Suite II - Die Arithmetische
Teil 2: Essays 100-108

FundamentalSatz \rightarrow. $\cup \cap \forall \subseteq \in$ Satz Zahlen.

FundamentalSatz \rightarrow in \mathbb{R}. NullTeilerFreiheit in \mathbb{R}.

ParameterAxiom III. \leq. KleinerGleich-Relation.

Kleiner-Relation. \leq-Notation. Arithmetisches Axiom VII.

FundamentalSatz \leq. KommutativGesetz Multiplikation.

\cdotSatz Zahlen.

Andreas Unterreiter
25. April 2012
FS---: FundamentalSatz ---.

Ersterstellung: 01/10/05

Letzte Änderung: 25/01/12
100-1. Via **Fundamentalsatz** gilt \(-x = x\) genau dann, wenn die nicht zum ersten Mal auftretende Alternative \(x\) Zahl oder \(x = U\) gilt:

\[
100-1\text{(Satz)} \text{ (FS---: Fundamentalsatz ---)}
\]

Die Aussagen i), ii) sind äquivalent:

i) \(-x = x\).

ii) "\(x\) Zahl" oder "\(x = U\)".

RECH-Notation.

Beweis 100-1

REIM-Notation.

\([i) \Rightarrow ii)\text{]} \text{ VS gleich}\]

\(-x = x\).

1: Via **95-6** gilt:

\((x\ \text{Zahl}) \vee (x \notin A)\).

Fallunterscheidung

```
1.1.Fall
x \text{ Zahl.}

Aus 1.1.Fall folgt: \((x\ \text{Zahl}) \vee (x = U)\).
```

```
1.2.Fall
x \notin A.

2: Aus 1.2.Fall "\(x \notin A\)"

folgt via **96-12**: \(-x = U\).

3:

\(x \equiv -(-x) \equiv -U_{96-19} = U\).

4: Aus 3"\(x = \ldots = U\)"

folgt: \((x\ \text{Zahl}) \vee (x = U)\).
```

Ende Fallunterscheidung

In beiden Fällen gilt: \((x\ \text{Zahl}) \vee (x = U)\).
Beweis 100-1 (ii) ⇒ i) VS gleich $(x \text{ Zahl}) \lor (x = \mathcal{U})$.

Thema 1.1

2: Aus Thema 1.1“α ∈ ℝ” folgt via AAV:

$$\alpha - \alpha = 0.$$

3: Aus 2 folgt:

$$\alpha + (-\alpha) = 0.$$

4: Aus Thema 1.1“α ∈ ℝ” und aus 3“\(\alpha + (-\alpha) = 0\)” folgt via 98-14:

$$\alpha = -(-\alpha).$$

Ergo Thema 1.1:

A1 “∀α : (α ∈ ℝ) ⇒ (-(-α) = α)”

Thema 1.2

$$\alpha = \text{nan}.$$

2: $$-(-\alpha) \overset{\text{Thema 1.2}}{=} -(-\text{nan}) \overset{\text{AAV}}{=} -\text{nan} \overset{\text{AAV}}{=} \text{nan} \overset{\text{Thema 1.2}}{=} \alpha.$$

3: Aus 2 folgt:

$$-(-\alpha) = \alpha.$$

Ergo Thema 1.2:

A2 “∀α : (α = \text{nan}) ⇒ (-(-\alpha) = \alpha)”

...
Beweis 100.1 [ii] ⇒ i) VS gleich

\[(x \text{ Zahl}) \lor (x = \mathcal{U}). \]

\[\alpha = +\infty. \]
\[-(-\alpha) \]
\[-(-(+\infty)) \]
\[\text{AAVI} \]
\[-(-\infty) \]
\[\text{AAVI} \]
\[+\infty \]
\[\text{Them}a1.3 \]
\[\alpha. \]

3: Aus 2 folgt:
\[-(-\alpha) = \alpha. \]

Ergo Thema1.3:

A3 "\(\forall \alpha : (\alpha = +\infty) \Rightarrow (-(-\alpha) = \alpha) \)"

\[\alpha = -\infty. \]
\[-(-\alpha) \]
\[-(-(-\infty)) \]
\[\text{AAVI} \]
\[-(+\infty) \]
\[\text{AAVI} \]
\[-\infty \]
\[\text{Them}a1.4 \]
\[\alpha. \]

3: Aus 2 folgt:
\[-(-\alpha) = \alpha. \]

Ergo Thema1.4:

A4 "\(\forall \alpha : (\alpha = -\infty) \Rightarrow (-(-\alpha) = \alpha) \)"

...
Beweis 100-1 \(\text{ii) } \Rightarrow \text{i) VS gleich} \quad (x \text{ Zahl}) \lor (x = U).\)

...

<table>
<thead>
<tr>
<th>Thema1.5</th>
<th>(\beta \in T.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus Thema1.5“(\beta \in T)“ folgt via 95-16:</td>
<td>((\beta \in \mathbb{R}) \lor (\beta = \text{nan}) \lor (\beta = +\infty) \lor (\beta = -\infty).)</td>
</tr>
</tbody>
</table>

Fallunterscheidung

<table>
<thead>
<tr>
<th>2.1.Fall</th>
<th>(\beta \in \mathbb{R}.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus 2.1.Fall“(\beta \in \mathbb{R})” und aus A1 gleich “(\forall \alpha : (\alpha \in \mathbb{R}) \Rightarrow (-(-\alpha) = \alpha))” folgt:</td>
<td>(-(-\beta) = \beta.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2.Fall</th>
<th>(\beta = \text{nan}.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus 2.2.Fall“(\beta = \text{nan})” und aus A2 gleich “(\forall \alpha : (\alpha = \text{nan}) \Rightarrow (-(-\alpha) = \alpha))” folgt:</td>
<td>(-(-\beta) = \beta.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3.Fall</th>
<th>(\beta = +\infty.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus 2.3.Fall“(\beta = +\infty)” und aus A3 gleich “(\forall \alpha : (\alpha = +\infty) \Rightarrow (-(-\alpha) = \alpha))” folgt:</td>
<td>(-(-\beta) = \beta.)</td>
</tr>
</tbody>
</table>
Beweis 100-1 [ii) ⇒ i] VS gleich

\((x \text{ Zahl}) \lor (x = \mathcal{U}) \).

\[\begin{array}{|c|}
\hline
\text{Them 1.5} \\
\hline
\beta \in \mathbb{T}.
\end{array}\]

\[\begin{array}{|c|}
\hline
\text{Fallunterscheidung} \\
\hline
\end{array}\]

\[\begin{array}{|c|}
\hline
2.4.\text{Fall} \\
\hline
\beta = -\infty.
\end{array}\]

Aus 2.4. Fall “\(\beta = -\infty \)” und aus A4 gleich “\(\forall \alpha : (\alpha = -\infty) \Rightarrow (-(-\alpha) = \alpha) \)” folgt:

\[-(-\beta) = \beta.
\]

\[\begin{array}{|c|}
\hline
\text{Ende Fallunterscheidung} \\
\hline
\end{array}\]

In allen Fällen gilt: \(-(-\beta) = \beta \).

Ergo Them 1.5:

\[\begin{array}{|c|}
\hline
\text{A5} \\
\hline
\forall \beta : (\beta \in \mathbb{T}) \Rightarrow (-(-\beta) = \beta)
\end{array}\]

...
Beweis 100-1 \(\begin{align*} (x \text{ Zahl}) \lor (x = \mathcal{U}). \end{align*} \)

...

1.6: Nach VS gilt:

\[
(x \text{ Zahl}) \lor (x = \mathcal{U}).
\]

<table>
<thead>
<tr>
<th>Fallunterscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6.1.Fall</td>
</tr>
<tr>
<td>(x \text{ Zahl.})</td>
</tr>
<tr>
<td>2.1: Aus 1.6.1.Fall ("x \text{ Zahl}") folgt via 96-11:</td>
</tr>
<tr>
<td>(-x \text{ Zahl.})</td>
</tr>
<tr>
<td>2.2: Aus 1.6.1.Fall ("x \text{ Zahl}") folgt via 96-24:</td>
</tr>
<tr>
<td>(x = (\text{Re}x) + i \cdot \text{Im}x.)</td>
</tr>
<tr>
<td>2.3: Aus 1.6.1.Fall ("x \text{ Zahl}") folgt via 96-9:</td>
</tr>
<tr>
<td>((\text{Re}x \in \mathbb{T}) \land (\text{Im}x \in \mathbb{T}).)</td>
</tr>
<tr>
<td>3.1: Aus 2.1("-x \text{ Zahl}") folgt via 96-11:</td>
</tr>
<tr>
<td>(-(x) \text{ Zahl.})</td>
</tr>
<tr>
<td>3.2: Aus 2.3("\text{Re}x \in \mathbb{T}...") und aus A5 gleich (\forall \beta : (\beta \in \mathbb{T}) \Rightarrow (-(-\beta) = \beta)) folgt:</td>
</tr>
<tr>
<td>(-(-\text{Re}x) = \text{Re}x.)</td>
</tr>
<tr>
<td>3.3: Aus 2.3("...\text{Im}x \in \mathbb{T}") und aus A5 gleich (\forall \beta : (\beta \in \mathbb{T}) \Rightarrow (-(-\beta) = \beta)) folgt:</td>
</tr>
<tr>
<td>(-(-\text{Im}x) = \text{Im}x.)</td>
</tr>
<tr>
<td>4: Aus 3.1("-(-x) \text{ Zahl}") folgt via 96-24:</td>
</tr>
<tr>
<td>(-(x) = \text{Re}(-(-x)) + i \cdot \text{Im}(-(-x)).)</td>
</tr>
</tbody>
</table>

...
Beweis 100-1 \(\text{\[ii\] \Rightarrow \[i\]}\) \(\text{VS gleich} \quad (x \text{ Zahl}) \lor (x = \mathcal{U}).\)

\[\text{Fallunterscheidung}\]

\begin{align*}
1.6.1.\text{Fall} & \quad x \text{ Zahl.} \\
5: & \quad -(x) \\
\quad & \quad \begin{align*}
\overset{4}{=} & \quad \text{Re}(-(x)) + i \cdot \text{Im}(-(x)) \\
\overset{96-27}{=} & \quad (-\text{Re}(x)) + i \cdot (\text{Im}(x)) \\
\overset{96-27}{=} & \quad (-\text{Re}(x)) + i \cdot (-\text{Im}(x)) \\
\overset{96-27}{=} & \quad (-\text{Re}(x)) + i \cdot (-\text{Im}(x)) \\
\overset{\overset{3 \cdot 2}{=} \text{(Re)} + i \cdot (-\text{Im}(x))}{=} & \quad \overset{\overset{3 \cdot 3}{=} \text{(Re)} + i \cdot \text{(Im}(x))}{=} \overset{2 \cdot 2}{=} x.
\end{align*}
6: \quad \text{Aus 5 folgt:} \\
\quad & \quad -(x) = x.
\end{align*}

\begin{align*}
1.6.2.\text{Fall} & \quad x = \mathcal{U}. \\
2: & \quad -(x) \overset{\text{1.6.2.Fall}}{=} -(\mathcal{U}) \overset{96-19}{=} -\mathcal{U} \overset{96-19}{=} \mathcal{U} \overset{\text{1.6.2.Fall}}{=} x. \\
3: \quad \text{Aus 2 folgt:} \\
\quad & \quad -(x) = x.
\end{align*}

\[\text{Ende Fallunterscheidung}\] In beiden Fällen gilt: \(-(-x) = x.\)
100-2. Da 0, 1, nan, +∞, −∞, i Zahlen sind, folgen aus FS ohne allzu viel Mühe die vorliegenden Gleichungen:

100-2(Satz)

a) \(-0 = 0 \).
b) \(-1 = 1 \).
c) \(-nan = nan \).
d) \(-(+\infty) = +\infty \).
e) \(-(-\infty) = -\infty \).
f) \(-i = i \).
Beweis 100-2

a) Aus $95-5$“0 Zahl”
folgt via FS \Rightarrow:
$\neg (0) = 0$.

b) Aus $95-5$“1 Zahl”
folgt via FS \Rightarrow:
$\neg (1) = 1$.

c) Aus $95-5$“nan Zahl”
folgt via FS \Rightarrow:
$\neg (\text{nan}) = \text{nan}$.

d) Aus $95-5$“$+\infty$ Zahl”
folgt via FS \Rightarrow:
$\neg (+\infty) = +\infty$.

e) Aus $95-5$“$-\infty$ Zahl”
folgt via FS \Rightarrow:
$\neg (-\infty) = -\infty$.

f) Aus $95-5$“i Zahl”
folgt via FS \Rightarrow:
$\neg (i) = i$. \qed
100-3. Via FS --- lässt der doppelte Vorzeichenwechsel Terme, die stets entweder gleich einer Zahl oder gleich \(\mathcal{U} \) sind, unverändert. Dies ist Grund genug, die Liste der Terme, bei denen diese Alternative der Fall ist, zu erweitern:

100-3(Satz)

a) “\(\text{Re} \times \text{Zahl} \)” oder “\(\text{Re} = \mathcal{U} \)”.
b) “\(\text{Im} \times \text{Zahl} \)” oder “\(\text{Im} = \mathcal{U} \)”.
c) “\(-x \times \text{Zahl} \)” oder “\(-x = \mathcal{U} \)”.
d) “\(\text{rez}(x) \times \text{Zahl} \)” oder “\(\text{rez}(x) = \mathcal{U} \)”.
e) “\(x + y \times \text{Zahl} \)” oder “\(x + y = \mathcal{U} \)”.
f) “\(x \cdot y \times \text{Zahl} \)” oder “\(x \cdot y = \mathcal{U} \)”.
g) “\(x : y \times \text{Zahl} \)” oder “\(x : y = \mathcal{U} \)”.

REIM. RECH. Notation.

Beweis 100-3 a)

1: Via 95-6 gilt: \((\text{Re} \times \text{Zahl}) \lor (\text{Re} \not\in \mathbb{A})\).

Fallunterscheidung

1.1.Fall

Aus 1.1.Fall folgt: \((\text{Re} \times \text{Zahl}) \lor (\text{Re} = \mathcal{U})\).

1.2.Fall

2: Aus 1.2. Fall “\(\text{Re} \not\in \mathbb{A} \)” folgt via 96-10: \(\text{Re} = \mathcal{U} \).

3: Aus 2 folgt: \((\text{Re} \times \text{Zahl}) \lor (\text{Re} = \mathcal{U})\).

Ende Fallunterscheidung

In beiden Fällen gilt: \((\text{Re} \times \text{Zahl}) \lor (\text{Re} = \mathcal{U})\).
Beweis 100-3 b)

1: Via 95-6 gilt: \((\text{l}m x \text{ Zahl}) \lor (\text{l}m x \notin \text{ A})\).

\begin{center}
\textbf{Fallunterscheidung}
\end{center}

\begin{center}
1.1. Fall
\end{center}

Aus 1.1. Fall
folgt:
\((\text{l}m x \text{ Zahl}) \lor (\text{l}m x = \text{ U})\).

\begin{center}
1.2. Fall
\end{center}

\begin{center}
2: Aus 1.2. Fall "\text{l}m x \notin \text{ A}"
\end{center}

folgt via 96-10:
\((\text{l}m x = \text{ U})\).

\begin{center}
3: Aus 2
\end{center}

folgt:
\((\text{l}m x \text{ Zahl}) \lor (\text{l}m x = \text{ U})\).

\begin{center}
Ende Fallunterscheidung
\end{center}

In beiden Fällen gilt:
\((\text{l}m x \text{ Zahl}) \lor (\text{l}m x = \text{ U})\).

c)

1: Via 95-6 gilt:
\((-x \text{ Zahl}) \lor (-x \notin \text{ A})\).

\begin{center}
\textbf{Fallunterscheidung}
\end{center}

\begin{center}
1.1. Fall
\end{center}

Aus 1.1. Fall
folgt:
\((-x \text{ Zahl}) \lor (-x = \text{ U})\).

\begin{center}
1.2. Fall
\end{center}

\begin{center}
2: Aus 1.2. Fall "\text{l}m x \notin \text{ A}"
\end{center}

folgt via 96-12:
\((-x = \text{ U})\).

\begin{center}
3: Aus 2
\end{center}

folgt:
\((-x \text{ Zahl}) \lor (-x = \text{ U})\).

\begin{center}
Ende Fallunterscheidung
\end{center}

In beiden Fällen gilt:
\((-x \text{ Zahl}) \lor (-x = \text{ U})\).
Beweis 100-3 d)

1: Via 95-6 gilt: $(\text{rez}(x) \text{ Zahl}) \lor (\text{rez}(x) \notin \mathbb{A})$.

Fallunterscheidung

1.1.Fall

rez(x) Zahl.

Aus 1.1.Fall folgt: $(\text{rez}(x) \text{ Zahl}) \lor (\text{rez}(x) = \mathbb{U})$.

1.2.Fall

rez(x) \notin \mathbb{A}.

2: Aus 1.2.Fall "$rez(x) \notin \mathbb{A}$" folgt via 96-12: \(\text{rez}(x) = \mathbb{U} \).

3: Aus 2 folgt: $(\text{rez}(x) \text{ Zahl}) \lor (\text{rez}(x) = \mathbb{U})$.

Ende Fallunterscheidung

In beiden Fällen gilt: $(\text{rez}(x) \text{ Zahl}) \lor (\text{rez}(x) = \mathbb{U})$.

e)

1: Via 95-6 gilt: $(x + y \text{ Zahl}) \lor (x + y \notin \mathbb{A})$.

Fallunterscheidung

1.1.Fall

x + y Zahl.

Aus 1.1.Fall folgt: $(x + y \text{ Zahl}) \lor (x + y = \mathbb{U})$.

1.2.Fall

x + y \notin \mathbb{A}.

2: Aus 1.2.Fall "$x + y \notin \mathbb{A}$" folgt via 96-14: \(x + y = \mathbb{U} \).

3: Aus 2 folgt: $(x + y \text{ Zahl}) \lor (x + y = \mathbb{U})$.

Ende Fallunterscheidung

In beiden Fällen gilt: $(x + y \text{ Zahl}) \lor (x + y = \mathbb{U})$.
Beweis 100-3 f)

1: Via 95-6 gilt: \((x \cdot y \text{ Zahl}) \lor (x \cdot y \notin A)\).

Fallunterscheidung

<table>
<thead>
<tr>
<th>1.1.Fall</th>
<th>(x \cdot y \text{ Zahl.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus 1.1.Fall folgt:</td>
<td>((x \cdot y \text{ Zahl}) \lor (x \cdot y = U).)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2.Fall</th>
<th>(x \cdot y \notin A.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.2.Fall (x \cdot y \notin A) folgt via 96-16:</td>
<td>(x \cdot y = U.)</td>
</tr>
<tr>
<td>3: Aus 2 folgt:</td>
<td>((x \cdot y \text{ Zahl}) \lor (x \cdot y = U).)</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In beiden Fällen gilt:
\((x \cdot y \text{ Zahl}) \lor (x \cdot y = U).\)

g)

1: Via 95-6 gilt: \((x : y \text{ Zahl}) \lor (x : y \notin A)\).

Fallunterscheidung

<table>
<thead>
<tr>
<th>1.1.Fall</th>
<th>(x : y \text{ Zahl.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus 1.1.Fall folgt:</td>
<td>((x : y \text{ Zahl}) \lor (x : y = U).)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2.Fall</th>
<th>(x : y \notin A.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.2.Fall (x : y \notin A) folgt via 96-18:</td>
<td>(x : y = U.)</td>
</tr>
<tr>
<td>3: Aus 2 folgt:</td>
<td>((x : y \text{ Zahl}) \lor (x : y = U).)</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In beiden Fällen gilt:
\((x : y \text{ Zahl}) \lor (x : y = U).\)
100-4. Die hier angeführte Gleichungen folgen via 100-3 - bei ab2 via 96-22 - aus FS—:

<table>
<thead>
<tr>
<th>100-4(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $-(-\text{Re} x) = \text{Re} x.$</td>
</tr>
<tr>
<td>b) $-(-\text{Im} x) = \text{Im} x.$</td>
</tr>
<tr>
<td>c) $-(-(-x)) = -x.$</td>
</tr>
<tr>
<td>d) $-(-\text{rez}(x)) = \text{rez}(x).$</td>
</tr>
<tr>
<td>e) $-(-\text{ab}2(x)) = \text{ab}2(x).$</td>
</tr>
<tr>
<td>f) $-(-(x + y)) = x + y.$</td>
</tr>
<tr>
<td>g) $-(-(x \cdot y)) = x \cdot y.$</td>
</tr>
<tr>
<td>h) $-(-(x : y)) = x : y.$</td>
</tr>
</tbody>
</table>

REIM.RECH-Notation.
Beweis 100-4 a)
Aus 100-3 “(\(\text{Re} x\) Zahl) \(\lor\) (\(\text{Re} x = \mathcal{U}\))”
folgt via \(\text{FS} \rightarrow\):
\(-(-\text{Re} x) = \text{Re} x\).

b)
Aus 100-3 “(\(\text{Im} x\) Zahl) \(\lor\) (\(\text{Im} x = \mathcal{U}\))”
folgt via \(\text{FS} \rightarrow\):
\(-(-\text{Im} x) = \text{Im} x\).

c)
Aus 100-3 “\((-x\) Zahl) \(\lor\) \((-x = \mathcal{U})\)”
folgt via \(\text{FS} \rightarrow\):
\(-(-(-x)) = -x\).

d)
Aus 100-3 “(\(\text{rez}(x)\) Zahl) \(\lor\) (\(\text{rez}(x) = \mathcal{U}\))”
folgt via \(\text{FS} \rightarrow\):
\(-(-\text{rez}(x)) = \text{rez}(x)\).

e)
Aus 96-22 “(\(\text{ab}2(x)\) Zahl) \(\lor\) (\(\text{ab}2(x) = \mathcal{U}\))”
folgt via \(\text{FS} \rightarrow\):
\(-(-\text{ab}2(x)) = \text{ab}2(x)\).

f)
Aus 100-3 “(\(x + y\) Zahl) \(\lor\) (\(x + y = \mathcal{U}\))”
folgt via \(\text{FS} \rightarrow\):
\(-(-(x + y)) = x + y\).

g)
Aus 100-3 “(\(x \cdot y\) Zahl) \(\lor\) (\(x \cdot y = \mathcal{U}\))”
folgt via \(\text{FS} \rightarrow\):
\(-(-x \cdot y) = x \cdot y\).

h)
Aus 100-3 “(\(x : y\) Zahl) \(\lor\) (\(x : y = \mathcal{U}\))”
folgt via \(\text{FS} \rightarrow\):
\(-(-x : y) = x : y\).

\(\blacksquare\)
100-5. Die nunmehrige Aussage ist ein *Hilfs*-Satz für den Beweis von 100-6:

100-5(Satz)

a) *Aus* "\(a \in S\) folgt "\(-a \in S\)."

b) *Aus* "\(a \in T\) folgt "\(-a \in T\)."

