \ J(f,g) := (g,f); \\ N \text{ - normal in } \mathcal{H}; \ \rho(N) = \emptyset. \\ S:= \left(\begin{array}{c} \operatorname{Re}N & 0 \\ 0 & \operatorname{Re}N \end{array} \right), \quad A:= \left(\begin{array}{c} N & 0 \\ 0 & N^* \end{array} \right). \end{array}$

A is symmetric in the Krein space given by J. The sequence $S_n := n(S - n i)^{-1}$ and operator A satisfy all the assumptions of Thm2, A is selfadjoint, and $\rho(A) = \emptyset$.