Beweis 100-5 a) VS gleich

\[a \in S. \]

1: Aus **VS gleich** "\(a \in S\)"

folgt via 95-15:

\[(a \in \mathbb{R}) \lor (a = +\infty) \lor (a = -\infty).\]

Fallunterscheidung

1.1.**Fall**

\[a \in \mathbb{R}. \]

Aus 1.1.**Fall** "\(a \in \mathbb{R}\)"

folgt via **AAV**:

\[-a \in \mathbb{R}. \]

1.2.**Fall**

\[a = +\infty. \]

2:

\[-a \overset{1.2.\text{Fall}}{=} -(+\infty) \overset{\text{AAVI}}{=} -\infty.\]

3: Aus 2"\(-a = \ldots = -\infty\)"

und

aus 95-11"\(-\infty \in S\)"

folgt:

\[-a \in S. \]

1.3.**Fall**

\[a = -\infty. \]

2:

\[-a \overset{1.3.\text{Fall}}{=} -(\infty) \overset{\text{AAVI}}{=} +\infty.\]

3: Aus 2"\(-a = \ldots = +\infty\)"

und

aus 95-11"\(+\infty \in S\)"

folgt:

\[-a \in S. \]

Ende Fallunterscheidung

In allen Fällen gilt:

\[-a \in S. \]
Beweis 100-5 \(b) \) VS gleich

1: \(a \in \mathbb{T} \)

folgt via 95-16:

\((a \in S) \lor (a = \text{nan})\).

Fallunterscheidung

1.1. Fall \(a \in S \)

2: Aus 1.1. Fall “\(a \in S \)”

folgt via des bereits bewiesenen a):

\(-a \in S\).

3: Aus 2 “\(-a \in S\)”

folgt via 95-16:

\(-a \in \mathbb{T} \).

1.2. Fall \(a = \text{nan} \)

2: \(-a \overset{1.2. \text{Fall}}{=} -\text{nan} \overset{\text{AAVI}}{=} \text{nan} \).

3: Aus 2 “\(-a = \ldots = \text{nan}\)” und

aus 95-12 “\(\text{nan} \in \mathbb{T}\)”

folgt:

\(-a \in \mathbb{T} \).

Ende Fallunterscheidung

In beiden Fällen gilt:

\(-a \in \mathbb{T} \).

\(\square \)
100-6. Es gilt $p \in \mathbb{R}$ genau dann, wenn $-p \in \mathbb{R}$ und dies ist genau dann der Fall, wenn $-(-p) \in \mathbb{R}$. Analoges gilt für $p \in S$, $p \in T$, p Zahl. Korrespondierende Aussagen für $p \in \mathbb{C}$ und $p \in \mathbb{B}$ werden später bewiesen:

<table>
<thead>
<tr>
<th>100-6(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $(p \in \mathbb{R}) \iff (-p \in \mathbb{R}) \iff (-(-p) \in \mathbb{R})$.</td>
</tr>
<tr>
<td>b) $(p \in S) \iff (-p \in S) \iff (-(-p) \in S)$.</td>
</tr>
<tr>
<td>c) $(p \in T) \iff (-p \in T) \iff (-(-p) \in T)$.</td>
</tr>
<tr>
<td>d) $(p$ Zahl$) \iff (-p$ Zahl$) \iff (-(-p)$ Zahl$)$.</td>
</tr>
</tbody>
</table>

RECH-Notation.
Beweis 100-6 a) \[
\begin{align*}
\text{(i) } & \Rightarrow \text{(ii)} \\
\text{VS gleich} & \quad p \in \mathbb{R}.
\end{align*}
\]

Aus VS gleich “\(p \in \mathbb{R} \)” folgt via AAV:
\[
\begin{align*}
\text{(ii) } & \Rightarrow \text{(iii)} \\
\text{VS gleich} & \quad -p \in \mathbb{R}.
\end{align*}
\]

Aus VS gleich “\(-p \in \mathbb{R}\)” folgt via AAV:
\[
\begin{align*}
\text{(iii) } & \Rightarrow \text{(i)} \\
\text{VS gleich} & \quad -(p) \in \mathbb{R}.
\end{align*}
\]

1: Aus VS gleich “\(-p \in \mathbb{R}\)” folgt via 99-1:
\[
\begin{align*}
\text{(-p) Zahl.}
\end{align*}
\]

2: Aus 1 “\(-p\) Zahl” folgt via 96-11:
\[
\begin{align*}
-p \text{ Zahl.}
\end{align*}
\]

3: Aus 2 “\(-p\) Zahl” folgt via 96-11:
\[
\begin{align*}
p \text{ Zahl.}
\end{align*}
\]

4: Aus 3 “\(p\) Zahl” folgt via FS---:
\[
\begin{align*}
-(p) = p.
\end{align*}
\]

5: Aus VS gleich “\(-p \in \mathbb{R}\)” und aus 4 “\(-p = p\)” folgt:
\[
\begin{align*}
p \in \mathbb{R}.
\end{align*}
\]
Beweis 100-6 b) \[i) \Rightarrow ii) \] VS gleich

Aus VS gleich “\(p \in S \)” folgt via 100-5:

\[-p \in S. \]

b) \[ii) \Rightarrow iii) \] VS gleich

Aus VS gleich “\(-p \in S\)” folgt via 100-5:

\[-(-p) \in S. \]

b) \[iii) \Rightarrow i) \] VS gleich

1: Aus VS gleich “\(-(-p) \in S\)” folgt via 99-1:

\[-(-p) \text{ Zahl}. \]

2: Aus 1“\(-(-p) \text{ Zahl}\)” folgt via 96-11:

\[-p \text{ Zahl}. \]

3: Aus 2“\(-p \text{ Zahl}\)” folgt via 96-11:

\[p \text{ Zahl}. \]

4: Aus 3“\(p \text{ Zahl}\)” folgt via FS—−:

\[-(-p) = p. \]

5: Aus VS gleich “\(-(-p) \in S\)” und aus 4“\(-(-p) = p\)” folgt:

\[p \in S. \]
Beweis 100-6 c) \[\begin{array}{c}
 \text{i) } \Rightarrow \text{ ii)} \end{array} \] VS gleich \(p \in \mathbb{T} \).

Aus VS gleich "\(p \in \mathbb{T} \)"
folgt via 100-5: \(-p \in \mathbb{T} \).

c) \[\begin{array}{c}
 \text{ii) } \Rightarrow \text{ iii)} \end{array} \] VS gleich \(-p \in \mathbb{T} \).

Aus VS gleich "\(-p \in \mathbb{T} \)"
folgt via 100-5: \(-(-p) \in \mathbb{T} \).

c) \[\begin{array}{c}
 \text{iii) } \Rightarrow \text{ i)} \end{array} \] VS gleich \(-(-p) \in \mathbb{T} \).

1: Aus VS gleich "\(-(p) \in \mathbb{T} \)"
folgt via 99-1: \(-(p) \) Zahl.

2: Aus 1"\(-(p) \) Zahl"
folgt via 96-11: \(-p \) Zahl.

3: Aus 2"\(-p \) Zahl"
folgt via 96-11: \(p \) Zahl.

4: Aus 3"\(p \) Zahl"
folgt via FS--:
folgt:

5: Aus VS gleich "\(-(-p) \in \mathbb{T} \)" und
aus 4"\(-(-p) = p \)"
folgt:

\[p \in \mathbb{T} \].

d) \[\begin{array}{c}
 \text{i) } \Rightarrow \text{ ii)} \end{array} \] VS gleich \(p \) Zahl.

Aus VS gleich "\(p \) Zahl"
folgt via 96-11: \(-p \) Zahl.

d) \[\begin{array}{c}
 \text{ii) } \Rightarrow \text{ iii)} \end{array} \] VS gleich \(-p \) Zahl.

Aus VS gleich "\(-p \) Zahl"
folgt via 96-11: \(-(-p) \) Zahl.

d) \[\begin{array}{c}
 \text{iii) } \Rightarrow \text{ i)} \end{array} \] VS gleich \(-(-p) \) Zahl.

1: Aus VS gleich "\(-(p) \) Zahl"
folgt via 96-11: \(-p \) Zahl.

2: Aus 1"\(-p \) Zahl"
folgt via 96-11: \(p \) Zahl.

\[\square \]
100-7. Da 1 eine reelle Zahl ist, ist auch -1 via 100-6 eine reelle Zahl:

\[
\underline{100-7\text{(Satz)}} \quad -1 \in \mathbb{R}.
\]

RECH-Notation.

\textbf{Beweis 100-7}

Aus AAI “1 ∈ \mathbb{R}” folgt via 100-6: $-1 \in \mathbb{R}$. □
ARITHMETIK #100

100-8. Durch Kombination von FSA0 und FS--- wird das nunmehrige Kriterium erhalten:

100-8(Satz)

Die Aussagen i), ii), iii) sind äquivalent:

i) \(0 - (-x) = x \).

ii) \(-(-x) + 0 = x \).

iii) “\(x \) Zahl” oder “\(x = U \)”.

RECH-Notation.

Beweis 100-8 [i) \(\Rightarrow \) ii)] VS gleich

\[0 - (-x) = x. \]

1: Aus VS folgt:

\[0 + (-(-x)) = x. \]

2: Via FSA gilt:

\[(-(-x)) + 0 = 0 + (-(-x)). \]

3: Aus 2“\((-(-x)) + 0 = 0 + (-(-x)) \)” und

aus 1“\(0 + (-(-x)) = x \)”

folgt:

\[(-(-x)) + 0 = x. \]

4: Aus 3

folgt:

\[-(-x) + 0 = x. \]
Beweis 100-8 \((\text{ii}) \Rightarrow (\text{iii}) \) VS gleich

\(-(-x) + 0 = x.\)

1: Via 95-6 gilt:

\((x \text{ Zahl}) \lor (x \notin \mathbb{A}).\)

Fallunterscheidung

1.1.Fall

\(x \text{ Zahl.}\)

Aus 1.1.Fall folgt:

\((x \text{ Zahl}) \lor (x = \mathcal{U}).\)

1.2.Fall

\(x \notin \mathbb{A}.\)

2: Aus 1.2.Fall \(x \notin \mathbb{A}\)

folgt via 96-12:

\(-x = \mathcal{U}.\)

3:

\(x \equiv (-x) + 0 \equiv -\mathcal{U} + 0 \equiv 0 \mathcal{U} + 0 \equiv 0 \mathcal{U}.\)

4: Aus 3 \(x = \ldots = \mathcal{U}\)

folgt:

\((x \text{ Zahl}) \lor (x = \mathcal{U}).\)

Ende Fallunterscheidung In beiden Fällen gilt: \((x \text{ Zahl}) \lor (x = \mathcal{U}).\)

\(\text{(iii)} \Rightarrow \text{(i)}\) VS gleich

\((x \text{ Zahl}) \lor (x = \mathcal{U}).\)

1.1: Aus VS gleich \((x \text{ Zahl}) \lor (x = \mathcal{U})\)

folgt via FSA0:

\(0 + x = x.\)

1.2: Aus VS gleich \((x \text{ Zahl}) \lor (x = \mathcal{U})\)

folgt via FS−−:

\(-(-x) = x.\)

2: Aus 1.1 \(0 + x = x\) und aus 1.2 \(-(-x) = x\)

folgt:

\(0 + (-(-x)) = x.\)

3: Aus 2 folgt:

\(0 - (-x) = x.\)

\(\square\)
100-9. Nun geht es um die Gleichungen $x = y$, $-x = -y$, $-(-x) = -(-y)$:

100-9(Satz)

a) Aus "$x = y$" folgt "$-x = -y$".

b) Aus "$x = y$" folgt "$-(-x) = -(-y)$".

c) Aus "$-x = -y$" folgt "$-(-x) = -(-y)$".

d) Aus "$-x = -y$" und "x Zahl" folgt "$x = y$" und "y Zahl".

e) Aus "$-x = -y$" und "y Zahl" folgt "$x = y$" und "x Zahl".

f) Aus "$-(-x) = -(-y)$" folgt "$-x = -y$".

g) Aus "$-(-x) = -(-y)$" und "x Zahl" folgt "$x = y$" und "y Zahl".

h) Aus "$-(-x) = -(-y)$" und "y Zahl" folgt "$x = y$" und "x Zahl".

RECH-Notation.

Beweis 100-9

ab) VS gleich $x = y$.

1. a) Aus "$-x = -x$" und aus VS gleich "$x = y$"
folgt: $-x = -y$.

2. b) Aus "$-(-x) = -(-x)$" und aus 1. a) "$-x = -y$"
folgt: $-(-x) = -(-y)$.

c) VS gleich $-x = -y$.

Aus VS gleich "$-x = -y$"
folgt via des bereits bewiesenen a): $-(-x) = -(-y)$.
Beweis 100-9 d) VS gleich

1.1: Aus VS gleich “\(-x = -y \ldots \)”
folgt via des bereits bewiesenen c):
\[(-x) = -(y). \]

1.2: Aus VS gleich “\(\ldots x \text{ Zahl} \)”
folgt via 96-11:
\[-x \text{ Zahl}. \]

1.3: Aus VS gleich “\(\ldots x \text{ Zahl} \)”
folgt via FS--:
\[(-x) = x. \]

2.1: Aus 1.2“\(-x \text{ Zahl} \)” und
aus VS gleich “\(-x = -y \ldots \)”
folgt:
\[-y \text{ Zahl}. \]

2.2: Aus 1.1“\(-(x) = -(y) \)” und
aus 1.3“\(-(x) = x \)”
folgt:
\[x = -(y). \]

3: Aus 2.1“\(-y \text{ Zahl} \)”
folgt via 96-11:
\[y \text{ Zahl}. \]

4: Aus 3“\(y \text{ Zahl} \)”
folgt via FS--:
\[(-y) = y. \]

5: Aus 2.2“\(x = -(y) \)” und
aus 4“\(-(y) = y \)”
folgt:
\[x = y. \]

6: Aus 5“\(x = y \)” und
aus 3“\(y \text{ Zahl} \)”
folgt:
\[(x = y) \land (y \text{ Zahl}). \]

e) VS gleich

1: Aus VS gleich “\(-x = -y \ldots \)”
folgt:
\[-y = -x. \]

2: Aus 1“\(-y = -x \)” und
aus VS gleich “\(\ldots y \text{ Zahl} \)”
folgt via des bereits bewiesenen d):
\[(y = x) \land (x \text{ Zahl}). \]

3: Aus 2“\(y = x \ldots \)”
folgt:
\[x = y. \]

4: Aus 3“\(x = y \)” und
aus 2“\(\ldots x \text{ Zahl} \)”
folgt:
\[(x = y) \land (x \text{ Zahl}). \]
Beweis 100-9 f) VS gleich

1: Aus VS gleich “$-(x) = -(y)$”
 folgt via des bereits bewiesenen a):

 $-(-x) = -(y)$.

2: $x^{100-4} - (-x) = 1 - (-y)$.

3: Aus 2
 folgt:
 $-x = -y$.

g) VS gleich

1: Aus VS gleich “$-(x) = -(y)$”
 folgt via des bereits bewiesenen f):

 $-x = -y$.

2: Aus 1“$-x = -y$” und
 aus VS gleich “x Zahl”
 folgt via des bereits bewiesenen d):

 $(x = y) \land (x$ Zahl).

h) VS gleich

1: Aus VS gleich “$-(x) = -(y)$”
 folgt via des bereits bewiesenen f):

 $-x = -y$.

2: Aus 1“$-x = -y$” und
 aus VS gleich “y Zahl”
 folgt via des bereits bewiesenen e):

 $(x = y) \land (x$ Zahl).
100-10. Nun geht es um die Ungleichungen $x \neq y$, $-x \neq -y$, $-(-x) \neq -(-y)$:

100-10(Satz)

a) Aus "$x \neq y$" und "x Zahl" folgt "$-x \neq -y$".
b) Aus "$x \neq y$" und "y Zahl" folgt "$-x \neq -y$".
c) Aus "$x \neq y$" und "x Zahl" folgt "$-(-x) \neq -(-y)$".
d) Aus "$x \neq y$" und "y Zahl" folgt "$-(-x) \neq -(-y)$".
e) Aus "$-x \neq -y$" folgt "$x \neq y$".
f) Aus "$-x \neq -y$" folgt "$-(-x) \neq -(-y)$".
g) Aus "$-(-x) \neq -(-y)$" folgt "$x \neq y$".
h) Aus "$-(-x) \neq -(-y)$" folgt "$-x \neq -y$".

RECH-Notation

Beweis 100-10 a)

1: Via 100-9 gilt:

$$((-x = -y) \land (x \text{ Zahl})) \Rightarrow (x = y).$$

2: Aus 1 folgt:

$$((-x = -y) \land (x \text{ Zahl})) \Rightarrow (\neg(-x = -y)).$$

3: Aus 2 folgt:

$$((x \neq y) \land (x \text{ Zahl})) \Rightarrow (-x \neq -y).$$

b)

1: Via 100-9 gilt:

$$((-x = -y) \land (y \text{ Zahl})) \Rightarrow (x = y).$$

2: Aus 1 folgt:

$$((-x = -y) \land (y \text{ Zahl})) \Rightarrow (\neg(-x = -y)).$$

3: Aus 2 folgt:

$$((x \neq y) \land (y \text{ Zahl})) \Rightarrow (-x \neq -y).$$
Beweis 100-10 c)
1: Via 100-9 gilt:
 \[\left(\neg(-x) = -(\neg y)\right) \land (x \text{ Zahl}) \Rightarrow (x = y).\]

2: Aus 1 folgt:
 \[\left(\neg(x = y)\right) \land (x \text{ Zahl}) \Rightarrow \neg\left(\neg(-x) = -(\neg y)\right).\]

3: Aus 2 folgt:
 \[\left(x \neq y\right) \land (x \text{ Zahl}) \Rightarrow \neg\left(\neg(-x) \neq -(\neg y)\right).\]

d)
1: Via 100-9 gilt:
 \[\left(\neg(-x) = -(\neg y)\right) \land (y \text{ Zahl}) \Rightarrow (x = y).\]

2: Aus 1 folgt:
 \[\left(\neg(x = y)\right) \land (y \text{ Zahl}) \Rightarrow \neg\left(\neg(-x) = -(\neg y)\right).\]

3: Aus 2 folgt:
 \[\left(x \neq y\right) \land (y \text{ Zahl}) \Rightarrow \neg\left(\neg(-x) \neq -(\neg y)\right).\]

e)
1: Via 100-9 gilt:
 \[(x = y) \Rightarrow (-x = -y).\]

2: Aus 1 folgt:
 \[\neg\left(-x = -y\right) \Rightarrow \neg(x = y).\]

3: Aus 2 folgt:
 \[\neg(-x \neq -y) \Rightarrow (x \neq y).\]

f)
1: Via 100-9 gilt:
 \[\left(-(-x) = -(\neg y)\right) \Rightarrow (-x = -y).\]

2: Aus 1 folgt:
 \[\neg\left(-(-x) = -(\neg y)\right) \Rightarrow \neg(-(-x) = -(-y)).\]

3: Aus 2 folgt:
 \[\neg(-x \neq -y) \Rightarrow (-(-x) \neq -(\neg y)).\]
Beweis 100-10 g)

1: Via 100-9 gilt:

\[(x = y) \Rightarrow (-(x) = -(y)).\]

2: Aus 1 folgt:

\[(-(-(x) = -(y))) \Rightarrow (-(x) = y).\]

3: Aus 2 folgt:

\[(-(x) \neq -(y)) \Rightarrow (x \neq y).\]

h)

1: Via 100-9 gilt:

\[(-x = -y) \Rightarrow (-(x) = -(y)).\]

2: Aus 1 folgt:

\[(-(-(x) = -(y))) \Rightarrow (-(x) = y).\]

3: Aus 2 folgt:

\[(-(x) \neq -(y)) \Rightarrow (x \neq y).\]

\[\square\]
100-11. Nun geht es um die Gleichungen \(x = -y, -x = y, x = -(-y), -x = -(-y) \):

\textbf{100-11 (Satz)}

a) Aus "\(x = -y \)" folgt "\(-x = -(-y)\)".

b) Aus "\(x = -y \) und "\(x \) Zahl" folgt "\(-x = y \)" und "\(y \) Zahl".

c) Aus "\(x = -y \) und "\(y \) Zahl" folgt "\(-x = y \)" und "\(x \) Zahl".

d) Aus "\(-x = y \)" folgt "\(-(-x) = -y \)".

e) Aus "\(-x = y \)" und "\(x \) Zahl" folgt "\(x = -y \)" und "\(y \) Zahl".

f) Aus "\(-x = y \)" und "\(y \) Zahl" folgt "\(x = -y \)" und "\(x \) Zahl".

g) Aus "\(x = -(-y) \)" und "\(x \) Zahl" folgt "\(x = y \)" und "\(y \) Zahl".

h) Aus "\(x = -(-y) \)" und "\(y \) Zahl" folgt "\(x = y \)" und "\(x \) Zahl".

i) Aus "\(x = -(-y) \)" folgt "\(-x = -y \)".

j) Aus "\(-x = -(-y) \)" und "\(x \) Zahl" folgt "\(x = -y \)" und "\(y \) Zahl".

k) Aus "\(-x = -(-y) \)" und "\(y \) Zahl" folgt "\(x = -y \)" und "\(x \) Zahl".

l) Aus "\(-x = -(-y) \)" folgt "\(-(-x) = -y \)".

\textbf{Beweis 100-11 a) VS gleich}

Aus VS gleich "\(x = -y \)"

folgt:

\(x = -y \).

\(-x = -(-y) \).
Beweis 100-11 b) VS gleich

1.1: Aus VS gleich “\(x = -y \ldots \)”
folgt via des bereits bewiesenen a):
\(-x = -(-y)\).

1.2: Aus VS gleich “\(x = -y \ldots \)” und
aus VS gleich “\(\ldots x \) Zahl”
folgt:
\(-y \) Zahl.

2: Aus 1.2 “\(-y \) Zahl”
folgt via 96-11:
\(y \) Zahl.

3: Aus 2 “\(y \) Zahl”
folgt via FS--:
\(-(-y) = y\).

4: Aus 1.1 “\(-x = -(-y)\)” und
aus 3 “\(-(-y) = y\)”
folgt:
\(-x = y\).

5: Aus 4 “\(-x = y\)” und
aus 2 “\(y \) Zahl”
folgt:
\((-x = y) \land (x \) Zahl\).

c) VS gleich

1.1: Aus VS gleich “\(x = -y \ldots \)”
folgt via des bereits bewiesenen a):
\(-x = -(-y)\).

1.2: Aus VS gleich “\(\ldots y \) Zahl”
folgt via FS--:
\(-(-y) = y\).

1.3: Aus VS gleich “\(\ldots y \) Zahl”
folgt via 96-11:
\(-y \) Zahl.

2.1: Aus 1.1 “\(-x = -(-y)\)” und
aus 1.2 “\(-(-y) = y\)”
folgt:
\(-x = y\).

2.2: Aus VS gleich “\(x = -y \ldots \)” und
aus 1.3 “\(-y \) Zahl”
folgt:
\(x \) Zahl.

3: Aus 2.1 “\(-x = y\)” und
aus 2.2 “\(x \) Zahl”
folgt:
\((-x = y) \land (x \) Zahl\).
Beweis 100-11 d) VS gleich

Aus VS gleich “$-x = y$”
folgt:

$-(x) = -y$.

e) VS gleich

$(x = y) \land (y \text{ Zahl})$.

1: Aus VS gleich “$-x = y$”
folgt:

$y = -x$.

2: Aus 1“$y = -x$” und
aus VS gleich “$\ldots x \text{ Zahl}$”
folgt via des bereits bewiesenen c):

$(x = y) \land (y \text{ Zahl})$.

3: Aus 2“$-y = x$”
folgt:

$x = -y$.

4: Aus 3“$x = -y$” und
aus 2“$\ldots y \text{ Zahl}$”
folgt:

$(x = y) \land (y \text{ Zahl})$.

f) VS gleich

$(x = y) \land (y \text{ Zahl})$.

1: Aus VS gleich “$-x = y$”
folgt:

$y = -x$.

2: Aus 1“$y = -x$” und
aus VS gleich “$\ldots y \text{ Zahl}$”
folgt via des bereits bewiesenen b):

$(x = y) \land (x \text{ Zahl})$.

3: Aus 2“$-y = x$”
folgt:

$x = -y$.

4: Aus 3“$x = -y$” und
aus 2“$x \ldots \text{ Zahl}$”
folgt:

$(x = y) \land (x \text{ Zahl})$.
Beweis 100-1 g) VS gleich

1: Aus VS gleich “$x = (-y)$" und aus VS gleich “x Zahl” folgt: $(-y)$ Zahl.

2: Aus 1 “$(-y)$ Zahl”
folgt via 100-6: y Zahl.

3: Aus 2 “y Zahl”
folgt via FS−−: $(-y) = y$.

4: Aus VS gleich “$x = (-y)$” und aus 3 “$(-y) = y$”
folgt: $x = y$.

5: Aus 4 “$x = y$” und aus 2 “y Zahl”
folgt: $(x = y) \land (y$ Zahl).

h) VS gleich

1: Aus VS gleich “$\ldots y$ Zahl”
folgt via FS−−: $(-y) = y$.

2: Aus VS gleich “$x = (-y)$” und aus 1 “$(-y) = y$”
folgt: $x = y$.

3: Aus 2 “$x = y$” und aus VS gleich “$\ldots y$ Zahl”
folgt: x Zahl.

4: Aus 2 “$x = y$” und aus 3 “x Zahl”
folgt: $(x = y) \land (x$ Zahl).

i) VS gleich

1: Aus VS gleich “$x = (-y)$”
folgt via 100-9: $-x = -(-y))$.

2: Via 100-4 gilt:

3: Aus 1 “$-x = -(-y)$” und aus 2 “$-(-y) = -y$”
folgt:

$x = -y$.
Beweis 100-11 j) VS gleich

\[(-x = -(-y)) \land (x \text{ Zahl}). \]

1: Aus VS gleich “…x Zahl”
folgt via 96-11:

\[-x \text{ Zahl}. \]

2: Aus VS gleich “\(-x = -(y)\ldots\)” und
aus 1“\(-x \text{ Zahl}\)”
folgt via des bereits bewiesenen g):

\[(-x = y) \land (y \text{ Zahl}). \]

3: Aus 2“\(-x = y\ldots\)” und
aus 2“…y Zahl”
folgt via des bereits bewiesenen f):

\[x = -y. \]

4: Aus 3“\(x = -y\)” und
aus 2“…y Zahl”
folgt:

\[(x = -y) \land (y \text{ Zahl}). \]

k) VS gleich

\[(-x = -(y)) \land (y \text{ Zahl}). \]

1: Aus VS gleich “…y Zahl”
folgt via FS—−:

\[-(y) = y. \]

2: Aus VS gleich “\(-x = -(y)\ldots\)” und
aus 1“\(-(y) = y\)”
folgt:

\[-x = y. \]

3: Aus 2“\(-x = y\ldots\)” und
aus VS gleich “…y Zahl”
folgt via des bereits bewiesenen f):

\[(x = -y) \land (x \text{ Zahl}). \]

1) VS gleich

\[-x = -(y). \]

1: Aus VS gleich “\(-x = -(y)\)”
folgt via 100-9:

\[-(-x) = -(-(y)). \]

2: Via 100-4 gilt:

\[-(-(y)) = -y. \]

3: Aus 1“\(-(-x) = -(y)\)” und
aus 2“\(-(-y) = -y\)”
folgt:

\[-(-x) = -y. \]

\[\square \]
100-12. Nun geht es um die Ungleichungen $x \neq -y$, $-x \neq y$, $x \neq -(-y)$, $-x \neq -(-y)$:

100-12(Satz)

a) Aus “$x \neq -y$“ und “x Zahl“ folgt “$-x \neq y$”.

b) Aus “$x \neq -y$“ und “y Zahl“ folgt “$-x \neq y$”.

c) Aus “$-x \neq y$“ und “x Zahl“ folgt “$x \neq -y$”.

d) Aus “$-x \neq y$“ und “y Zahl“ folgt “$x \neq -y$”.

e) Aus “$x \neq -(-y)$“ und “x Zahl“ folgt “$x \neq y$”.

f) Aus “$x \neq -(-y)$“ und “y Zahl“ folgt “$x \neq y$”.

g) Aus “$-x \neq -(-y)$“ folgt “$x \neq -y$”.

RECH-Notation.
Beweis 100-12 a)

1: Via 100-11 gilt:

\[((-x = y) \land (x \text{ Zahl})) \Rightarrow (x = -y). \]

2: Aus 1
folgt:

\[((-x = -y)) \land (x \text{ Zahl})) \Rightarrow (-(x = y)). \]

3: Aus 2
folgt:

\[((x \neq -y) \land (x \text{ Zahl})) \Rightarrow (-x \neq y). \]

b)

1: Via 100-11 gilt:

\[((-x = y) \land (y \text{ Zahl})) \Rightarrow (x = -y). \]

2: Aus 1
folgt:

\[((-x = -y)) \land (y \text{ Zahl})) \Rightarrow (-(x = y)). \]

3: Aus 2
folgt:

\[((x \neq -y) \land (y \text{ Zahl})) \Rightarrow (-x \neq y). \]

c)

1: Via 100-11 gilt:

\[((x = -y) \land (x \text{ Zahl})) \Rightarrow (-x = y). \]

2: Aus 1
folgt:

\[((-(-x = y)) \land (x \text{ Zahl})) \Rightarrow (-(x = -y)). \]

3: Aus 2
folgt:

\[((-x \neq y) \land (x \text{ Zahl})) \Rightarrow (x \neq -y). \]

d)

1: Via 100-11 gilt:

\[((x = -y) \land (y \text{ Zahl})) \Rightarrow (-x = y). \]

2: Aus 1
folgt:

\[((-(-x = y)) \land (y \text{ Zahl})) \Rightarrow (-(x = -y)). \]

3: Aus 2
folgt:

\[((-x \neq y) \land (y \text{ Zahl})) \Rightarrow (x \neq -y). \]
Beweis 100-12 e) VS gleich

(x ≠ −(−y)) ∧ (x Zahl).

1: Es gilt:

(x = y) ∨ (x ≠ y).

Fallunterscheidung

1.1. Fall

x = y.

2: Aus VS gleich “...x Zahl” und
aus 1.1. Fall “x = y”
folgt:
y Zahl.

3: Aus 2 “y Zahl”
folgt via FS−−:
(−(−y)) = y.

4: Aus VS gleich “x ≠ −(−y)...” und
aus 3 “(−(−y)) = y”
folgt:
x ≠ y.

5: Es gilt 4 “x ≠ y”.
Es gilt 1.1. Fall “x = y”.
Ex falso quodlibet folgt:
x ≠ y.

1.2. Fall

x ≠ y.

Ende Fallunterscheidung

In beiden Fällen gilt:
x ≠ y.

f) VS gleich

(x ≠ −(−y)) ∧ (y Zahl).

1: Aus VS gleich “...y Zahl”
folgt via FS−−:
(−(−y)) = y.

2: Aus VS gleich “x ≠ −(−y)...” und
aus 1 “(−(−y)) = y”
folgt:
x ≠ y.

g)

1: Via 100-11 gilt:

(x = −y) ⇒ (−x = −(−y)).

2: Aus 1
folgt:

(−(−x = −(−y))) ⇒ (−(x = −y)).

3: Aus 2
folgt:

(−x ≠ −(−y)) ⇒ (x ≠ −y).

□
100-13. Da 0, 1, _nan_, +∞, −∞, i Zahlen sind ergeben sich die nunmehrigen Kriterien ohne allzu viel Mühe aus Bisherigem:

100-13(Satz)

a) “_x_ = 0” genau dann, wenn “−_x_ = 0”.
b) “0 ≠ _x_” genau dann, wenn “0 ≠ −_x_”.
c) “_x_ = 1” genau dann, wenn “−_x_ = −1”.
d) “_x_ ≠ 1” genau dann, wenn “−_x_ ≠ −1”.
e) “_x_ = −1” genau dann, wenn “−_x_ = 1”.
f) “_x_ ≠ −1” genau dann, wenn “−_x_ ≠ 1”.
g) “_x_ = _nan_” genau dann, wenn “−_x_ = _nan_”.
h) “_x_ ≠ _nan_” genau dann, wenn “−_x_ ≠ _nan_”.
i) “_x_ = +∞” genau dann, wenn “−_x_ = −∞”.
j) “_x_ ≠ +∞” genau dann, wenn “−_x_ ≠ −∞”.
k) “_x_ = −∞” genau dann, wenn “−_x_ = +∞”.
l) “_x_ ≠ −∞” genau dann, wenn “−_x_ ≠ +∞”.
m) “_x_ = i” genau dann, wenn “−_x_ = −i”.
n) “_x_ ≠ i” genau dann, wenn “−_x_ ≠ −i”.
o) “_x_ = −i” genau dann, wenn “−_x_ = i”.
p) “_x_ ≠ −i” genau dann, wenn “−_x_ ≠ i”.

RECH-Notation.
Beweis 100-13 a) $$\iff$$ VS gleich

\[
\begin{align*}
1: & \quad x = 0. \\
2: & \quad -x = -0. \\
\end{align*}
\]

b)

\[
\begin{align*}
1: & \quad (x = 0) \iff (-x = 0). \\
2: & \quad (x \neq 0) \iff (-x \neq 0). \\
3: & \quad (0 \neq x) \iff (0 \neq -x). \\
\end{align*}
\]

c) $$\iff$$ VS gleich

Aus VS gleich “$$x = 1$$” folgt via 100-9:

\[
-x = -1.
\]

d)

\[
\begin{align*}
1: & \quad (x = 1) \iff (-x = -1). \\
2: & \quad (\neg (x = 1)) \iff (\neg (-x = -1)). \\
3: & \quad (x \neq 1) \iff (-x \neq -1).
\end{align*}
\]
Beweis 100-13 e) \(\iff\) VS gleich

Aus VS gleich "\(x = -1\)" und
aus 95-5 "1 Zahl"
folgt via 100-11:

\(\iff\)

Aus VS gleich "\(-x = 1\)" und
aus 95-5 "1 Zahl"
folgt via 100-11:

\(\iff\)

\(x = -1\).

f)

1: Via des bereits bewiesenen e) gilt:

\[(x = -1) \iff (-x = 1)\].

2: Aus 1

folgt:

\[\neg(x = -1) \iff \neg(-x = 1)\].

3: Aus 2

folgt:

\[(x \neq -1) \iff (-x \neq 1)\].

\(\iff\)

Aus VS gleich "\(x = \text{nan}\)"
folgt via 100-9:

\(-x = -\text{nan}\).

2: Aus 1 "\(-x = -\text{nan}\)" und
aus AAVI "\(-\text{nan} = \text{nan}\"
folgt:

\(-x = \text{nan}\).

\(\iff\)

Aus VS gleich "\(-x = \text{nan}\)" und
aus 95-5 "\(\text{nan} Zahl\"
folgt via 100-9:

\(x = -\text{nan}\).

2: Aus 1 "\(x = -\text{nan}\)" und
aus AAVI "\(-\text{nan} = \text{nan}\"
folgt:

\(x = \text{nan}\).

h)

1: Via des bereits bewiesenen g) gilt:

\[(x = \text{nan}) \iff (-x = \text{nan})\].

2: Aus 1

folgt:

\[\neg(x = \text{nan}) \iff \neg(-x = \text{nan})\].

3: Aus 2

folgt:

\[(x \neq \text{nan}) \iff (-x \neq \text{nan})\].
Beweis 100-13 1) \[\iff \] VS gleich

1: Aus VS gleich \(x = +\infty \)
folgt via 100-9:
\[-x = -(+\infty). \]

2: Aus 1\("-x = -(+\infty)" \) und
aus AAVI\(-(+\infty) = -\infty" \)
folgt:
\[-x = -\infty. \]

i) \[\iff \] VS gleich

1: Aus VS gleich \(-x = -\infty \)
und
aus 95-5\("-\infty Zahl" \)
folgt via 100-11:
\[x = -(+\infty). \]

2: Aus 1\("x = -(+\infty)" \)
und
aus AAVI\(-(+\infty) = +\infty" \)
folgt:
\[x = +\infty. \]

j)

1: Via des bereits bewiesenen i) gilt:
\[(x = +\infty) \iff (-x = -\infty). \]

2: Aus 1
folgt:
\[(\neg (x = +\infty)) \iff (\neg (-x = -\infty)). \]

3: Aus 2
folgt:
\[(x \neq +\infty) \iff (-x \neq -\infty). \]

k) \[\iff \] VS gleich

1: Aus VS gleich \(x = -\infty \)
folgt via 100-9:
\[-x = -(+\infty). \]

2: Aus 1\("-x = -(+\infty)" \)
und
aus AAVI\(-(+\infty) = +\infty" \)
folgt:
\[-x = +\infty. \]

k) \[\iff \] VS gleich

1: Aus VS gleich \(-x = +\infty" \)
und
aus 95-5\("+\infty Zahl" \)
folgt via 100-11:
\[x = -(+\infty). \]

2: Aus 1\("x = -(+\infty)" \)
und
aus AAVI\(-(+\infty) = -\infty" \)
folgt:
\[x = -\infty. \]
Beweis 100-13 1)

1: Via des bereits bewiesenen k) gilt: \((x = -\infty) \iff (-x = +\infty)\).

2: Aus 1 folgt: \((\neg(x = -\infty)) \iff (\neg(-x = +\infty))\).

3: Aus 2 folgt: \((x \neq -\infty) \iff (-x \neq +\infty)\).

m) \[\implies\] VS gleich \(x = i\).

Aus VS gleich “\(x = i\)” folgt via 100-9: \(-x = -i\).

m) \[\iff\] VS gleich \(-x = -i\).

Aus VS gleich “\(-x = -i\)” und aus 95-5 “i Zahl” folgt via 100-9: \(x = i\).

n)

1: Via des bereits bewiesenen m) gilt: \((x = i) \iff (-x = -i)\).

2: Aus 1 folgt: \((\neg(x = i)) \iff (\neg(-x = -i))\).

3: Aus 2 folgt: \((x \neq i) \iff (-x \neq -i)\).

o) \[\iff\] VS gleich \(x = -i\).

Aus VS gleich “\(x = -i\)” und aus 95-5 “i Zahl” folgt via 100-11: \(-x = i\).

o) \[\iff\] VS gleich \(-x = i\).

Aus VS gleich “\(-x = i\)” und aus 95-5 “i Zahl” folgt via 100-11: \(x = -i\).
Beweis 100-13 p)

1: Via des bereits bewiesenen o) gilt:
\[(x = -i) \iff (-x = i).\]

2: Aus 1 folgt:
\[\neg(x = -i) \iff \neg(-x = i).\]

3: Aus 2 folgt:
\[(x \neq -i) \iff (-x \neq i).\]
100-14. Gemäß vorliegenden Satzes gelten auch die “Minus-Versionen” für das Rechnen mit \text{nan}:

\begin{center}
\begin{tabular}{|p{1\textwidth}|}
\hline
\textbf{100-14(Satz)} \\
\textit{Es gelte:} \\
\quad \rightarrow p \in \mathbb{T}. \\
\textit{Dann folgt:} \\
\quad a) \text{nan} - p = -\text{nan} + p = -\text{nan} - p = \text{nan}. \\
\quad b) p - \text{nan} = -p + \text{nan} = -p - \text{nan} = \text{nan}. \\
\hline
\end{tabular}
\end{center}

RECH-Notation.
Beweis 100-14

1.1: Aus $\neg \rightarrow \neg p \in T$ folgt via 100-6:
 \[-p \in T.\]

1.2: Aus $\neg \rightarrow \neg p \in T$ folgt via AAVI:
 \[\text{nan} + p = p + \text{nan} = \text{nan}.\]

2.1: Aus 1.1 $\neg p \in T$ folgt via AAVI:
 \[\text{nan} + (-p) = (-p) + \text{nan} = \text{nan}.\]

2.2: Aus 1.2 $\text{nan} + p = p + \text{nan} = \text{nan}$ und
 aus AAVI $\neg \text{nan} = \text{nan}$
 folgt:
 \[-\text{nan} + p = p + (-\text{nan}) = \text{nan}.\]

3: Aus 2.1 $\text{nan} + (-p) = (-p) + \text{nan} = \text{nan}$ und
 aus AAVI $\neg \text{nan} = \text{nan}$
 folgt:
 \[-\text{nan} + (-p) = (-p) + (-\text{nan}) = \text{nan}.\]

4.1: Aus 2.1 $\text{nan} + (-p) = \ldots = \text{nan}$
 folgt:
 \[\text{nan} - p = \text{nan}.\]

4.2: Aus 2.2 $-\text{nan} + p = \ldots = \text{nan}$
 folgt:
 \[-\text{nan} + p = \text{nan}.\]

4.3: Aus 3 $-\text{nan} + (-p) = \ldots = \text{nan}$
 folgt:
 \[-\text{nan} - p = \text{nan}.\]

4.4: Aus 2.2 $\ldots p + (-\text{nan}) = \text{nan}$
 folgt:
 \[p - \text{nan} = \text{nan}.\]

4.5: Aus 2.1 $\ldots (-p) + \text{nan} = \text{nan}$
 folgt:
 \[-p + \text{nan} = \text{nan}.\]

4.6: Aus 3 $\ldots (-p) + (-\text{nan}) = \text{nan}$
 folgt:
 \[-p - \text{nan} = \text{nan}.\]

5.a): Aus 4.1,
aus 4.2 und
aus 4.3
 folgt:
 \[\text{nan} - p = -\text{nan} + p = -\text{nan} - p = \text{nan}.\]

5.b): Aus 4.4,
aus 4.5 und
aus 4.6
 folgt:
 \[p - \text{nan} = -p + \text{nan} = -p - \text{nan} = \text{nan}.\]

\Box
\[\cup \text{SZ}: \cup \text{Satz Zahlen.} \]
\[\cap \text{SZ}: \cap \text{Satz Zahlen.} \]
\[\lor \text{SZ}: \lor \text{Satz Zahlen.} \]
\[\land \text{SZ}: \land \text{Satz Zahlen.} \]
\[\subseteq \text{SZ}: \subseteq \text{Satz Zahlen.} \]
\[\in \text{SZ}: \in \text{Satz Zahlen.} \]
101-1. Wie erwartet gilt $x \in \mathbb{C}$ genau dann, wenn $\text{Re}x, \text{Im}x$ reelle Zahlen sind:

101-1(Satz)

Die Aussagen i), ii) sind äquivalent:

i) $x \in \mathbb{C}$.

ii) „$\text{Re}x \in \mathbb{R}$“ und „$\text{Im}x \in \mathbb{R}$“.

REIM-Notation
Beweis 101-1 \[\text{i) } \Rightarrow \text{ii) } \]

\[\text{VS gleich } x \in \mathbb{C}. \]

1: Aus \text{VS gleich } "x \in \mathbb{C}" und
aus "\[\mathbb{C} = \{ \omega : (\omega \in \mathbb{A}) \land (\text{Re} \omega \in \mathbb{R}) \land (\text{Im} \omega \in \mathbb{R}) \} \]\nfolgt:
\[x \in \{ \omega : (\omega \in \mathbb{A}) \land (\text{Re} \omega \in \mathbb{R}) \land (\text{Im} \omega \in \mathbb{R}) \}. \]

2: Aus 1" \[x \in \{ \omega : (\omega \in \mathbb{A}) \land (\text{Re} \omega \in \mathbb{R}) \land (\text{Im} \omega \in \mathbb{R}) \} \]
folgt:
\[(\text{Re} \omega \in \mathbb{R}) \land (\text{Im} \omega \in \mathbb{R}). \]

\[\text{ii) } \Rightarrow \text{i) } \]

\[\text{VS gleich } (\text{Re} x \in \mathbb{R}) \land (\text{Im} x \in \mathbb{R}). \]

1: Aus \text{VS gleich } "\text{Re} x \in \mathbb{R}..." folgt via \textbf{ElementAxiom}:
\[
\text{Re} x \text{ Menge. }
\]

2: Aus 1" \[\text{Re} x \text{ Menge} \]
folgt via 96-9: \[x \text{ Zahl. } \]

3.1: Aus 2" \[x \text{ Zahl} \]
folgt via 95-6: \[x \text{ Menge. } \]

3.2: Aus 2" \[x \text{ Zahl} \]
folgt via 95-4(Def): \[x \in \mathbb{A}. \]

4: Aus 3.2" \[x \in \mathbb{A}, \]
aus \text{VS gleich } "\text{Re} x \in \mathbb{R}..." und
aus \text{VS gleich } "...\text{Im} x \in \mathbb{R}"
folgt:
\[(x \in \mathbb{A}) \land (\text{Re} x \in \mathbb{R}) \land (\text{Im} x \in \mathbb{R}). \]

5: Aus 4" \[(x \in \mathbb{A}) \land (\text{Re} x \in \mathbb{R}) \land (\text{Im} x \in \mathbb{R}) \]" und
aus 3.1" \[x \text{ Menge} \]
folgt:
\[x \in \{ \omega : (\omega \in \mathbb{A}) \land (\text{Re} \omega \in \mathbb{R}) \land (\text{Im} \omega \in \mathbb{R}) \}. \]

6: Aus 5" \[x \in \{ \omega : (\omega \in \mathbb{A}) \land (\text{Re} \omega \in \mathbb{R}) \land (\text{Im} \omega \in \mathbb{R}) \} \]" und
aus " \[\{ \omega : (\omega \in \mathbb{A}) \land (\text{Re} \omega \in \mathbb{R}) \land (\text{Im} \omega \in \mathbb{R}) \} = \mathbb{C} \]
folgt:
\[x \in \mathbb{C}. \]

\[
\Box
\]
101-2. Via Negation folgt aus 101-1 vorliegendes Kriterium für $x \notin \mathbb{C}$:

\textbf{101-2(Satz)}

\textit{Die Aussagen i), ii) sind äquivalent:}

i) $x \notin \mathbb{C}$.

ii) "Re$x \notin \mathbb{R}$" oder "Im$x \notin \mathbb{R}$".

\begin{center}
\textbf{REIM-Notation}
\end{center}

\textbf{Beweis 101-2}

1: Via 101-1 gilt:

\[x \in \mathbb{C} \iff ((\text{Re} x \in \mathbb{R}) \land (\text{Im} x \in \mathbb{R})). \]

2: Aus 1 folgt:

\[\neg(x \in \mathbb{C}) \iff \neg((\text{Re} x \in \mathbb{R}) \land (\text{Im} x \in \mathbb{R})). \]

3: Aus 2 folgt:

\[\neg((\text{Re} x \in \mathbb{R})) \vee (\neg(\text{Im} x \in \mathbb{R})). \]

4: Aus 3 folgt:

\[x \notin \mathbb{C} \iff ((\text{Re} x \notin \mathbb{R}) \lor (\text{Im} x \notin \mathbb{R})). \]

\[\square\]
101-3. Wie erwartet gilt $x \in \mathbb{B}$ genau dann, wenn $\Re x, \Im x$ reelle Zahlen sind:

101-3(Satz)

Die Aussagen i), ii) sind äquivalent:

i) $x \in \mathbb{B}$.

ii) “$\Re x \in S$ und $\Im x \in S$”.

REIM-Notation
Beweis 101-3

VS gleich

1: Aus VS gleich „$x \in \mathbb{B}$“ und
 aus „$\mathbb{B} = \{\omega : (\omega \in A) \land (\text{Re}\omega \in S) \land (\text{Im}\omega \in S)\}$“
 folgt: $x \in \{\omega : (\omega \in A) \land (\text{Re}\omega \in S) \land (\text{Im}\omega \in S)\}$.

2: Aus 1“$x \in \{x : (\omega \in A) \land (\text{Re}\omega \in S) \land (\text{Im}\omega \in S)\}$”
 folgt:
 $(\text{Re}\omega \in S) \land (\text{Im}\omega \in S)$.

VS gleich

(i) ⇒ (ii)

1: Aus VS gleich “$\text{Re}x \in S$...”
 folgt via **ElementAxiom**: $\text{Re}x$ Menge.

2: Aus 1“$\text{Re}x$ Menge”
 folgt via 96-9: x Zahl.

3.1: Aus 2“x Zahl”
 folgt via 95-6: x Menge.

3.2: Aus 2“x Zahl”
 folgt via 95-4(Def): $x \in A$.

4: Aus 3.2“$x \in A$”,
 aus VS gleich “$\text{Re}x \in S$...” und
 aus VS gleich “...$\text{Im}x \in S$”
 folgt:
 $(x \in A) \land (\text{Re}x \in S) \land (\text{Im}x \in S)$.

5: Aus 4“$(x \in A) \land (\text{Re}x \in S) \land (\text{Im}x \in S)$” und
 aus 3.1“x Menge”
 folgt:
 $x \in \{\omega : (\omega \in A) \land (\text{Re}\omega \in S) \land (\text{Im}\omega \in S)\}$.

6: Aus 5“$x \in \{\omega : (\omega \in A) \land (\text{Re}\omega \in S) \land (\text{Im}\omega \in S)\}$” und
 aus “$\{\omega : (\omega \in A) \land (\text{Re}\omega \in S) \land (\text{Im}\omega \in S)\} = \mathbb{B}$”
 folgt:
 $x \in \mathbb{B}$.

\square
101-4. Via Negation folgt aus 101-3 vorliegendes Kriterium für \(x \notin \mathbb{B} \):

\[
\begin{align*}
\textbf{101-4(Satz)} & \quad \text{Die Aussagen i), ii) sind äquivalent:} \\
\text{i) } x & \notin \mathbb{B}. \\
\text{ii) } "\text{Re} x \notin S \text{ oder Im} x \notin S".
\end{align*}
\]

\textbf{REIM-Notation.}

\textbf{Beweis 101-4}

1: Via 101-3 gilt:
\[
\begin{align*}
x & \in \mathbb{B} \\
\iff (\text{Re} x \in S) \land (\text{Im} x \in S).
\end{align*}
\]

2: Aus 1 folgt:
\[
\begin{align*}
(\neg (x \in \mathbb{B})) & \iff (\neg ((\text{Re} x \in S) \land (\text{Im} x \in S))).
\end{align*}
\]

3: Aus 2 folgt:
\[
\begin{align*}
(\neg (x \in \mathbb{B})) & \iff ((\neg (\text{Re} x \in S)) \lor (\neg (\text{Im} x \in S))).
\end{align*}
\]

4: Aus 3 folgt:
\[
\begin{align*}
x & \notin \mathbb{B} \\
\iff ((\text{Re} x \notin S) \lor (\text{Im} x \notin S)).
\end{align*}
\]

\]
101-5. Es werden nun einige Elemente von \mathbb{C} und einige Klassen, die *kein* Element von \mathbb{C} sind, angegeben. Hier werden auch einige "TeilKlassen- und Ungleichheits-Aussagen" rund um $\mathbb{C}, \mathbb{R}, \mathbb{S}, \mathbb{T}, \mathbb{B}, \mathbb{A}$ bewiesen. Die Beweis-Reihenfolge ist f) - g) - h) - a) - b) - c) - d) - e) - i) - j) - k) - l):

<table>
<thead>
<tr>
<th>101-5(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $0 \in \mathbb{C}$.</td>
</tr>
<tr>
<td>b) $1 \in \mathbb{C}$.</td>
</tr>
<tr>
<td>c) $\text{nan} \notin \mathbb{C}$.</td>
</tr>
<tr>
<td>d) $+\infty \notin \mathbb{C}$.</td>
</tr>
<tr>
<td>e) $-\infty \notin \mathbb{C}$.</td>
</tr>
<tr>
<td>f) $\infty \notin \mathbb{C}$.</td>
</tr>
<tr>
<td>g) $i \in \mathbb{C}$.</td>
</tr>
<tr>
<td>h) "$\mathbb{R} \subseteq \mathbb{C}$" und "$\mathbb{R} \neq \mathbb{C}$".</td>
</tr>
<tr>
<td>i) "$\mathbb{S} \not\subseteq \mathbb{C}$" und "$\mathbb{C} \not\subseteq \mathbb{S}$".</td>
</tr>
<tr>
<td>j) "$\mathbb{T} \not\subseteq \mathbb{C}$" und "$\mathbb{C} \not\subseteq \mathbb{T}$".</td>
</tr>
<tr>
<td>k) "$\mathbb{C} \subseteq \mathbb{B}$" und "$\mathbb{C} \neq \mathbb{B}$".</td>
</tr>
<tr>
<td>l) "$\mathbb{C} \subseteq \mathbb{A}$" und "$\mathbb{C} \neq \mathbb{A}$".</td>
</tr>
</tbody>
</table>

Beweis 101-5

REIM-Notation.

f)

Aus $\text{AAI}\ "\infty \notin \mathbb{A}"$ und aus $\text{96-6} \ "\mathbb{C} \subseteq \mathbb{A}"$ folgt via 0-4: $\infty \notin \mathbb{C}$.
Beweis 101-5 g)

1.1: Aus AAIII "Rei = 0" und aus AAI "0 ∈ ℜ" folgt: Rei ∈ ℜ.

1.2: Aus AAIII "Imi = 1" und aus AAI "1 ∈ ℜ" folgt: Imi ∈ ℜ.

2: Aus 1.1 "Rei ∈ ℜ" und aus 1.2 "Imi ∈ ℜ" folgt via 101-1: i ∈ ℂ.
Beweis 101-5 h)

Thema 1.1

2: Aus Thema 1.1 "\(\alpha \in \mathbb{R} \)"
 folgt via 95-16: \(\alpha \in \mathbb{T} \).

3: Aus 2 "\(\alpha \in \mathbb{T} \)"
 folgt via FST:
 \((\alpha = \text{Re} \alpha) \land (\text{Im} \alpha = 0) \).

4.1: Aus Thema 1.1 "\(\alpha \in \mathbb{R} \)" und
 aus 3 "\(\alpha = \text{Re} \alpha \ldots \)"
 folgt:
 \(\text{Re} \alpha \in \mathbb{R} \).

4.2: Aus 3 "\ldots \text{Im} \alpha = 0 \)" und
 aus AAI "\(0 \in \mathbb{R} \)"
 folgt:
 \(\text{Im} \alpha \in \mathbb{R} \).

5: Aus 4.1 "\(\text{Re} \alpha \in \mathbb{R} \)" und
 aus 4.2 "\(\text{Im} \alpha \in \mathbb{R} \)"
 folgt via 101-1:
 \(\alpha \in \mathbb{C} \).

Ergo Thema 1:

\(\forall \alpha: (\alpha \in \mathbb{R}) \Rightarrow (\alpha \in \mathbb{C}) \).

Konsequenz via 0-2(Def):

1.2: Via des bereits bewiesenen g) gilt:
 \(i \in \mathbb{C} \).

2: Via AAI gilt:
 \(i \notin \mathbb{R} \).

3: Aus 1.2 "\(i \in \mathbb{C} \)" und
 aus 2 "\(i \notin \mathbb{R} \)"
 folgt via 0-10:
 \(\mathbb{C} \neq \mathbb{R} \).

4: Aus 3
 folgt:
 \(\mathbb{A} \) "\(\mathbb{R} \neq \mathbb{C} \)"

1.3: Aus A1 gleich "\(\mathbb{R} \subseteq \mathbb{C} \)" und
 aus A2 gleich "\(\mathbb{R} \neq \mathbb{C} \)"
 folgt:
 \((\mathbb{R} \subseteq \mathbb{C}) \land (\mathbb{R} \neq \mathbb{C}) \).
Beweis 101-5 ab)

1: Via des bereits bewiesenen h) gilt:
\[\mathbb{R} \subseteq \mathbb{C}. \]

2.a): Aus AAI “0 ∈ \mathbb{R}” und
aus 1 “\mathbb{R} \subseteq \mathbb{C}”
folgt via 0-4:
\[0 \in \mathbb{C}. \]

2.b): Aus AAI “1 ∈ \mathbb{R}” und
aus 1 “\mathbb{R} \subseteq \mathbb{C}”
folgt via 0-4:
\[1 \in \mathbb{C}. \]

c)

1: Aus 99-15 “Renan = nan” und
aus AAI “nan ∉ \mathbb{R}”
folgt:
\[\text{Renan} \notin \mathbb{R}. \]

2: Aus 1 “Renan ∉ \mathbb{R}”
folgt via 101-2:
\[\text{nan} \notin \mathbb{C}. \]

d)

1: Aus 99-15 “Re(+∞) = +∞” und
aus AAI “+∞ ∉ \mathbb{R}”
folgt:
\[\text{Re}(+∞) \notin \mathbb{R}. \]

2: Aus 1 “Re(+∞) ∉ \mathbb{R}”
folgt via 101-2:
\[+\infty \notin \mathbb{C}. \]

e)

1: Aus 99-15 “Re(−∞) = −∞” und
aus AAI “−∞ ∉ \mathbb{R}”
folgt:
\[\text{Re}(−∞) \notin \mathbb{R}. \]

2: Aus 1 “Re(−∞) ∉ \mathbb{R}”
folgt via 101-2:
\[−\infty \notin \mathbb{C}. \]
Beweis 101-5 i)

1.1: Via des bereits bewiesenen d) gilt:

\[+\infty \notin \mathbb{C}. \]

2: Aus 95-11 "\(+\infty \in S\)" und
aus 1.1 "\(+\infty \notin \mathbb{C}\)"
folgt via 0-5:

\(A_1\) "\(S \nsubseteq \mathbb{C}\)"

1.2: Via des bereits bewiesenen g) gilt:

\[i \in \mathbb{C}. \]

2: Aus 1.2 "\(i \in \mathbb{C}\)" und
aus 99-9 "\(i \notin S\)"
folgt via 0-5:

\(A_2\) "\(C \nsubseteq S\)"

1.3: Aus A1 gleich "\(S \nsubseteq \mathbb{C}\)" und
aus A2 gleich "\(C \nsubseteq S\)"
folgt:

\((S \nsubseteq \mathbb{C}) \land (C \nsubseteq S)\).

j)

1.1: Via des bereits bewiesenen c) gilt:

\[\text{nan} \notin \mathbb{C}. \]

2: Aus 95-12 "\(\text{nan} \in T\)" und
aus 1.1 "\(\text{nan} \notin \mathbb{C}\)"
folgt via 0-5:

\(A_1\) "\(T \nsubseteq \mathbb{C}\)"

1.2: Via des bereits bewiesenen g) gilt:

\[i \in \mathbb{C}. \]

2: Aus 1.2 "\(i \in \mathbb{C}\)" und
aus 99-9 "\(i \notin T\)"
folgt via 0-5:

\(A_2\) "\(C \nsubseteq T\)"

1.3: Aus A1 gleich "\(T \nsubseteq \mathbb{C}\)" und
aus A2 gleich "\(C \nsubseteq T\)"
folgt:

\((T \nsubseteq \mathbb{C}) \land (C \nsubseteq T)\).
Beweis 101-5 k)

\begin{center}
\textbf{Thema 1.1}
\end{center}

\[\alpha \in \mathbb{C}. \]

2: Aus Thema 1.1 “\(\alpha \in \mathbb{C} \)” folgt via 101-1:

\[\text{Re} \alpha \in \mathbb{R} \land (\text{Im} \alpha \in \mathbb{R}). \]

3.1: Aus 2 “\(\text{Re} \alpha \in \mathbb{R} \)” folgt via 95-15:

\[\text{Re} \alpha \in \mathbb{S}. \]

3.2: Aus 2 “\(\text{Im} \alpha \in \mathbb{R} \)” folgt via 95-15:

\[\text{Im} \alpha \in \mathbb{S}. \]

4: Aus 3.1 “\(\text{Re} \alpha \in \mathbb{S} \)” und aus 3.2 “\(\text{Im} \alpha \in \mathbb{S} \)” folgt via 101-3:

\[\alpha \in \mathbb{B}. \]

Ergo Thema 1.1:

\[\forall \alpha : (\alpha \in \mathbb{C}) \Rightarrow (\alpha \in \mathbb{B}). \]

Konsequenz via 0-2(Def):

1.2: Via des bereits bewiesenen d) gilt:

\[+\infty \notin \mathbb{C}. \]

2.1: Aus 99-15 “\(\text{Re}(+\infty) = +\infty \)” und aus 95-11 “\(+\infty \in \mathbb{S} \)” folgt:

\[\text{Re}(+\infty) \in \mathbb{S}. \]

2.2: Aus 99-15 “\(\text{Im}(+\infty) = 0 \)” und aus 95-11 “\(0 \in \mathbb{S} \)” folgt:

\[\text{Im}(+\infty) \in \mathbb{S}. \]

3: Aus 2.1 “\(\text{Re}(+\infty) \in \mathbb{S} \)” und aus 2.2 “\(\text{Im}(+\infty) \in \mathbb{S} \)” folgt via 101-3:

\[+\infty \in \mathbb{B}. \]

4: Aus 3 “\(+\infty \in \mathbb{B} \)” und aus 1.2 “\(+\infty \notin \mathbb{C} \)” folgt via 0-10:

\[\mathbb{B} \neq \mathbb{C}. \]

5: Aus 4 folgt:

\[\mathbb{C} \neq \mathbb{B}. \]

6: Aus A1 gleich “\(\mathbb{C} \subseteq \mathbb{B} \)” und aus 5 “\(\mathbb{C} \neq \mathbb{B} \)” folgt:

\[(\mathbb{C} \subseteq \mathbb{B}) \land (\mathbb{C} \neq \mathbb{B}). \]
Beweis 101-5 1)

1: Via des bereits bewiesenen c) gilt: \(\text{nan} \notin \mathbb{C} \).

2: Aus AAI “\(\text{nan} \in A \)” und aus 1“\(\text{nan} \notin \mathbb{C} \)” folgt via 0-10: \(A \neq \mathbb{C} \).

3: Aus 2 folgt: \(\mathbb{C} \neq A \).

4: Aus 96-6 “\(\mathbb{C} \subseteq A \)” und aus 3“\(\mathbb{C} \neq A \)” folgt: \((\mathbb{C} \subseteq A) \land (\mathbb{C} \neq A) \).

\(\square \)
101-6. Nun wird Einiges über komplexe Zahlen und über \(\text{nan}, +\infty, -\infty \) ausgesagt:

\[101-6(\text{Satz}) \]

\[\text{Es gelte:\hspace{1cm}} \]

\[\rightarrow x \in \mathbb{C}. \]

\[\text{Dann folgt:\hspace{1cm}} \]

a) \(x \neq \text{nan}. \)
b) \(x \neq +\infty. \)
c) \(x \neq -\infty. \)
d) \(x \neq -\infty. \)
e) \(\text{Re} x \neq \text{nan}. \)
f) \(\text{Re} x \neq +\infty. \)
g) \(\text{Re} x \neq -\infty. \)
h) \(\text{Re} x \neq -\infty. \)
i) \(\text{Im} x \neq \text{nan}. \)
j) \(\text{Im} x \neq +\infty. \)
k) \(\text{Im} x \neq -\infty. \)
l) \(\text{Im} x \neq -\infty. \)

REIM-Notation
Beweis 101-6 abcd)

1: Via 101-5 gilt: \((\text{nan} \notin \mathbb{C}) \land (+\infty \notin \mathbb{C}) \land (-\infty \notin \mathbb{C}) \land (\infty \notin \mathbb{C})\).

2.a): Aus \(\rightarrow\) “\(x \in \mathbb{C}\)” und
aus 1“\(\text{nan} \notin \mathbb{C} . . .\)”
folgt via 0-1: \(x \neq \text{nan}\).

2.b): Aus \(\rightarrow\) “\(x \in \mathbb{C}\)” und
aus 1“\(\ldots + \infty \notin \mathbb{C} . . .\)”
folgt via 0-1: \(x \neq +\infty\).

2.c): Aus \(\rightarrow\) “\(x \in \mathbb{C}\)” und
aus 1“\(\ldots - \infty \notin \mathbb{C} . . .\)”
folgt via 0-1: \(x \neq -\infty\).

2.d): Aus \(\rightarrow\) “\(x \in \mathbb{C}\)” und
aus 1“\(\ldots \infty \notin \mathbb{C}\)”
folgt via 0-1: \(x \neq \infty\).

efgh

1: Aus \(\rightarrow\) “\(x \in \mathbb{C}\)”
folgt via 101-1: \(\Re x \in \mathbb{R}\).

2: Via AAI gilt: \((\text{nan} \notin \mathbb{R}) \land (+\infty \notin \mathbb{R}) \land (-\infty \notin \mathbb{R}) \land (\infty \notin \mathbb{R})\).

3.e): Aus \(\rightarrow\) “\(\Re x \in \mathbb{R}\)” und
aus 2“\(\text{nan} \notin \mathbb{R} . . .\)”
folgt via 0-1: \(\Re x \neq \text{nan}\).

3.f): Aus \(\rightarrow\) “\(\Re x \in \mathbb{R}\)” und
aus 2“\(\ldots + \infty \notin \mathbb{R} . . .\)”
folgt via 0-1: \(\Re x \neq +\infty\).

3.g): Aus \(\rightarrow\) “\(\Re x \in \mathbb{R}\)” und
aus 2“\(\ldots - \infty \notin \mathbb{R} . . .\)”
folgt via 0-1: \(\Re x \neq -\infty\).

3.h): Aus \(\rightarrow\) “\(\Re x \in \mathbb{R}\)” und
aus 2“\(\ldots \infty \notin \mathbb{R}\)”
folgt via 0-1: \(\Re x \neq \infty\).
Beweis 101-6 ijk1)

1: Aus $\rightarrow "x \in \mathbb{C}"$
folgt via 101-1:

$\text{Im} \ x \in \mathbb{R}$.

2: Via AAI gilt:

$(\text{nan} \not\in \mathbb{R}) \land (+\infty \not\in \mathbb{R}) \land (-\infty \not\in \mathbb{R}) \land (\infty \not\in \mathbb{R})$.

3.i): Aus $\rightarrow "\text{Im} \ x \in \mathbb{R}"$ und
aus 2"nan $\not\in \mathbb{R}$..."
folgt via 0-1:

$\text{Im} \ x \neq \text{nan}$.

3.j): Aus $\rightarrow "\text{Im} \ x \in \mathbb{R}"$ und
aus 2"... + $\infty \not\in \mathbb{R}$..."
folgt via 0-1:

$\text{Im} \ x \neq +\infty$.

3.k): Aus $\rightarrow "\text{Im} \ x \in \mathbb{R}"$ und
aus 2"... $-\infty \not\in \mathbb{R}$..."
folgt via 0-1:

$\text{Im} \ x \neq -\infty$.

3.l): Aus $\rightarrow "\text{Im} \ x \in \mathbb{R}"$ und
aus 2"$\ldots \infty \not\in \mathbb{R}$"
folgt via 0-1:

$\text{Im} \ x \neq \infty$.

□
101-7. Es werden nun einige Elemente von \(\mathbb{B}\) und einige Klassen, die \textit{kein} Element von \(\mathbb{B}\) sind, angegeben. Hier werden auch einige “TeilKlassen- und Ungleichheits-Aussagen” rund um \(\mathbb{C}, \mathbb{R}, \mathbb{S}, \mathbb{T}, \mathbb{B}, \mathbb{A}\) bewiesen. Die Beweis-Reihenfolge ist f) - c) - g) - h) - i) - a) - b) - d) - e) - j) - k) - l):

<table>
<thead>
<tr>
<th>101-7(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (0 \in \mathbb{B}).</td>
</tr>
<tr>
<td>b) (1 \in \mathbb{B}).</td>
</tr>
<tr>
<td>c) (\text{nan} \notin \mathbb{B}).</td>
</tr>
<tr>
<td>d) (+\infty \in \mathbb{B}).</td>
</tr>
<tr>
<td>e) (-\infty \in \mathbb{B}).</td>
</tr>
<tr>
<td>f) (\infty \notin \mathbb{B}).</td>
</tr>
<tr>
<td>g) (i \in \mathbb{B}).</td>
</tr>
</tbody>
</table>
| h) “\(\mathbb{R} \subseteq \mathbb{B}\)” und “\(\mathbb{R} \neq \mathbb{B}\)”.
| i) “\(\mathbb{S} \subseteq \mathbb{B}\)” und “\(\mathbb{S} \neq \mathbb{B}\)”.
| j) “\(\mathbb{T} \nsubseteq \mathbb{B}\)” und “\(\mathbb{B} \nsubseteq \mathbb{T}\)”.
| k) “\(\mathbb{C} \subseteq \mathbb{B}\)” und “\(\mathbb{C} \neq \mathbb{B}\)”.
| l) “\(\mathbb{B} \subseteq \mathbb{A}\)” und “\(\mathbb{B} \neq \mathbb{A}\)”.

Beweis 101-7

REIM-Notation.

f)

Aus \(\text{AAI} \ "\infty \notin \mathbb{A}\”\) und
aus \(\text{96-6} \ "\mathbb{B} \subseteq \mathbb{A}\”\)
folgt via \(\text{0-4}:

\[\infty \notin \mathbb{B}\].\]
Beweis 101-7 c)

1: Aus 99-15 “Renan = nan” und
 aus 95-11 “nan ∉ S”
 folgt:
 Renan ∉ S.

2: Aus 1 “Renan ∉ S”
 folgt via 101-4:
 nan ∉ B.

g)
Aus 101-5 “i ∈ C” und
aus 101-5 “C ⊆ B”
folgt via 0-4:
 i ∈ B.

h)
1.1: Aus 101-5 “R ⊆ C” und
 aus 101-5 “C ⊆ B”
 folgt via 0-6:
 R ⊆ B.

1.2: Via des bereits bewiesenen g) gilt:

 2: Aus 1.2 “i ∈ B” und
 aus AAI “i ∉ R”
 folgt via 0-10:
 B ≠ R.

3: Aus 2
 folgt:
 R ≠ B.

4: Aus 1.1 “R ⊆ B” und
 aus 3 “R ≠ B”
 folgt:
 (R ⊆ B) ∧ (R ≠ B).
Beweis 101-7 i)

<table>
<thead>
<tr>
<th>Thema1.1</th>
<th>α ∈ S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus Thema1.1“α ∈ S” folgt via 95-16:</td>
<td>α ∈ T.</td>
</tr>
<tr>
<td>3: Aus 2“α ∈ T” folgt via FST:</td>
<td>(α = Reα) ∧ (Imα = 0).</td>
</tr>
<tr>
<td>4.1: Aus 3“α = Reα…” und aus Thema1.1“α ∈ S” folgt:</td>
<td>Reα ∈ S.</td>
</tr>
<tr>
<td>4.2: Aus 3“…Imα = 0” und aus 95-11“0 ∈ S” folgt:</td>
<td>Imα ∈ S.</td>
</tr>
<tr>
<td>5: Aus 4.1“Reα ∈ S” und aus 4.2“Imα ∈ S” folgt via 101-3:</td>
<td>α ∈ B.</td>
</tr>
</tbody>
</table>

Ergo Thema1.1: ∀α : (α ∈ S) ⇒ (α ∈ B).

Konsequenz via 0-2(Def):

| A1 | “S ⊆ B” |

1.2: Via des bereits bewiesenen g) gilt: i ∈ B.

| 2: Aus 1.2“i ∈ B” und aus 99-9“i ∉ S” folgt via 0-10: | B ≠ S. |
| 3: Aus 2 folgt: | |

| A2 | “S ≠ B” |

1.3: Aus A1 gleich “S ⊆ B” und aus A2 gleich “S ≠ B” folgt: (S ⊆ B) ∧ (S ≠ B).
Beweis 101-7 ab)

1: Via des bereits bewiesenen h) gilt: \(\mathbb{R} \subseteq \mathbb{B} \).

2.a): Aus AA I\(^{\text{h}}\) “0 ∈ \(\mathbb{R}\)” und
aus 1\(^{\text{h}}\) “\(\mathbb{R} \subseteq \mathbb{B}\)”
folgt via 0-4:
\(0 \in \mathbb{B} \).

2.b): Aus AA I\(^{\text{h}}\) “1 ∈ \(\mathbb{R}\)” und
aus 1\(^{\text{h}}\) “\(\mathbb{R} \subseteq \mathbb{B}\)”
folgt via 0-4:
\(1 \in \mathbb{B} \).

d e)

1: Via des bereits bewiesenen i) gilt: \(\mathbb{S} \subseteq \mathbb{B} \).

2.d): Aus 95-11\(^{\text{i}}\) “\(+\infty \in \mathbb{S}\)” und
aus 1\(^{\text{i}}\) “\(\mathbb{S} \subseteq \mathbb{B}\)”
folgt via 0-4:
\(+\infty \in \mathbb{B} \).

2.e): Aus 95-11\(^{\text{i}}\) “\(-\infty \in \mathbb{S}\)” und
aus 1\(^{\text{i}}\) “\(\mathbb{S} \subseteq \mathbb{B}\)”
folgt via 0-4:
\(-\infty \in \mathbb{B} \).

j)

1.1: Via des bereits bewiesenen c) gilt: \(\text{nan} \notin \mathbb{B} \).

2: Aus 95-12\(^{\text{c}}\) “\(\text{nan} \in \mathbb{T}\)” und
aus 1.1\(^{\text{c}}\) “\(\text{nan} \notin \mathbb{B}\)”
folgt via 0-5:
\(\text{A1} \quad \text{“} \mathbb{T} \notin \mathbb{B} \text{”} \)

1.2: Via des bereits bewiesenen g) gilt: \(i \in \mathbb{B} \).

2: Aus 1.2\(^{\text{g}}\) “\(i \in \mathbb{B}\)” und
aus 99-9\(^{\text{g}}\) “\(i \notin \mathbb{T}\)”
folgt via 0-5:
\(\text{A2} \quad \text{“} \mathbb{B} \notin \mathbb{T} \text{”} \)

1.3: Aus A1 gleich “\(\mathbb{T} \notin \mathbb{B}\)” und
aus A2 gleich “\(\mathbb{B} \notin \mathbb{T}\)”
folgt:
\[(\mathbb{T} \notin \mathbb{B}) \land (\mathbb{B} \notin \mathbb{T}). \]
Beweis 101-7

k)

Via 101-5 gilt:

\[(\mathcal{C} \subseteq \mathcal{B}) \land (\mathcal{C} \neq \mathcal{B})].\]

1: Via des bereits bewiesenen c) gilt: \(\text{nan} \notin \mathcal{B}\).

2: Aus AAI"\text{nan} \in \mathcal{A}" und aus 1"\text{nan} \notin \mathcal{B}" folgt via 0-10: \(\mathcal{A} \neq \mathcal{B}\).

3: Aus 2 folgt: \(\mathcal{B} \neq \mathcal{A}\).

4: Aus 96-6"\mathcal{B} \subseteq \mathcal{A}\" und aus 3"\mathcal{B} \neq \mathcal{A}\" folgt:

\[(\mathcal{B} \subseteq \mathcal{A}) \land (\mathcal{B} \neq \mathcal{A})].\]
101-8. Nun wird Einiges über komplexe Zahlen und über $\text{nan}, +\infty, -\infty$ ausgesagt:

101-8(Satz)

Es gelte:

\rightarrow \(x \in \mathbb{B} \).

Dann folgt:

a) \(x \neq \text{nan} \).

b) \(x \neq \infty \).

c) \(\text{Re} \, x \neq \text{nan} \).

d) \(\text{Re} \, x \neq \infty \).

e) \(\text{Im} \, x \neq \text{nan} \).

f) \(\text{Im} \, x \neq -\infty \).
Beweis 101-8 ab)

1: Via 101-7 gilt:
\[(\text{nan} \notin \mathbb{B}) \land (\infty \notin \mathbb{B}).\]

2.a): Aus $\rightarrow "x \in \mathbb{B}"$ und
aus 1"nan $\notin \mathbb{B} . . .""
folgt via 0-1: $x \neq \text{nan}$.

2.b): Aus $\rightarrow "x \in \mathbb{B}"$ und
aus 1"...\infty $\notin \mathbb{B} . . .""
folgt via 0-1: $x \neq \infty$.

cd)

1: Via 95-11 gilt:
\[(\text{nan} \notin \mathbb{S}) \land (\infty \notin \mathbb{S}).\]

2: Aus $\rightarrow "x \in \mathbb{B}"$
folgt via 101-3: $\Re x \in \mathbb{S}$.

3.c): Aus 2"$\Re x \in \mathbb{S}$" und
aus 1"nan $\notin \mathbb{S} . . .""
folgt via 0-1: $\Re x \neq \text{nan}$.

3.d): Aus 2"$\Re x \in \mathbb{S}$" und
aus 1"...\infty $\notin \mathbb{S} . . .""
folgt via 0-1: $\Re x \neq \infty$.

ef)

1: Via 95-11 gilt:
\[(\text{nan} \notin \mathbb{S}) \land (\infty \notin \mathbb{S}).\]

2: Aus $\rightarrow "x \in \mathbb{B}"$
folgt via 101-3: $\Im x \in \mathbb{S}$.

3.c): Aus 2"$\Im x \in \mathbb{S}$" und
aus 1"nan $\notin \mathbb{S} . . .""
folgt via 0-1: $\Im x \neq \text{nan}$.

3.d): Aus 2"$\Im x \in \mathbb{S}$" und
aus 1"...\infty $\notin \mathbb{S} . . .""
folgt via 0-1: $\Im x \neq \infty$.

\square
101-9. Es gilt $p \in \mathbb{C}$ genau dann, wenn $-p \in \mathbb{C}$ und dies ist genau dann der Fall, wenn $-(-p) \in \mathbb{C}$. Analoges gilt für \mathbb{B} an Stelle von \mathbb{C}:

101-9(Satz)

a) $(p \in \mathbb{C}) \iff (-p \in \mathbb{C}) \iff (-(-p) \in \mathbb{C})$.

b) $(p \in \mathbb{B}) \iff (-p \in \mathbb{B}) \iff (-(-p) \in \mathbb{B})$.

RECH-Notation

Beweis 101-9

REIM.-Notation

a) [i) \Rightarrow ii)] VS gleich

1: Aus VS gleich "$p \in \mathbb{C}$" folgt via 101-1: $(\text{Re} p \in \mathbb{R}) \land (\text{Im} p \in \mathbb{R})$.

2.1: Aus 1 "$\text{Re} p \in \mathbb{R}$..." folgt via 100-6: $-\text{Re} p \in \mathbb{R}$.

2.2: Aus 1 "...$\text{Im} p \in \mathbb{R}$" folgt via 100-6: $-\text{Im} p \in \mathbb{R}$.

3: Via 96-27 gilt: $(\text{Re}(-p) = -\text{Re} p) \land (\text{Im}(-p) = -\text{Im} p)$.

4.1: Aus 3 "$\text{Re}(-p) = -\text{Re} p$..." und aus 2.1 "$-\text{Re} p \in \mathbb{R}$" folgt: $\text{Re}(-p) \in \mathbb{R}$.

4.2: Aus 3 "...$\text{Im}(-p) = -\text{Im} p$" und aus 2.2 "$-\text{Im} p \in \mathbb{R}$" folgt: $\text{Im}(-p) \in \mathbb{R}$.

5: Aus 4.1 "$\text{Re}(-p) \in \mathbb{R}$" und aus 4.2 "$\text{Im}(-p) \in \mathbb{R}$" folgt via 101-1: $-p \in \mathbb{C}$.
Beweis 101-9 a) \[\text{ii)} \Rightarrow \text{iii)} \] VS gleich

1: Aus VS gleich “\(-p \in \mathbb{C}\)” folgt via 101-1:
\[(\text{Re}(-p) \in \mathbb{R}) \land (\text{Im}(-p) \in \mathbb{R}). \]

2.1: Aus 1 “\(\text{Re}(-p) \in \mathbb{R}\)” folgt via 100-6:
\[-\text{Re}(-p) \in \mathbb{R}. \]

2.2: Aus 1 “\(\ldots\) \(\text{Im}(-p) \in \mathbb{R}\)” folgt via 100-6:
\[-\text{Im}(-p) \in \mathbb{R}. \]

3: Via 96-27 gilt:
\[(\text{Re}(-(-p)) = -\text{Re}(-p)) \land (\text{Im}(-(-p)) = -\text{Im}(-p)). \]

4.1: Aus 3 “\(\text{Re}(-(-p)) = -\text{Re}(-p)\)” und aus 2.1 “\(-\text{Re}(-p) \in \mathbb{R}\)” folgt:
\[\text{Re}(-(-p)) \in \mathbb{R}. \]

4.2: Aus 3 “\(\ldots\) \(\text{Im}(-(-p)) = -\text{Im}(-p)\)” und aus 2.2 “\(-\text{Im}(-p) \in \mathbb{R}\)” folgt:
\[\text{Im}(-(-p)) \in \mathbb{R}. \]

5: Aus 4.1 “\(\text{Re}(-(-p)) \in \mathbb{R}\)” und aus 4.2 “\(\text{Im}(-(-p)) \in \mathbb{R}\)” folgt via 101-1:
\[-(-p) \in \mathbb{C}. \]

a) \[\text{iii)} \Rightarrow \text{i)} \] VS gleich

1: Aus VS gleich “\(-p \in \mathbb{C}\)” folgt via 99-1:
\[-(-p) \text{ Zahl}. \]

2: Aus 1 “\(-(-p) \text{ Zahl}\)” folgt via 100-6:
\[p \text{ Zahl}. \]

3: Aus 2 “\(p \text{ Zahl}\)” folgt via FS—:
\[-(-p) = p. \]

4: Aus VS gleich “\(-(-p) \in \mathbb{C}\)” und aus 3 “\(-(-p) = p\)” folgt:
\[p \in \mathbb{C}. \]
Beweis 101-9 b) \((i) \Rightarrow (ii)\) VS gleich

1: Aus VS gleich “\(p \in \mathbb{B}\)”
 folgt via 101-3:
 \((\Re p \in \mathbb{S}) \wedge (\Im p \in \mathbb{S})\).

2.1: Aus 1 “\(\Re p \in \mathbb{S}\)...”
 folgt via 100-6:
 \(-\Re p \in \mathbb{S}\).

2.2: Aus 1 “...\(\Im p \in \mathbb{S}\)”
 folgt via 100-6:
 \(-\Im p \in \mathbb{S}\).

3: Via 96-27 gilt:
 \((\Re(-p) = -\Re p) \wedge (\Im(-p) = -\Im p)\).

4.1: Aus 3 “\(\Re(-p) = -\Re p\)...” und
 aus 2.1 “\(-\Re p \in \mathbb{S}\)”
 folgt:
 \(\Re(-p) \in \mathbb{S}\).

4.2: Aus 3 “...\(\Im(-p) = -\Im p\)” und
 aus 2.2 “\(-\Im p \in \mathbb{S}\)”
 folgt:
 \(\Im(-p) \in \mathbb{S}\).

5: Aus 4.1 “\(\Re(-p) \in \mathbb{S}\)” und
 aus 4.2 “\(\Im(-p) \in \mathbb{S}\)”
 folgt via 101-3:
 \(-p \in \mathbb{B}\).
Beweis 101-9 b) $\begin{bmatrix} \text{iii} \Rightarrow \text{iii} \end{bmatrix}$ VS gleich $-p \in \mathbb{B}$

1: Aus VS gleich “$-p \in \mathbb{B}$”
folgt via 101-3: $(\text{Re}(-p) \in \mathbb{S}) \land (\text{Im}(-p) \in \mathbb{S})$.

2.1: Aus 1 “$\text{Re}(-p) \in \mathbb{S}$…”
folgt via 100-6: $-\text{Re}(-p) \in \mathbb{S}$.

2.2: Aus 1 “…$\text{Im}(-p) \in \mathbb{S}$”
folgt via 100-6: $-\text{Im}(-p) \in \mathbb{S}$.

3: Via 96-27 gilt: $(\text{Re}(-(-p)) = -\text{Re}(-p)) \land (\text{Im}(-(-p)) = -\text{Im}(-p))$.

4.1: Aus 3 “$\text{Re}(-(-p)) = -\text{Re}(-p)$…” und
aus 2.1 “$-\text{Re}(-p) \in \mathbb{S}$”
folgt: $\text{Re}(-(-p)) \in \mathbb{S}$.

4.2: Aus 3 “…$\text{Im}(-(-p)) = -\text{Im}(-p)$” und
aus 2.2 “$-\text{Im}(-p) \in \mathbb{S}$”
folgt: $\text{Im}(-(-p)) \in \mathbb{S}$.

5: Aus 4.1 “$\text{Re}(-(-p)) \in \mathbb{S}$” und
aus 4.2 “$\text{Im}(-(-p)) \in \mathbb{S}$”
folgt via 101-3: $-(-p) \in \mathbb{B}$.

b) $\begin{bmatrix} \text{iii} \Rightarrow \text{i} \end{bmatrix}$ VS gleich $-(-p) \in \mathbb{B}$

1: Aus VS gleich “$-(-p) \in \mathbb{B}$”
folgt via 99-1: $-(-p)$ Zahl.

2: Aus 1 “$-(-p)$ Zahl”
folgt via 100-6: p Zahl.

3: Aus 2 “p Zahl”
folgt via FS — —:

4: Aus VS gleich “$-(-p) \in \mathbb{B}$” und
aus 3 “$-(-p) = p$”
folgt:

$p \in \mathbb{B}$.

□
101-10. Im ÜSatz Zahlen werden die binären Vereinigungen von \(R, S, T, C, B, A\) beschrieben:

101-10(Satz) (ÜSZ: ÜSatz Zahlen)

a) \(R \cup S = S\).

b) \(R \cup T = T\).

c) \(R \cup C = C\).

d) \(R \cup B = B\).

e) \(R \cup A = A\).

f) \(S \cup T = T\).

g) \(S \cup C = S \cup C\).

h) \(S \cup B = B\).

i) \(S \cup A = A\).

j) \(T \cup C = T \cup C\).

k) \(T \cup B = T \cup B\).

l) \(T \cup A = A\).

m) \(C \cup B = B\).

n) \(C \cup A = A\).

o) \(B \cup A = A\).

Beweis 101-10 a)

Aus 95-11 “\(R \subseteq S\)” folgt via 2-10:

\[R \cup S = S. \]

b) Aus 95-12 “\(R \subseteq T\)” folgt via 2-10:

\[R \cup T = T. \]

c) Aus 101-5 “\(R \subseteq C\)” folgt via 2-10:

\[R \cup C = C. \]
Beweis 101-10 d)
Aus 101-7 "R ⊆ B"
folgt via 2-10:
\[R \cup B = B. \]
e)
Aus AAI "R ⊆ A"
folgt via 2-10:
\[R \cup A = A. \]
f)
Aus 95-12 "S ⊆ T"
folgt via 2-10:
\[S \cup T = T. \]
g) Es gilt:
\[S \cup C = S \cup C. \]
h) Aus 101-7 "S ⊆ B"
folgt via 2-10:
\[S \cup B = B. \]
i) Aus 95-11 "S ⊆ A"
folgt via 2-10:
\[S \cup A = A. \]
j) Es gilt:
\[T \cup C = T \cup C. \]
k) Es gilt:
\[T \cup B = T \cup B. \]
l) Aus 95-12 "T ⊆ A"
folgt via 2-10:
\[T \cup A = A. \]
m) Aus 101-5 "C ⊆ B"
folgt via 2-10:
\[C \cup B = B. \]
n) Aus 96-6 "C ⊆ A"
folgt via 2-10:
\[C \cup A = A. \]
Beweis 101-10 o)

Aus 96-6 “$B \subseteq A$“ folgt via 2-10: $B \cup A = A$. □
101-11. Im \cap-Satz Zahlen werden die binären Durchschnitte von R, S, T, C, B, A beschrieben:

<table>
<thead>
<tr>
<th>101-11(Satz) (\capSZ: \capSatz Zahlen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $R \cap S = R.$</td>
</tr>
<tr>
<td>b) $R \cap T = R.$</td>
</tr>
<tr>
<td>c) $R \cap C = R.$</td>
</tr>
<tr>
<td>d) $R \cap B = R.$</td>
</tr>
<tr>
<td>e) $R \cap A = R.$</td>
</tr>
<tr>
<td>f) $S \cap T = S.$</td>
</tr>
<tr>
<td>g) $S \cap C = R.$</td>
</tr>
<tr>
<td>h) $S \cap B = S.$</td>
</tr>
<tr>
<td>i) $S \cap A = S.$</td>
</tr>
<tr>
<td>j) $T \cap C = R.$</td>
</tr>
<tr>
<td>k) $T \cap B = S.$</td>
</tr>
<tr>
<td>l) $T \cap A = T.$</td>
</tr>
<tr>
<td>m) $C \cap B = C.$</td>
</tr>
<tr>
<td>n) $C \cap A = C.$</td>
</tr>
<tr>
<td>o) $B \cap A = B.$</td>
</tr>
</tbody>
</table>
Beweis 101-11

REIM-Notation.

a) Aus 95-11 "R ⊆ S" folgt via 2-10: \(R \cap S = R \).

b) Aus 95-12 "R ⊆ T" folgt via 2-10: \(R \cap T = R \).

c) Aus 101-5 "R ⊆ C" folgt via 2-10: \(R \cap C = R \).

d) Aus 101-7 "R ⊆ B" folgt via 2-10: \(R \cap B = R \).

e) Aus AAI "R ⊆ A" folgt via 2-10: \(R \cap A = R \).

f) Aus 95-12 "S ⊆ T" folgt via 2-10: \(S \cap T = S \).
Beweis 101-11 g)

<table>
<thead>
<tr>
<th>Thema 1.1</th>
<th>(\alpha \in S \cap C).</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:</td>
<td>Aus Thema 1.1 "(\alpha \in S \cap C)" folgt via 2-2: ((\alpha \in S) \land (\alpha \in C)).</td>
</tr>
<tr>
<td>3.1:</td>
<td>Aus 2 "(\alpha \in S \ldots)" und aus 95-12 "(S \subseteq T)" folgt via 0-4: (\alpha \in T).</td>
</tr>
<tr>
<td>3.2:</td>
<td>Aus 2 "\ldots \alpha \in C)" folgt via 101-1: (\text{Re} \alpha \in \mathbb{R}).</td>
</tr>
<tr>
<td>4:</td>
<td>Aus 3.1 "(\alpha \in T)" folgt via FST: (\alpha = \text{Re} \alpha).</td>
</tr>
<tr>
<td>5:</td>
<td>Aus 4 "(\alpha = \text{Re} \alpha)" und aus 3.2 "(\text{Re} \alpha \in \mathbb{R})" folgt: (\alpha \in \mathbb{R}).</td>
</tr>
</tbody>
</table>

Ergo Thema 1.1: \(\forall \alpha : (\alpha \in S \cap C) \Rightarrow (\alpha \in \mathbb{R}) \).

Konsequenz via 0-2(Def):

<table>
<thead>
<tr>
<th>A1</th>
<th>"(S \cap C \subseteq \mathbb{R})"</th>
</tr>
</thead>
</table>

1.2: Aus 95-11 "\(\mathbb{R} \subseteq S \)" und aus 101-5 "\(\mathbb{R} \subseteq C \)" folgt via 2-12: \(\mathbb{R} \subseteq S \cap C \).

2: Aus A1 gleich "\(S \cap C \subseteq \mathbb{R} \)" und aus 1.2 "\(\mathbb{R} \subseteq S \cap C \)" folgt via GleichheitsAxiom: \(S \cap C = \mathbb{R} \).

h)
Aus 101-7 "\(S \subseteq B \)" folgt via 2-10: \(S \cap B = S \).

i)
Aus 95-11 "\(S \subseteq A \)" folgt via 2-10: \(S \cap A = S \).
Beweis 101-11 j)

\textbf{Theorem 1.1} \quad \alpha \in T \cap C.

2: Aus Theorem 1.1 "\(\alpha \in T \cap C\)" folgt via 2-2: \(\alpha \in T \land \alpha \in C\).

3.1: Aus 2 "\(\alpha \in T \ldots\)" folgt via FST: \(\alpha = \text{Re}\alpha\).

3.2: Aus 2 "\(\ldots \alpha \in C\)" folgt via 101-1: \(\text{Re}\alpha \in \mathbb{R}\).

4: Aus 3.1 "\(\alpha = \text{Re}\alpha\)" und aus 3.2 "\(\text{Re}\alpha \in \mathbb{R}\)" folgt: \(\alpha \in \mathbb{R}\).

Ergo Theorem 1.1: \(\forall \alpha : (\alpha \in T \cap C) \Rightarrow (\alpha \in \mathbb{R})\).

Konsequenz via 0-2(Def):

1.2: Aus 95-12 "\(\mathbb{R} \subseteq T\)" und aus 101-5 "\(\mathbb{R} \subseteq C\)" folgt via 2-12: \(\mathbb{R} \subseteq T \cap C\).

2: Aus A1 gleich "\(T \cap C \subseteq \mathbb{R}\)" und aus 1.2 "\(\mathbb{R} \subseteq T \cap C\)" folgt via GleichheitsAxiom: \(T \cap C = \mathbb{R}\).
Beweis 101-11 k)

\[\text{α} \in T \cap B.\]

2: Aus Thema1.1 “α ∈ T ∩ B” folgt via 2-2: \((α ∈ T) ∧ (α ∈ B)\).

3.1: Aus 2 “α ∈ T...” folgt via FST:\[α = Reα.\]

3.2: Aus 2 “...α ∈ B” folgt via 101-3:\[Reα ∈ S.\]

4: Aus 3.1 “α = Reα” und aus 3.2 “Reα ∈ S” folgt:\[α ∈ S.\]

Ergo Thema1.1: \[∀ \alpha : (\alpha ∈ T \cap B) → (\alpha ∈ S).\]

Konsequenz via 0-2(Def):

\[\text{A1} | \text{"} T \cap B \subseteq S \text{"}\]

1.2: Aus 95-12 “S ⊆ T” und aus 101-7 “S ⊆ B” folgt via 2-12:\[S ⊆ T \cap B.\]

2: Aus A1 gleich “T ∩ B ⊆ S” und aus 1.2 “S ⊆ T ∩ B” folgt via GleichheitsAxiom:\[T \cap B = S.\]

1)

Aus 95-12 “T ⊆ A” folgt via 2-10:\[T \cap A = T.\]

m)

Aus 101-5 “C ⊆ B” folgt via 2-10:\[C \cap B = C.\]

n)

Aus 96-6 “C ⊆ A” folgt via 2-10:\[C \cap A = C.\]
Beweis 101-11 o)
Aus 96-6 "B ⊆ A" folgt via 2-10: \[B \cap A = B. \] □
101-12. Im \(\forall \text{Satz Zahlen} \) werden die im \(\cup \text{SZ} \) getroffenen Aussagen über die binären Vereinigungen von \(R, S, T, C, B, A \) in “oder-Aussagen” übersetzt:

\[
\begin{align*}
\text{101-12(Satz) } (\forall \text{SZ: } \forall \text{Satz Zahlen}) \\
a) \quad &“(p \in R) \lor (p \in S)” \text{ genau dann, wenn “} p \in S \”.
\hline
b) \quad &“(p \in R) \lor (p \in T)” \text{ genau dann, wenn “} p \in T \”.
\hline
c) \quad &“(p \in R) \lor (p \in C)” \text{ genau dann, wenn “} p \in C \”.
\hline
d) \quad &“(p \in R) \lor (p \in B)” \text{ genau dann, wenn “} p \in B \”.
\hline
e) \quad &“(p \in R) \lor (p \text{ Zahl})” \text{ genau dann, wenn “} p \text{ Zahl} \”.
\hline
f) \quad &“(p \in S) \lor (p \in T)” \text{ genau dann, wenn “} p \in T \”.
\hline
g) \quad &“(p \in S) \lor (p \in C)” \text{ genau dann, wenn “} (p \in S) \lor (p \in C) \”.
\hline
h) \quad &“(p \in S) \lor (p \in B)” \text{ genau dann, wenn “} p \in B \”.
\hline
i) \quad &“(p \in S) \lor (p \text{ Zahl})” \text{ genau dann, wenn “} p \text{ Zahl} \”.
\hline
j) \quad &“(p \in T) \lor (p \in C)” \text{ genau dann, wenn “} (p \in T) \lor (p \in C) \”.
\hline
k) \quad &“(p \in T) \lor (p \in B)” \text{ genau dann, wenn “} (p \in T) \lor (p \in B) \”.
\hline
l) \quad &“(p \in T) \lor (p \text{ Zahl})” \text{ genau dann, wenn “} p \text{ Zahl} \”.
\hline
m) \quad &“(p \in C) \lor (p \in B)” \text{ genau dann, wenn “} p \in B \”.
\hline
n) \quad &“(p \in C) \lor (p \text{ Zahl})” \text{ genau dann, wenn “} p \text{ Zahl} \”.
\hline
o) \quad &“(p \in B) \lor (p \text{ Zahl})” \text{ genau dann, wenn “} p \text{ Zahl} \”.
\end{align*}
\]

Beweis 101-12 a)

1: Via 2-2 gilt:

\[
(p \in R \cup S) \iff ((p \in R) \lor (p \in S)).
\]

2: Aus 1 und aus 101-10 “\(R \cup S = S \)” folgt:

\[
(p \in S) \iff ((p \in R) \lor (p \in S)).
\]

3: Aus 2 folgt:

\[
((p \in R) \lor (p \in S)) \iff (p \in S).
\]
Beweis 101-12 b)

1: Via 2-2 gilt:

\[(p \in \mathbb{R} \cup \mathbb{T}) \Leftrightarrow ((p \in \mathbb{R}) \lor (p \in \mathbb{T})).\]

2: Aus 1 und

aus 101-10 “\(\mathbb{R} \cup \mathbb{T} = \mathbb{T}\)”

folgt:

\[(p \in \mathbb{T}) \Leftrightarrow ((p \in \mathbb{R}) \lor (p \in \mathbb{T})).\]

3: Aus 2

folgt:

\[((p \in \mathbb{R}) \lor (p \in \mathbb{T})) \Leftrightarrow (p \in \mathbb{T}).\]

c)

1: Via 2-2 gilt:

\[(p \in \mathbb{R} \cup \mathbb{C}) \Leftrightarrow ((p \in \mathbb{R}) \lor (p \in \mathbb{C})).\]

2: Aus 1 und

aus 101-10 “\(\mathbb{R} \cup \mathbb{C} = \mathbb{C}\)”

folgt:

\[(p \in \mathbb{C}) \Leftrightarrow ((p \in \mathbb{R}) \lor (p \in \mathbb{C})).\]

3: Aus 2

folgt:

\[((p \in \mathbb{R}) \lor (p \in \mathbb{C})) \Leftrightarrow (p \in \mathbb{C}).\]

d)

1: Via 2-2 gilt:

\[(p \in \mathbb{R} \cup \mathbb{B}) \Leftrightarrow ((p \in \mathbb{R}) \lor (p \in \mathbb{B})).\]

2: Aus 1 und

aus 101-10 “\(\mathbb{R} \cup \mathbb{B} = \mathbb{B}\)”

folgt:

\[(p \in \mathbb{B}) \Leftrightarrow ((p \in \mathbb{R}) \lor (p \in \mathbb{B})).\]

3: Aus 2

folgt:

\[((p \in \mathbb{R}) \lor (p \in \mathbb{B})) \Leftrightarrow (p \in \mathbb{B}).\]

e)

1: Via 2-2 gilt:

\[(p \in \mathbb{R} \cup \mathbb{A}) \Leftrightarrow ((p \in \mathbb{R}) \lor (p \in \mathbb{A})).\]

2: Aus 1 und

aus 101-10 “\(\mathbb{R} \cup \mathbb{A} = \mathbb{A}\)”

folgt:

\[(p \in \mathbb{A}) \Leftrightarrow ((p \in \mathbb{R}) \lor (p \in \mathbb{A})).\]

3: Aus 2

folgt:

\[((p \in \mathbb{R}) \lor (p \in \mathbb{A})) \Leftrightarrow (p \in \mathbb{A}).\]

4: Via 95-4(Def) gilt:

\[(p \text{ Zahl}) \Leftrightarrow (p \in \mathbb{A}).\]

5: Aus 3 “\(((p \in \mathbb{R}) \lor (p \in \mathbb{A})) \Leftrightarrow (p \in \mathbb{A})\)” und

aus 4 “\((p \text{ Zahl}) \Leftrightarrow (p \in \mathbb{A})\)”

folgt:

\[((p \in \mathbb{R}) \lor (p \text{ Zahl})) \Leftrightarrow (p \text{ Zahl}).\]
Beweis 101-12 f)

1: Via 2-2 gilt:
$$(p \in S \cup T) \iff ((p \in S) \lor (p \in T)).$$

2: Aus 1 und
aus 101-10$"S \cup T = T"
folgt:
$$(p \in T) \iff ((p \in S) \lor (p \in T)).$$

3: Aus 2
folgt:
$$((p \in S) \lor (p \in T)) \iff (p \in T).$$

g) Es gilt:
$$((p \in S) \lor (p \in C)) \iff ((p \in S) \lor (p \in C)).$$

h)

1: Via 2-2 gilt:
$$(p \in S \cup B) \iff ((p \in S) \lor (p \in B)).$$

2: Aus 1 und
aus 101-10$"S \cup B = B"
folgt:
$$(p \in B) \iff ((p \in S) \lor (p \in B)).$$

3: Aus 2
folgt:
$$((p \in S) \lor (p \in B)) \iff (p \in B).$$

i)

1: Via 2-2 gilt:
$$(p \in S \cup A) \iff ((p \in S) \lor (p \in A)).$$

2: Aus 1 und
aus 101-10$"S \cup A = A"
folgt:
$$(p \in A) \iff ((p \in S) \lor (p \in A)).$$

3: Aus 2
folgt:
$$((p \in S) \lor (p \in A)) \iff (p \in A).$$

4: Via 95-4(Def) gilt:
$$(p \text{ Zahl}) \iff (p \in A).$$

5: Aus 3$"((p \in S) \lor (p \in A)) \iff (p \in A)" und
aus 4$"(p \text{ Zahl}) \iff (p \in A)"
folgt:
$$((p \in S) \lor (p \text{ Zahl})) \iff (p \text{ Zahl}).$$

j) Es gilt:
$$((p \in T) \lor (p \in C)) \iff ((p \in T) \lor (p \in C)).$$

k) Es gilt:
$$((p \in T) \lor (p \in B)) \iff ((p \in T) \lor (p \in B)).$$
Beweis 101-12 1)

1: Via 2-2 gilt:

\[(p \in T \cup A) \iff ((p \in T) \lor (p \in A)).\]

2: Aus 1 und

aus 101-10 \(T \cup A = A\)

folgt:

\[(p \in A) \iff ((p \in T) \lor (p \in A)).\]

3: Aus 2

folgt:

\[((p \in T) \lor (p \in A)) \iff (p \in A).\]

4: Via 95-4(Def) gilt:

\[(p \text{ Zahl}) \iff (p \in A).\]

5: Aus 3 \(\((p \in T) \lor (p \in A)) \iff (p \in A)\) ” und

aus 4 \(\((p \text{ Zahl}) \iff (p \in A)\) ”

folgt:

\[((p \in T) \lor (p \text{ Zahl})) \iff (p \text{ Zahl}).\]

m)

1: Via 2-2 gilt:

\[(p \in C \cup B) \iff ((p \in C) \lor (p \in B)).\]

2: Aus 1 und

aus 101-10 \(C \cup B = B\)

folgt:

\[(p \in B) \iff ((p \in C) \lor (p \in B)).\]

3: Aus 2

folgt:

\[((p \in C) \lor (p \in B)) \iff (p \in B).\]

n)

1: Via 2-2 gilt:

\[(p \in C \cup A) \iff ((p \in C) \lor (p \in A)).\]

2: Aus 1 und

aus 101-10 \(C \cup A = A\)

folgt:

\[(p \in A) \iff ((p \in C) \lor (p \in A)).\]

3: Aus 2

folgt:

\[((p \in C) \lor (p \in A)) \iff (p \in A).\]

4: Via 95-4(Def) gilt:

\[(p \text{ Zahl}) \iff (p \in A).\]

5: Aus 3 \(\((p \in C) \lor (p \in A)) \iff (p \in A)\) ” und

aus 4 \(\((p \text{ Zahl}) \iff (p \in A)\) ”

folgt:

\[((p \in C) \lor (p \text{ Zahl})) \iff (p \text{ Zahl}).\]
Beweis 101-12 o)

1: Via 2-2 gilt:

\[(p \in \mathbb{B} \cup \mathbb{A}) \iff ((p \in \mathbb{B}) \vee (p \in \mathbb{A})).\]

2: Aus 1 und

aus 101-10 \(\mathbb{B} \cup \mathbb{A} = \mathbb{A}\)

folgt:

\[(p \in \mathbb{A}) \iff ((p \in \mathbb{B}) \vee (p \in \mathbb{A})).\]

3: Aus 2

folgt:

\[((p \in \mathbb{B}) \vee (p \in \mathbb{A})) \iff (p \in \mathbb{A}).\]

4: Via 95-4(Def) gilt:

\[(p \text{ Zahl}) \iff (p \in \mathbb{A}).\]

5: Aus 3 \("((p \in \mathbb{B}) \vee (p \in \mathbb{A})) \iff (p \in \mathbb{A})\)" und

aus 4 \"(p \text{ Zahl}) \iff (p \in \mathbb{A})\)"

folgt:

\[((p \in \mathbb{B}) \vee (p \text{ Zahl})) \iff (p \text{ Zahl}).\]
101-13. Im \(\&\)Satz Zahlen werden die im \(\cap\)SZ getroffenen Aussagen über die binären Durchschnitte von \(\mathbb{R}, S, T, C, B, A\) in "und-Aussagen" übersetzt:

<table>
<thead>
<tr>
<th>101-13(Satz) ((&)SZ: (&)Satz Zahlen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) "((p \in \mathbb{R}) \land (p \in S))" genau dann, wenn "(p \in \mathbb{R})."</td>
</tr>
<tr>
<td>b) "((p \in \mathbb{R}) \land (p \in T))" genau dann, wenn "(p \in \mathbb{R})."</td>
</tr>
<tr>
<td>c) "((p \in \mathbb{R}) \land (p \in C))" genau dann, wenn "(p \in \mathbb{R})."</td>
</tr>
<tr>
<td>d) "((p \in \mathbb{R}) \land (p \in B))" genau dann, wenn "(p \in \mathbb{R})."</td>
</tr>
<tr>
<td>e) "((p \in \mathbb{R}) \land (\text{p Zahl}))" genau dann, wenn "(p \in \mathbb{R})."</td>
</tr>
<tr>
<td>f) "((p \in S) \land (p \in T))" genau dann, wenn "(p \in S)."</td>
</tr>
<tr>
<td>g) "((p \in S) \land (p \in C))" genau dann, wenn "(p \in \mathbb{R})."</td>
</tr>
<tr>
<td>h) "((p \in S) \land (p \in B))" genau dann, wenn "(p \in S)."</td>
</tr>
<tr>
<td>i) "((p \in S) \land (\text{p Zahl}))" genau dann, wenn "(p \in S)."</td>
</tr>
<tr>
<td>j) "((p \in T) \land (p \in C))" genau dann, wenn "(p \in \mathbb{R})."</td>
</tr>
<tr>
<td>k) "((p \in T) \land (p \in B))" genau dann, wenn "(p \in S)."</td>
</tr>
<tr>
<td>l) "((p \in T) \land (\text{p Zahl}))" genau dann, wenn "(p \in T)."</td>
</tr>
<tr>
<td>m) "((p \in C) \land (p \in B))" genau dann, wenn "(p \in C)."</td>
</tr>
<tr>
<td>n) "((p \in C) \land (\text{p Zahl}))" genau dann, wenn "(p \in C)."</td>
</tr>
</tbody>
</table>
| o) "\((p \in B) \land (\text{p Zahl})\)" genau dann, wenn "\(p \in B\)."

Beweis 101-13 a)

1: Via 2-2 gilt: \((p \in \mathbb{R} \cap S) \iff ((p \in \mathbb{R}) \land (p \in S)).\)

2: Aus 1 und aus 101-12 "\(\mathbb{R} \cap S = \mathbb{R}\)" folgt: \((p \in \mathbb{R}) \iff ((p \in \mathbb{R}) \land (p \in S)).\)

3: Aus 2 folgt: \(((p \in \mathbb{R}) \land (p \in S)) \iff (p \in \mathbb{R}).\)
Beweis 101-13 b)

1: Via 2-2 gilt: \((p \in \mathbb{R} \cap T) \iff ((p \in \mathbb{R}) \land (p \in T)) \).

2: Aus 1 und
aus 101-12 "\(\mathbb{R} \cap T = \mathbb{R} \)"
folgt:
\((p \in \mathbb{R}) \iff ((p \in \mathbb{R}) \land (p \in T)) \).

3: Aus 2
folgt:
\(((p \in \mathbb{R}) \land (p \in T)) \iff (p \in \mathbb{R}) \).

c)

1: Via 2-2 gilt:
\((p \in \mathbb{R} \cap C) \iff ((p \in \mathbb{R}) \land (p \in C)) \).

2: Aus 1 und
aus 101-12 "\(\mathbb{R} \cap C = \mathbb{R} \)"
folgt:
\((p \in \mathbb{R}) \iff ((p \in \mathbb{R}) \land (p \in C)) \).

3: Aus 2
folgt:
\(((p \in \mathbb{R}) \land (p \in C)) \iff (p \in \mathbb{R}) \).

d)

1: Via 2-2 gilt:
\((p \in \mathbb{R} \cap B) \iff ((p \in \mathbb{R}) \land (p \in B)) \).

2: Aus 1 und
aus 101-12 "\(\mathbb{R} \cap B = \mathbb{R} \)"
folgt:
\((p \in \mathbb{R}) \iff ((p \in \mathbb{R}) \land (p \in B)) \).

3: Aus 2
folgt:
\(((p \in \mathbb{R}) \land (p \in B)) \iff (p \in \mathbb{R}) \).

e)

1: Via 2-2 gilt:
\((p \in \mathbb{R} \cap A) \iff ((p \in \mathbb{R}) \land (p \in A)) \).

2: Aus 1 und
aus 101-12 "\(\mathbb{R} \cap A = \mathbb{R} \)"
folgt:
\((p \in \mathbb{R}) \iff ((p \in \mathbb{R}) \land (p \in A)) \).

3: Aus 2
folgt:
\(((p \in \mathbb{R}) \land (p \in A)) \iff (p \in \mathbb{R}) \).

4: Via 95-4(Def) gilt:
\((p \text{ Zahl}) \iff (p \in A) \).

5: Aus 3 "\(((p \in \mathbb{R}) \land (p \in A)) \iff (p \in \mathbb{R}) \)" und
aus 4 "\((p \text{ Zahl}) \iff (p \in A) \)"
folgt:
\(((p \in \mathbb{R}) \land (p \text{ Zahl})) \iff (p \in \mathbb{R}) \).
Beweis 101-13: f)

1: Via 2-2 gilt: \((p \in S \cap T) \iff ((p \in S) \land (p \in T))\).

2: Aus 1 und
aus 101-12: \(S \cap T = S^\prime\)
folgt:
\((p \in S) \iff ((p \in S) \land (p \in T))\).

3: Aus 2
folgt:
\(((p \in S) \land (p \in T)) \iff (p \in S)\).

g)

1: Via 2-2 gilt:
\((p \in S \cap C) \iff ((p \in S) \land (p \in C))\).

2: Aus 1 und
aus 101-12: \(S \cap C = R^\prime\)
folgt:
\((p \in R) \iff ((p \in S) \land (p \in C))\).

3: Aus 2
folgt:
\(((p \in S) \land (p \in C)) \iff (p \in R)\).

h)

1: Via 2-2 gilt:
\((p \in S \cap B) \iff ((p \in S) \land (p \in B))\).

2: Aus 1 und
aus 101-12: \(S \cap B = S^\prime\)
folgt:
\((p \in S) \iff ((p \in S) \land (p \in B))\).

3: Aus 2
folgt:
\(((p \in S) \land (p \in B)) \iff (p \in S)\).

i)

1: Via 2-2 gilt:
\((p \in S \cap A) \iff ((p \in S) \land (p \in A))\).

2: Aus 1 und
aus 101-12: \(S \cap A = S^\prime\)
folgt:
\((p \in S) \iff ((p \in S) \land (p \in A))\).

3: Aus 2
folgt:
\(((p \in S) \land (p \in A)) \iff (p \in S)\).

4: Via 95-4(Def) gilt:
\((p \text{ Zahl}) \iff (p \in A)\).

5: Aus 3: \(((p \in S) \land (p \in A)) \iff (p \in S)\) und
aus 4: \((p \text{ Zahl}) \iff (p \in A)\)
folgt:
\(((p \in S) \land (p \text{ Zahl})) \iff (p \in S)\).
Beweis 101-13 j)
1: Via 2-2 gilt:
\[(p \in T \cap C) \iff ((p \in T) \land (p \in C)).\]
2: Aus 1 und aus 101-12 "T \cap C = R" folgt:
\[(p \in R) \iff ((p \in T) \land (p \in C)).\]
3: Aus 2 folgt:
\[((p \in T) \land (p \in C)) \iff (p \in R).\]

ek)
1: Via 2-2 gilt:
\[(p \in T \cap B) \iff ((p \in T) \land (p \in B)).\]
2: Aus 1 und aus 101-12 "T \cap B = S" folgt:
\[(p \in S) \iff ((p \in T) \land (p \in B)).\]
3: Aus 2 folgt:
\[((p \in T) \land (p \in B)) \iff (p \in S).\]
1)
1: Via 2-2 gilt:
\[(p \in T \cap A) \iff ((p \in T) \land (p \in A)).\]
2: Aus 1 und aus 101-12 "T \cap A = T" folgt:
\[(p \in T) \iff ((p \in T) \land (p \in A)).\]
3: Aus 2 folgt:
\[((p \in T) \land (p \in A)) \iff (p \in T).\]
4: Via 95-4(Def) gilt:
\[(p \text{ Zahl}) \iff (p \in A).\]
5: Aus 3"((p \in T) \land (p \in A)) \iff (p \in T)" und aus 4"(p \text{ Zahl}) \iff (p \in A)" folgt:
\[((p \in T) \land (p \text{ Zahl})) \iff (p \in T).\]

m)
1: Via 2-2 gilt:
\[(p \in C \cap B) \iff ((p \in C) \land (p \in B)).\]
2: Aus 1 und aus 101-12 "C \cap B = C" folgt:
\[(p \in C) \iff ((p \in C) \land (p \in B)).\]
3: Aus 2 folgt:
\[((p \in C) \land (p \in B)) \iff (p \in C).\]
Beweis 101-13 n)

1: Via 2-2 gilt:

\[(p \in C \cap A) \iff ((p \in C) \land (p \in A)). \]

2: Aus 1 und

aus 101-12 "\(C \cap A = C \)"

folgt:

\[(p \in C) \iff ((p \in C) \land (p \in A)). \]

3: Aus 2

folgt:

\[((p \in C) \land (p \in A)) \iff (p \in C). \]

4: Via 95-4(Def) gilt:

\[(p \text{ Zahl}) \iff (p \in A). \]

5: Aus 3 "\((p \in C) \land (p \in A)\) \iff (p \in C)" und

aus 4 "\((p \text{ Zahl}) \iff (p \in A)\)"

folgt:

\[((p \in C) \land (p \text{ Zahl})) \iff (p \in C). \]

o)

1: Via 2-2 gilt:

\[(p \in B \cap A) \iff ((p \in B) \land (p \in A)). \]

2: Aus 1 und

aus 101-12 "\(B \cap A = B \)"

folgt:

\[(p \in B) \iff ((p \in B) \land (p \in A)). \]

3: Aus 2

folgt:

\[((p \in B) \land (p \in A)) \iff (p \in B). \]

4: Via 95-4(Def) gilt:

\[(p \text{ Zahl}) \iff (p \in A). \]

5: Aus 3 "\((p \in B) \land (p \in A)\) \iff (p \in B)" und

aus 4 "\((p \text{ Zahl}) \iff (p \in A)\)"

folgt:

\[((p \in B) \land (p \text{ Zahl})) \iff (p \in B). \]
101-14. Um etwa "Re x ∈ R" nachzuweisen reicht es, sich von "Re x ∈ C" zu überzeugen:

101-14(Satz)

a) Aus "Re x ∈ C" folgt "Re x ∈ R".

b) Aus "Re x ∈ B" folgt "Re x ∈ S".

c) Aus "Re x Zahl" folgt "Re x ∈ T".

d) Aus "Im x ∈ C" folgt "Im x ∈ R".

e) Aus "Im x ∈ B" folgt "Im x ∈ S".

f) Aus "Im x Zahl" folgt "Im x ∈ T".

REIM-Notation

Beweis 101-14

a) VS gleich

1: Aus VS gleich "Re x ∈ C" folgt via ElementAxiom: Re x Menge.

2: Aus 1 "Re x Menge" folgt via 96-9: Re x ∈ T.

3: Aus 2 "Re x ∈ T" und aus VS gleich "Re x ∈ C" folgt via ∧SZ: Re x ∈ R.

b) VS gleich

1: Aus VS gleich "Re x ∈ B" folgt via ElementAxiom: Re x Menge.

2: Aus 1 "Re x Menge" folgt via 96-9: Re x ∈ T.

3: Aus 2 "Re x ∈ T" und aus VS gleich "Re x ∈ B" folgt via ∧SZ: Re x ∈ S.
Beweis 101-14 c) VS gleich

Aus VS gleich "Rex Zahl"
folgt via 96-9:

\[\text{Rex} \in T. \]

d) VS gleich

\[\text{Im} \in \mathbb{C}. \]

1: Aus VS gleich "\text{Im} \in \mathbb{C}"
folgt via \textbf{ElementAxiom}:

\[\text{Im} \in \mathbb{Menge}. \]

2: Aus 1 "\text{Im} \in \mathbb{Menge}"
folgt via 96-9:

\[\text{Im} \in T. \]

3: Aus 2 "\text{Im} \in T" und
aus VS gleich "\text{Im} \in \mathbb{C}"
folgt via \&SZ:

\[\text{Im} \in \mathbb{R}. \]

e) VS gleich

\[\text{Im} \in \mathbb{B}. \]

1: Aus VS gleich "\text{Im} \in \mathbb{B}"
folgt via \textbf{ElementAxiom}:

\[\text{Im} \in \mathbb{Menge}. \]

2: Aus 1 "\text{Im} \in \mathbb{Menge}"
folgt via 96-9:

\[\text{Im} \in T. \]

3: Aus 2 "\text{Im} \in T" und
aus VS gleich "\text{Im} \in \mathbb{B}"
folgt via \&SZ:

\[\text{Im} \in \mathbb{S}. \]

f) VS gleich

Aus VS gleich "\text{Im} \in \mathbb{Zahl}"
folgt via 96-9:

\[\text{Im} \in T. \]

\[\square \]
101-15. Nun wird ein Kriterium für "\(x \in \mathbb{B} \setminus \mathbb{C} \)" etabliert:

\textbf{101-15(Satz)}

Die Aussagen i), ii) sind äquivalent:

i) \(p \in \mathbb{B} \setminus \mathbb{C} \).

ii) "\((\text{Rep} = +\infty) \land (\text{Imp} \neq \text{nan}) \)" oder "\((\text{Rep} = -\infty) \land (\text{Imp} \neq \text{nan}) \)"

oder "\((\text{Rep} \neq \text{nan}) \land (\text{Imp} = +\infty) \)"

oder "\((\text{Rep} \neq \text{nan}) \land (\text{Imp} = -\infty) \)".

\textbf{REIM-Notation}.

\textbf{Beweis 101-15} \([\text{i) } \Rightarrow \text{ii) }]\) VS gleich \(p \in \mathbb{B} \setminus \mathbb{C} \).

1: Aus VS gleich "\(p \in \mathbb{B} \setminus \mathbb{C} \)"
folgt via 5-3:
\((p \in \mathbb{B}) \land (p \notin \mathbb{C}) \).

2: Aus 1"\(p \in \mathbb{B} \ldots \)"
folgt via 101-3:
\((\text{Rep} \in \mathbb{S}) \land (\text{Imp} \in \mathbb{S}) \).

3.1: Aus 2"\(\text{Rep} \in \mathbb{S} \ldots \)"
folgt via 95-20:
\(\text{Rep} \neq \text{nan} \).

3.2: Aus 2"\(\ldots \text{Imp} \in \mathbb{S} \)"
folgt via 95-20:
\(\text{Imp} \neq \text{nan} \).

...
Beweis 101-15 \((i) \Rightarrow (ii)\) VS gleich \(p \in \mathbb{B} \setminus \mathbb{C}\).

4: Aus \(1 \ldots p \notin \mathbb{C}\)
folgt via 101-2:
\[(\text{Rep} \notin \mathbb{R}) \lor (\text{Imp} \notin \mathbb{R}).\]

Fallunterscheidung

<table>
<thead>
<tr>
<th>4.1. Fall</th>
<th>Rep \notin \mathbb{R}.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5: Aus 2: (\text{Rep} \in \mathbb{R}) ... folgt via 95-15: ((\text{Rep} \in \mathbb{R}) \lor (\text{Rep} = +\infty) \lor (\text{Rep} = -\infty).)</td>
<td></td>
</tr>
<tr>
<td>6: Aus 4.1. Fall: (\text{Rep} \notin \mathbb{R}) und aus 5: ((\text{Rep} \in \mathbb{R}) \lor (\text{Rep} = +\infty) \lor (\text{Rep} = -\infty)) folgt: ((\text{Rep} = +\infty) \lor (\text{Rep} = -\infty)).</td>
<td></td>
</tr>
<tr>
<td>7: Aus 6: ((\text{Rep} = +\infty) \lor (\text{Rep} = -\infty)) und aus 3.2: (\text{Imp} \neq \text{nan}) folgt: ((\text{Rep} = +\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Rep} = -\infty) \land (\text{Imp} \neq \text{nan})).</td>
<td></td>
</tr>
<tr>
<td>8: Aus 7 folgt: ((\text{Rep} = +\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Rep} = -\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = +\infty) \lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = -\infty)).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.2. Fall</th>
<th>Imp \notin \mathbb{R}.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5: Aus 2: (\ldots \text{Imp} \in \mathbb{R}) ... folgt via 95-15: ((\text{Imp} \in \mathbb{R}) \lor (\text{Imp} = +\infty) \lor (\text{Imp} = -\infty).)</td>
<td></td>
</tr>
<tr>
<td>6: Aus 4.2. Fall: (\text{Imp} \notin \mathbb{R}) und aus 5: ((\text{Imp} \in \mathbb{R}) \lor (\text{Imp} = +\infty) \lor (\text{Imp} = -\infty)) folgt: ((\text{Imp} = +\infty) \lor (\text{Imp} = -\infty)).</td>
<td></td>
</tr>
<tr>
<td>7: Aus 3.1: (\text{Rep} \neq \text{nan}) und aus 6: ((\text{Imp} = +\infty) \lor (\text{Imp} = -\infty)) folgt: ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = +\infty)) \lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = -\infty)).</td>
<td></td>
</tr>
<tr>
<td>8: Aus 7 folgt: ((\text{Rep} = +\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Rep} = -\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = +\infty) \lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = -\infty)).</td>
<td></td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung
In beiden Fällen gilt:
\[((\text{Rep} = +\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Rep} = -\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = +\infty)) \lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = -\infty)).\]
Beweis 101-15 [ii) ⇒ i)]

VS gleich

\[((\text{Re} = +\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Re} = -\infty) \land (\text{Imp} \neq \text{nan})) \]

\[\lor ((\text{Re} \neq \text{nan}) \land (\text{Imp} = +\infty)) \lor ((\text{Re} \neq \text{nan}) \land (\text{Imp} = -\infty)). \]

1: Nach VS gilt:

\[((\text{Re} = +\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Re} = -\infty) \land (\text{Imp} \neq \text{nan})) \]

\[\lor ((\text{Re} \neq \text{nan}) \land (\text{Imp} = +\infty)) \lor ((\text{Re} \neq \text{nan}) \land (\text{Imp} = -\infty)). \]

Fallunterscheidung

1.1. Fall

\[(\text{Re} = +\infty) \land (\text{Imp} \neq \text{nan}). \]

2: Aus 1.1. Fall"\text{Re} = +\infty..." folgt via 95-15: \text{Re} \in S.

3: Aus 2"\text{Re} \in S" folgt via 95-16: \text{Re} \in T.

4: Aus 3"\text{Re} \in T" folgt via 96-9: \text{Imp} \in T.

5: Aus 4"\text{Imp} \in T" und aus 1.1. Fall"...\text{Imp} \neq \text{nan}" folgt via 95-20: \text{Imp} \in S.

6: Aus 2"\text{Re} \in S" und aus 5"\text{Imp} \in S" folgt via 101-3: \(p \in B \).

7: Aus 1.1. Fall"\text{Re} = +\infty..." folgt via 95-18: \text{Re} \notin R.

8: Aus 7"\text{Re} \notin R" folgt via 101-2: \(p \notin C \).

9: Aus 6"\text{p} \in B" und aus 8"\text{p} \notin C" folgt via 5-3: \(p \in B \setminus C \).

...
Beweis 101-15 \([\text{ii} \Rightarrow \text{i}]\)

VS gleich
\[
\begin{align*}
((\text{Rep} = +\infty) \land (\text{Imp} \neq \text{nan})) & \lor ((\text{Rep} = -\infty) \land (\text{Imp} \neq \text{nan})) \\
\lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = +\infty)) & \lor ((\text{Rep} \neq \text{nan}) \land (\text{Imp} = -\infty))
\end{align*}
\]

...

Fallunterscheidung

...

\begin{tabular}{|l|l|}
\hline
1.2. Fall &
\((\text{Rep} = -\infty) \land (\text{Imp} \neq \text{nan})\). \\
\hline
2: & Aus 1.2. Fall \("\text{Rep} = -\infty\ldots"\) \bigskip \text{folgt via 95-15:} \\
& \text{Rep} \in \mathbb{S}.
\hline
3: & Aus 2 \("\text{Rep} \in \mathbb{S}\"\) \bigskip \text{folgt via 95-16:} \\
& \text{Rep} \in \mathbb{T}.
\hline
4: & Aus 3 \("\text{Rep} \in \mathbb{T}\"\) \bigskip \text{folgt via 96-9:} \\
& \text{Imp} \in \mathbb{T}.
\hline
5: & Aus 4 \("\text{Imp} \in \mathbb{T}\" und \\
& aus 1.2. Fall \("\ldots\text{Imp} \neq \text{nan}\"\) \bigskip \text{folgt via 95-20:} \\
& \text{Imp} \in \mathbb{S}.
\hline
6: & Aus 2 \("\text{Rep} \in \mathbb{S}\" und \\
& aus 5 \("\text{Imp} \in \mathbb{S}\"\) \bigskip \text{folgt via 101-3:} \\
& \text{p} \in \mathbb{B}.
\hline
7: & Aus 1.2. Fall \("\text{Rep} = -\infty\ldots"\) \bigskip \text{folgt via 95-18:} \\
& \text{Rep} \notin \mathbb{R}.
\hline
8: & Aus 7 \("\text{Rep} \notin \mathbb{R}\"\) \bigskip \text{folgt via 101-2:} \\
& \text{p} \notin \mathbb{C}.
\hline
9: & Aus 6 \("\text{p} \in \mathbb{B}\" und \\
& aus 8 \("\text{p} \notin \mathbb{C}\"\) \bigskip \text{folgt via 5-3:} \\
& \text{p} \in \mathbb{B} \setminus \mathbb{C}.
\hline
\end{tabular}

...
Beweis 101-15 [ii) ⇒ i)]

VS gleich

\[((\text{Re}p = +\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Re}p = -\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Re}p \neq \text{nan}) \land (\text{Imp} = +\infty)) \lor ((\text{Re}p \neq \text{nan}) \land (\text{Imp} = -\infty)). \]

...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>1.3. Fall</th>
<th>((\text{Re}p \neq \text{nan}) \land (\text{Imp} = +\infty)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:</td>
<td>Aus 1.3. Fall “...\text{Imp} = +\infty” folgt via 95-15: \text{Imp} \in S.</td>
</tr>
<tr>
<td>3:</td>
<td>Aus 2“\text{Imp} \in S” folgt via 95-16: \text{Imp} \in T.</td>
</tr>
<tr>
<td>4:</td>
<td>Aus 3“\text{Imp} \in T” folgt via 96-9: \text{Re}p \in T.</td>
</tr>
<tr>
<td>5:</td>
<td>Aus 4“\text{Re}p \in T” und aus 1.3. Fall “\text{Re}p \neq \text{nan}...” folgt via 95-20: \text{Re}p \in S.</td>
</tr>
<tr>
<td>6:</td>
<td>Aus 5“\text{Re}p \in S” und aus 2“\text{Imp} \in S” folgt via 101-3: (p \in \mathbb{B}).</td>
</tr>
<tr>
<td>7:</td>
<td>Aus 1.3. Fall “...\text{Imp} = +\infty” folgt via 95-18: \text{Imp} \notin \mathbb{R}.</td>
</tr>
<tr>
<td>8:</td>
<td>Aus 7“\text{Imp} \notin \mathbb{R}” folgt via 101-2: (p \notin \mathbb{C}).</td>
</tr>
<tr>
<td>9:</td>
<td>Aus 6“\text{Imp} \in \mathbb{B}” und aus 8“\text{Imp} \notin \mathbb{C}” folgt via 5-3: (p \in \mathbb{B} \setminus \mathbb{C}).</td>
</tr>
</tbody>
</table>

...
Beweis 101-15 \([\textbf{ii)} \Rightarrow \textbf{i)}\]

\[\text{VS gleich } (\text{Re}p = +\infty) \land (\text{Imp} \neq \text{nan}) \lor ((\text{Re}p = -\infty) \land (\text{Imp} \neq \text{nan})) \lor ((\text{Re}p \neq \text{nan}) \land (\text{Imp} = +\infty)) \lor ((\text{Re}p \neq \text{nan}) \land (\text{Imp} = -\infty)).\]

...

\textbf{Fallunterscheidung}

...

\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{1.4.Fall} & (\text{Re}p \neq \text{nan}) \land (\text{Imp} = -\infty). \\
\hline
2: & \text{Aus 1.4.Fall‘...Imp} = -\infty” \\
folgt via 95-15: & \text{Imp} \in S. \\
3: & \text{Aus 2”Imp} \in S” \\
folgt via 95-16: & \text{Imp} \in T. \\
4: & \text{Aus 3”Imp} \in T” \\
folgt via 96-9: & \text{Rep} \in T. \\
5: & \text{Aus 4”Rep} \in T” und \\
\text{aus 1.4.Fall”Rep} \neq \text{nan...”} & \text{Rep} \in S. \\
folgt via 95-20: & \\
6: & \text{Aus 5”Rep} \in S” und \\
\text{aus 2”Imp} \in S” & \text{p} \in B. \\
folgt via 101-3: & \\
7: & \text{Aus 1.4.Fall‘...Imp} = -\infty” \\
folgt via 95-18: & \text{Imp} \notin R. \\
8: & \text{Aus 7”Imp} \notin R” \\
folgt via 101-2: & \text{p} \notin C. \\
9: & \text{Aus 6”p} \in B” und \\
\text{aus 8”p} \notin C” & \text{p} \in B \setminus C. \\
folgt via 5-3: & \\
\hline
\end{tabular}
\end{center}

\textbf{Ende Fallunterscheidung} \text{In allen Fällen gilt: } \text{p} \in B \setminus C.

\begin{flushright} \square \end{flushright}
101-16. Auch um späters Zitieren zu vereinfachen werden nun die Inklusions-
Aussagen über \(R, S, T, C, B, A \) im \(\subseteq \text{Satz Zahlen} \) zusammengefasst:

<table>
<thead>
<tr>
<th>101-16(Satz) ((\subseteq \text{SZ}: \subseteq \text{Satz Zahlen})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (R \subseteq S.)</td>
</tr>
<tr>
<td>b) (R \subseteq T.)</td>
</tr>
<tr>
<td>c) (R \subseteq C.)</td>
</tr>
<tr>
<td>d) (R \subseteq B.)</td>
</tr>
<tr>
<td>e) (R \subseteq A.)</td>
</tr>
<tr>
<td>f) (S \subseteq T.)</td>
</tr>
<tr>
<td>g) (S \subseteq B.)</td>
</tr>
<tr>
<td>h) (S \subseteq A.)</td>
</tr>
<tr>
<td>i) (T \subseteq A.)</td>
</tr>
<tr>
<td>j) (C \subseteq B.)</td>
</tr>
<tr>
<td>k) (C \subseteq A.)</td>
</tr>
<tr>
<td>l) (B \subseteq A.)</td>
</tr>
</tbody>
</table>
Beweis 101-16 a)
Via 95-11 gilt: \(R \subseteq S \).
b)
Via 95-12 gilt: \(R \subseteq T \).
c)
Via 101-5 gilt: \(R \subseteq C \).
d)
Via 101-7 gilt: \(R \subseteq B \).
e)
Via AAI gilt: \(R \subseteq A \).
f)
Via 95-12 gilt: \(S \subseteq T \).
g)
Via 101-7 gilt: \(S \subseteq B \).
h)
Via 95-11 gilt: \(S \subseteq A \).
i)
Via 95-12 gilt: \(T \subseteq A \).
j)
Via 101-5 gilt: \(C \subseteq B \).
k)
Via 101-5 gilt: \(C \subseteq A \).
l)
Via 101-7 gilt: \(B \subseteq A \). □
101-17. Auch um späters Zitieren zu vereinfachen werden nun die Inklusions-Aussagen über \(\mathbb{R}, S, T, C, B, A \) vom \(\subseteq \text{Satz Zahlen} \) als Implikationen geschrieben und im \(\in \text{Satz Zahlen} \) zusammengefasst:

<table>
<thead>
<tr>
<th>101-17(Satz) ((\in \text{SZ: } \in \text{Satz Zahlen}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Aus ("p \in \mathbb{R})" folgt ("p \in \mathbb{S})".</td>
</tr>
<tr>
<td>b) Aus ("p \in \mathbb{R})" folgt ("p \in \mathbb{T})".</td>
</tr>
<tr>
<td>c) Aus ("p \in \mathbb{R})" folgt ("p \in \mathbb{C})".</td>
</tr>
<tr>
<td>d) Aus ("p \in \mathbb{R})" folgt ("p \in \mathbb{B})".</td>
</tr>
<tr>
<td>e) Aus ("p \in \mathbb{R})" folgt ("p \text{ Zahl})".</td>
</tr>
<tr>
<td>f) Aus ("p \in \mathbb{S})" folgt ("p \in \mathbb{T})".</td>
</tr>
<tr>
<td>g) Aus ("p \in \mathbb{S})" folgt ("p \in \mathbb{B})".</td>
</tr>
<tr>
<td>h) Aus ("p \in \mathbb{S})" folgt ("p \text{ Zahl})".</td>
</tr>
<tr>
<td>i) Aus ("p \in \mathbb{T})" folgt ("p \text{ Zahl})".</td>
</tr>
<tr>
<td>j) Aus ("p \in \mathbb{C})" folgt ("p \in \mathbb{B})".</td>
</tr>
<tr>
<td>k) Aus ("p \in \mathbb{C})" folgt ("p \text{ Zahl})".</td>
</tr>
<tr>
<td>l) Aus ("p \in \mathbb{B})" folgt ("p \text{ Zahl})".</td>
</tr>
</tbody>
</table>

Beweis 101-17 a) \(VS \text{ gleich } \)

Aus \(VS \text{ gleich "p } \in \mathbb{R}\)" folgt via 95-15: \(p \in \mathbb{S}. \)

b) \(VS \text{ gleich } \)

Aus \(VS \text{ gleich "p } \in \mathbb{R}\)" folgt via 95-16: \(p \in \mathbb{T}. \)

c) \(VS \text{ gleich } \)

Aus \(VS \text{ gleich "p } \in \mathbb{R}\)" und aus \(\subseteq \text{SZ "R } \subseteq \mathbb{C}\)" folgt via 0-4: \(p \in \mathbb{C}. \)
Beweis 101-17 d) VS gleich

Aus VS gleich “p ∈ ℝ” und aus ⊆SZ “ℝ ⊆ ℤ” folgt via 0-4:

p ∈ ℤ.

e) VS gleich

Aus VS gleich “p ∈ ℝ” folgt via 95-6:

p Zahl.

f) VS gleich

Aus VS gleich “p ∈ S” folgt via 95-20:

p ∈ T.

g) VS gleich

Aus VS gleich “p ∈ S” und aus ⊆SZ “S ⊆ ℤ” folgt via 0-4:

p ∈ ℤ.

h) VS gleich

Aus VS gleich “p ∈ S” folgt via 99-1:

p Zahl.

i) VS gleich

Aus VS gleich “p ∈ T” folgt via 99-1:

p Zahl.

j) VS gleich

Aus VS gleich “p ∈ C” und aus ⊆SZ “C ⊆ ℤ” folgt via 0-4:

p ∈ ℤ.

k) VS gleich

Aus VS gleich “p ∈ C” folgt via 99-1:

p Zahl.

l) VS gleich

Aus VS gleich “p ∈ ℤ” folgt via 99-1:

p Zahl.
FS: Fundamentalsatz.
AKR: Additive KürzungsRegel.
AVR: Additive VerschiebungsRegel.

Ersterstellung: 01/10/05
Letzte Änderung: 28/01/12
102-1. Falls die Summe zweier treller Zahlen eine reelle Zahl ist, dann sind beide an der Summe beteiligten Zahlen reell:

\[
\begin{align*}
\mathbf{102-1}(\text{Satz}) \\
Es\ gelte: \\
\quad & -\to \ x \in T. \\
\quad & -\to \ y \in T. \\
\quad & -\to \ x + y \in \mathbb{R}. \\
Dann\ folgt: \\
\quad & a) \ x \in \mathbb{R}. \\
\quad & b) \ y \in \mathbb{R}.
\end{align*}
\]

\textbf{Beweis 102-1}

1.1: Aus \(-\to \ "x \in T" \) folgt via 95-16: \((x \in \mathbb{R}) \lor (x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty). \)

1.2: Aus \(-\to \ "y \in T" \) folgt via 95-16: \((y \in \mathbb{R}) \lor (y = \text{nan}) \lor (y = +\infty) \lor (y = -\infty). \)

1.3: Aus \(-\to \ "x + y \in \mathbb{R}" \) folgt via 95-17: \(x + y \neq \text{nan}. \)

1.4: Aus \(-\to \ "x + y \in \mathbb{R}" \) folgt via 95-17: \(x + y \neq +\infty. \)

1.5: Aus \(-\to \ "x + y \in \mathbb{R}" \) folgt via 95-17: \(x + y \neq -\infty. \)
Beweis 102-1

2.1: Aus 1.1 und aus 1.2 folgt:

\[(x \in \mathbb{R}) \land (y \in \mathbb{R})
\land (x = \text{nan}) \land (y = \text{nan})
\lor (x = +\infty) \land (y = +\infty)
\lor (x = +\infty) \land (y = -\infty)
\lor (x = -\infty) \land (y = +\infty)
\lor (x = -\infty) \land (y = -\infty).
\]

Fallunterscheidung

2.1.1. Fall
\[(x \in \mathbb{R}) \land (y \in \mathbb{R}).\]

2.1.2. Fall
\[(x \in \mathbb{R}) \land (y = \text{nan}).\]

3: Aus \(\rightarrow\)“\(x \in T\)” folgt via AAVI:
\[x + \text{nan} = \text{nan}.\]

4: Aus 3“\(x + \text{nan} = \text{nan}\)” und aus 2.1.2. Fall“\(\ldots y = \text{nan}\)” folgt:
\[x + y = \text{nan}.\]

5: Es gilt 4“\(x + y = \text{nan}\)”.
Es gilt 1.3“\(x + y \neq \text{nan}\)”.
Ex falso quodlibet folgt:
\[(x \in \mathbb{R}) \land (y \in \mathbb{R}).\]
Beweis 102-1

...

Fallunterscheidung

...

2.1.3. Fall
\[(x \in \mathbb{R}) \land (y = +\infty). \]

3: Aus 2.1.3. Fall “\(x \in \mathbb{R}\)”
folgt via **AAVI**:
\[x + (+\infty) = +\infty. \]

4: Aus 3 “\(x + (+\infty) = +\infty\)” und
aus 2.1.3. Fall “... \(y = +\infty\)”
folgt:
\[x + y = +\infty. \]

5: Es gilt 4 “\(x + y = +\infty\)”.
Es gilt 1.4 “\(x + y \neq +\infty\)”.
Ex falso quodlibet folgt:
\[(x \in \mathbb{R}) \land (y \in \mathbb{R}). \]

2.1.4. Fall
\[(x \in \mathbb{R}) \land (y = -\infty). \]

3: Aus 2.1.4. Fall “\(x \in \mathbb{R}\)”
folgt via **AAVI**:
\[x + (-\infty) = -\infty. \]

4: Aus 3 “\(x + (-\infty) = -\infty\)” und
aus 2.1.4. Fall “... \(y = -\infty\)”
folgt:
\[x + y = -\infty. \]

5: Es gilt 4 “\(x + y = -\infty\)”.
Es gilt 1.5 “\(x + y \neq -\infty\)”.
Ex falso quodlibet folgt:
\[(x \in \mathbb{R}) \land (y \in \mathbb{R}). \]

2.1.5. Fall
\[(x = nan) \land (y \in \mathbb{R}). \]

3: Aus → “\(y \in \mathbb{T}\)”
folgt via **AAVI**:
\[nan + y = nan. \]

4: Aus 3 “\(nan + y = nan\)” und
aus 2.1.5. Fall “\(x = nan\)”
folgt:
\[x + y = nan. \]

5: Es gilt 4 “\(x + y = nan\)”.
Es gilt 1.3 “\(x + y \neq nan\)”.
Ex falso quodlibet folgt:
\[(x \in \mathbb{R}) \land (y \in \mathbb{R}). \]
Beweis 102-1

...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>2.1.6 Fall</th>
<th>((x = \text{nan}) \land (y = \text{nan})).</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.1.6. Fall</td>
<td>folgt: (x = \text{nan}).</td>
</tr>
<tr>
<td>3.2: Aus 2.1.6. Fall</td>
<td>folgt: (y = \text{nan}).</td>
</tr>
<tr>
<td>4:</td>
<td>(x + y \equiv \text{nan} + y \equiv \text{nan} + \text{nan} \not\equiv \text{nan}).</td>
</tr>
</tbody>
</table>
| 5: Es gilt 4“\(x + y = \ldots = \text{nan}\).
Es gilt 1.3“\(x + y \not\equiv \text{nan}\).
Ex falso quodlibet folgt: | \((x \in \mathbb{R}) \land (y \in \mathbb{R})\). |

<table>
<thead>
<tr>
<th>2.1.7 Fall</th>
<th>((x = \text{nan}) \land (y = +\infty)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.1.7. Fall</td>
<td>folgt: (x = \text{nan}).</td>
</tr>
<tr>
<td>3.2: Aus 2.1.7. Fall</td>
<td>folgt: (y = +\infty).</td>
</tr>
<tr>
<td>4:</td>
<td>(x + y \equiv \text{nan} + y \equiv \text{nan} + (+\infty) \not\equiv \text{nan}).</td>
</tr>
</tbody>
</table>
| 5: Es gilt 4“\(x + y = \ldots = \text{nan}\).
Es gilt 1.3“\(x + y \not\equiv \text{nan}\).
Ex falso quodlibet folgt: | \((x \in \mathbb{R}) \land (y \in \mathbb{R})\). |

<table>
<thead>
<tr>
<th>2.1.8 Fall</th>
<th>((x = \text{nan}) \land (y = -\infty)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.1.8. Fall</td>
<td>folgt: (x = \text{nan}).</td>
</tr>
<tr>
<td>3.2: Aus 2.1.8. Fall</td>
<td>folgt: (y = -\infty).</td>
</tr>
<tr>
<td>4:</td>
<td>(x + y \equiv \text{nan} + y \equiv \text{nan} + (-\infty) \not\equiv \text{nan}).</td>
</tr>
</tbody>
</table>
| 5: Es gilt 4“\(x + y = \ldots = \text{nan}\).
Es gilt 1.3“\(x + y \not\equiv \text{nan}\).
Ex falso quodlibet folgt: | \((x \in \mathbb{R}) \land (y \in \mathbb{R})\). |

...
Beweis 102-1

...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>2.1.9.Fall</th>
<th>$(x = +\infty) \land (y \in \mathbb{R})$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:</td>
<td>Aus 2.1.9.Fall“...$y \in \mathbb{R}$” folgt via AAVI: $(+\infty) + y = +\infty$.</td>
</tr>
<tr>
<td>4:</td>
<td>Aus 3“(+∞) + $y = +\infty” und aus 2.1.9.Fall“$x = +\infty...” folgt: $x + y = +\infty$.</td>
</tr>
</tbody>
</table>
| 5: | Es gilt 4“$x + y = ... = +\infty”“.
Es gilt 1.4“$x + y \neq +\infty”“.
Ex falso quodlibet folgt: $(x \in \mathbb{R}) \land (y \in \mathbb{R})$. |

<table>
<thead>
<tr>
<th>2.1.10.Fall</th>
<th>$(x = +\infty) \land (y = \text{nan})$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1:</td>
<td>Aus 2.1.10.Fall folgt: $x = +\infty$.</td>
</tr>
<tr>
<td>3.2:</td>
<td>Aus 2.1.10.Fall folgt: $y = \text{nan}$.</td>
</tr>
<tr>
<td>4:</td>
<td>$x + y \overset{3.1}{=} (+\infty) + y \overset{3.2}{=} (+\infty) + \text{nan} \overset{97-1}{=} \text{nan}$.</td>
</tr>
</tbody>
</table>
| 5: | Es gilt 4“$x + y = ... = \text{nan}”“.
Es gilt 1.3“$x + y \neq \text{nan}”“.
Ex falso quodlibet folgt: $(x \in \mathbb{R}) \land (y \in \mathbb{R})$. |

<table>
<thead>
<tr>
<th>2.1.11.Fall</th>
<th>$(x = +\infty) \land (y = +\infty)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1:</td>
<td>Aus 2.1.11.Fall folgt: $x = +\infty$.</td>
</tr>
<tr>
<td>3.2:</td>
<td>Aus 2.1.11.Fall folgt: $y = +\infty$.</td>
</tr>
<tr>
<td>4:</td>
<td>$x + y \overset{3.1}{=} (+\infty) + y \overset{3.2}{=} (+\infty) + (+\infty) \overset{\text{AAVI}}{=} +\infty$.</td>
</tr>
</tbody>
</table>
| 5: | Es gilt 4“$x + y = ... = +\infty”“.
Es gilt 1.4“$x + y \neq +\infty”“.
Ex falso quodlibet folgt: $(x \in \mathbb{R}) \land (y \in \mathbb{R})$. |
Beweis 102-1

...

Fallunterscheidung

...

2.1.12.Fall

(x = +∞) ∧ (y = −∞).

3.1: Aus 2.1.11.Fall folgt:
x = +∞.

3.2: Aus 2.1.11.Fall folgt:
y = −∞.

4:
x + y ≡ (+∞) + y ≡ (+∞) + (−∞) AAVI nan.

5: Es gilt 4 “x + y = ... = nan”.
 Es gilt 1.3 “x + y ≠ nan”.
 Ex falso quodlibet folgt:
 (x ∈ ℜ) ∧ (y ∈ ℜ).

2.1.13.Fall

(x = −∞) ∧ (y ∈ ℜ).

3: Aus 2.1.13.Fall “... y ∈ ℜ” folgt via AAVI:
 (−∞) + y = −∞.

4: Aus 3 “(−∞) + y = −∞” und aus 2.1.13.Fall “x = −∞...” folgt:
 x + y = −∞.

5: Es gilt 4 “x + y = ... = −∞”.
 Es gilt 1.5 “x + y ≠ −∞”.
 Ex falso quodlibet folgt:
 (x ∈ ℜ) ∧ (y ∈ ℜ).

2.1.14.Fall

(x = −∞) ∧ (y = nan).

3.1: Aus 2.1.14.Fall folgt:
x = −∞.

3.2: Aus 2.1.14.Fall folgt:
y = nan.

4:
x + y ≡ (−∞) + y ≡ (−∞) + nan 97−1 nan.

5: Es gilt 4 “x + y = ... = nan”.
 Es gilt 1.3 “x + y ≠ nan”.
 Ex falso quodlibet folgt:
 (x ∈ ℜ) ∧ (y ∈ ℜ).
Beweis 102-1

Fallunterscheidung

<table>
<thead>
<tr>
<th>2.1.15.Fall</th>
<th>$(x = -\infty) \land (y = +\infty)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.1.15.Fall folgt:</td>
<td>$x = -\infty$.</td>
</tr>
<tr>
<td>3.2: Aus 2.1.15.Fall folgt:</td>
<td>$y = +\infty$.</td>
</tr>
<tr>
<td>4:</td>
<td>$x + y \overset{3.1}{=} (-\infty) + y \overset{3.2}{=} (-\infty) + (+\infty) \overset{\text{AAVI}}{=} \text{nan}$.</td>
</tr>
<tr>
<td>5:</td>
<td>Es gilt 4"$x + y = \ldots = \text{nan}$".</td>
</tr>
<tr>
<td></td>
<td>Es gilt 1.3"$x + y \neq \text{nan}$".</td>
</tr>
<tr>
<td></td>
<td>Ex falso quodlibet folgt: $(x \in \mathbb{R}) \land (y \in \mathbb{R})$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.1.16.Fall</th>
<th>$(x = -\infty) \land (y = -\infty)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.1.16.Fall folgt:</td>
<td>$x = -\infty$.</td>
</tr>
<tr>
<td>3.2: Aus 2.1.16.Fall folgt:</td>
<td>$y = -\infty$.</td>
</tr>
<tr>
<td>4:</td>
<td>$x + y \overset{3.1}{=} (-\infty) + y \overset{3.2}{=} (-\infty) + (-\infty) \overset{\text{AAVI}}{=} -\infty$.</td>
</tr>
<tr>
<td>5:</td>
<td>Es gilt 4"$x + y = \ldots = -\infty$".</td>
</tr>
<tr>
<td></td>
<td>Es gilt 1.5"$x + y \neq -\infty$".</td>
</tr>
<tr>
<td></td>
<td>Ex falso quodlibet folgt: $(x \in \mathbb{R}) \land (y \in \mathbb{R})$.</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung

In allen Fällen gilt: $(x \in \mathbb{R}) \land (y \in \mathbb{R})$. □
102-2. Falls für zwei reelle Zahlen x, y die Gleichung $x + y = z$ mit $z \in \mathbb{R}$ gilt, dann sind x, y reell und es gilt $x = z - y$ und $y = z - x$:

102-2(Satz)

Es gelte:

- $x \in T$.
- $y \in T$.
- $x + y = z$.
- $z \in \mathbb{R}$.

Dann folgt:

- $a) \ x \in \mathbb{R}.$
- $b) \ y \in \mathbb{R}.$
- $c) \ x = z - y.$
- $d) \ y = z - x.$

RECH-Notation.

Beweis 102-2

1: Aus $\rightarrow "x + y = z"$ und
 aus $\rightarrow "z \in \mathbb{R}"$
 folgt: $x + y \in \mathbb{R}$.

2.a): Aus $\rightarrow "x \in T"$,
 aus $\rightarrow "y \in \mathbb{R}"$ und
 aus $1"x + y \in \mathbb{R}"
 folgt via 102-1: $x \in \mathbb{R}$.

2.b): Aus $\rightarrow "x \in T"$,
 aus $\rightarrow "y \in \mathbb{R}"$ und
 aus $1"x + y \in \mathbb{R}"
 folgt via 102-1: $y \in \mathbb{R}$.

...
Beweis 102-2

3.1: Aus 2.a) “$x \in \mathbb{R}$...” folgt via AAV:

\[x - x = 0. \]

3.2: Aus 2.a) “$x \in \mathbb{R}$...” folgt via AAV:

\[x + 0 = x. \]

3.3: Aus 2.b) “...$y \in \mathbb{R}$” folgt via AAV:

\[y - y = 0. \]

3.4: Aus 2.b) “...$y \in \mathbb{R}$” folgt via AAV:

\[y + 0 = y. \]

4.1:

\[
\begin{align*}
\vec{\rightarrow}^1 & \quad (x + y) - y \\
& \quad = (x + y) + (-y) \\
& \quad \text{FSA} \quad x + (y + (-y)) \\
& \quad = x + (y - y) \\
& \quad \overset{3.3}{=} x + 0 \\
& \quad \overset{3.2}{=} x.
\end{align*}
\]

4.2:

\[
\begin{align*}
\vec{\rightarrow}^1 & \quad (x + y) - x \\
& \quad = (x + y) + (-x) \\
& \quad \text{FSA} \quad (y + x) + (-x) \\
& \quad \text{FSA} \quad y + (x + (-x)) \\
& \quad = y + (x - x) \\
& \quad \overset{3.1}{=} y + 0 \\
& \quad \overset{3.4}{=} y.
\end{align*}
\]
Beweis 102-2

...

5.c): Aus 4.1 “z – y = ... = x”
folgt:
x = z - y.

5.d): Aus 4.2 “z – x = ... = y”
folgt:
y = z - x.
102-3. Interessanter Weise gilt $x + y \in \mathbb{C}$ genau dann, wenn $x, y \in \mathbb{C}$. Ein derartiges Resultat ist offenbar nicht verfügbar, wenn "\(\mathbb{C}\)" durch "\(\mathbb{R}, S, T, B\)" ersetzt wird. Der Fall $x + y \in \mathbb{A}$ ist in 96-13 behandelt:

<table>
<thead>
<tr>
<th>102-3(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Aussagen i), ii) sind äquivalent:</td>
</tr>
<tr>
<td>i) "(x \in \mathbb{C})" und "(y \in \mathbb{C})."</td>
</tr>
<tr>
<td>ii) (x + y \in \mathbb{C}).</td>
</tr>
</tbody>
</table>

Beweis 102-3

\[[i] \implies [ii] \] VS gleich \((x \in \mathbb{C}) \land (y \in \mathbb{C}). \)

1.1: Aus VS gleich "\(x \in \mathbb{C}\ldots\)" folgt via 101-1: \((\Re x \in \mathbb{R}) \land (\Im x \in \mathbb{R}). \)

1.2: Aus VS gleich "\(\ldots y \in \mathbb{C}\)" folgt via 101-1: \((\Re y \in \mathbb{R}) \land (\Im y \in \mathbb{R}). \)

2.1: Aus 1.1"\(\Re x \in \mathbb{R}\ldots\)" und aus 1.2"\(\Re y \in \mathbb{R}\ldots\)" folgt via AAV: \((\Re x) + (\Re y) \in \mathbb{R}. \)

2.2: Aus 1.1"\(\ldots \Im x \in \mathbb{R}\)" und aus 1.2"\(\ldots \Im y \in \mathbb{R}\)" folgt via AAV: \((\Im x) + (\Im y) \in \mathbb{R}. \)

3.1: Via 96-25 gilt: \(\Re(x + y) = (\Re x) + (\Re y). \)

3.2: Via 96-25 gilt: \(\Im(x + y) = (\Im x) + (\Im y). \)

...
Beweis 102-3 \([i] \Rightarrow [ii]\) VS gleich

\((x \in \mathbb{C}) \land (y \in \mathbb{C})\).

\[3.1:\]
Aus 3.1 "\(\text{Re}(x + y) = (\text{Re}x) + (\text{Re}y)\)" und
aus 2.1 "\((\text{Re}x) + (\text{Re}y) \in \mathbb{R}\)"
folgt:
\(\text{Re}(x + y) \in \mathbb{R}\).

\[4.2:\]
Aus 3.2 "\(\text{Im}(x + y) = (\text{Im}x) + (\text{Im}y)\)" und
aus 2.2 "\((\text{Im}x) + (\text{Im}y) \in \mathbb{R}\)"
folgt:
\(\text{Im}(x + y) \in \mathbb{R}\).

\[5:\]
Aus 4.1 "\(\text{Re}(x + y) \in \mathbb{R}\)" und
aus 4.2 "\(\text{Im}(x + y) \in \mathbb{R}\)"
folgt via 101-1:
\(x + y \in \mathbb{C}\).

\[i) \Rightarrow [i]\) VS gleich

\(x + y \in \mathbb{C}\).

\[1.1:\]
Aus VS gleich "\(x + y \in \mathbb{C}\)"
folgt via 101-1:
\((\text{Re}(x + y) \in \mathbb{R}) \land (\text{Im}(x + y) \in \mathbb{R})\).

\[1.2:\]
Aus VS gleich "\(x + y \in \mathbb{C}\)"
folgt via \(\epsilon \text{SZ}\):
\(x + y \text{ Zahl}\).

\[2.1:\]
Via 96-25 gilt:
\(\text{Re}(x + y) = (\text{Re}x) + (\text{Re}y)\).

\[2.2:\]
Via 96-25 gilt:
\(\text{Im}(x + y) = (\text{Im}x) + (\text{Im}y)\).

\[2.3:\]
Aus 1.2 "\(x + y \text{ Zahl}\)"
folgt via 96-13:
\((x \text{ Zahl}) \land (y \text{ Zahl})\).

\[3.1:\]
Aus 1.1 "\(\text{Re}(x + y) \in \mathbb{R}\)..." und
aus 2.1 "\(\text{Re}(x + y) = (\text{Re}x) + (\text{Re}y)\)"
folgt:
\((\text{Re}x) + (\text{Re}y) \in \mathbb{R}\).

\[3.2:\]
Aus 1.1 "\(\ldots \text{Im}(x + y) \in \mathbb{R}\)..." und
aus 2.2 "\(\text{Im}(x + y) = (\text{Im}x) + (\text{Im}y)\)"
folgt:
\((\text{Im}x) + (\text{Im}y) \in \mathbb{R}\).

\[3.3:\]
Aus 2.3 "\(x \text{ Zahl}\)..."
folgt via 96-9:
\((\text{Re}x \in \mathbb{T}) \land (\text{Im}x \in \mathbb{T})\).

\[3.4:\]
Aus 2.3 "\(\ldots y \text{ Zahl}\)"
folgt via 96-9:
\((\text{Re}y \in \mathbb{T}) \land (\text{Im}y \in \mathbb{T})\).

\ldots
Beweis 102-3 [ii) ⇒ i) VS gleich $x + y \in \mathbb{C}$.

...

4.1: Aus 3.3“$\text{Re} x \in \mathbb{T}$...”,
aus 3.4“$\text{Re} y \in \mathbb{T}$...” und
aus 3.1“(Rex) + (Rey) $\in \mathbb{R}$”
folgt via 102-1: $(\text{Re} x \in \mathbb{R}) \land (\text{Re} y \in \mathbb{R})$.

4.2: Aus 3.3“...Imx $\in \mathbb{T}$”,
aus 3.4“...Imy $\in \mathbb{T}$” und
aus 3.2“(Imx) + (Imy) $\in \mathbb{R}$”
folgt via 102-1: $(\text{Im} x \in \mathbb{R}) \land (\text{Im} y \in \mathbb{R})$.

5.1: Aus 4.1“$\text{Re} x \in \mathbb{R}$...” und
aus 4.2“Imx $\in \mathbb{R}$...”
folgt via 101-1: $x \in \mathbb{C}$.

5.2: Aus 4.1“...Rey $\in \mathbb{R}$” und
aus 4.2“...Imy $\in \mathbb{R}$”
folgt via 101-1: $y \in \mathbb{C}$.

6: Aus 5.1 und
aus 5.2
folgt:

$(x \in \mathbb{C}) \land (y \in \mathbb{C})$.

\square
102-4. Falls \(x + y = z \in \mathbb{C} \), dann sind \(x, y \) komplexe Zahlen und es gilt \(x = z - y \) und \(y = z - x \):

\[
\begin{align*}
\text{102-4(Satz)} \quad & \quad \text{Es gelte:} \\
\rightarrow & \quad x + y = z. \\
\rightarrow & \quad z \in \mathbb{C}. \\
\text{Dann folgt:} \\
a) & \quad x \in \mathbb{C}. \\
b) & \quad y \in \mathbb{C}. \\
c) & \quad x = z - y. \\
d) & \quad y = z - x.
\end{align*}
\]

RECH-Notation

Beweis 102-4

REIM-Notation

1.1: Aus \(\rightarrow \) "\(x + y = z \)" und aus \(\rightarrow \) "\(z \in \mathbb{C} \)" folgt: \(x + y \in \mathbb{C} \).

1.2: Aus \(\rightarrow \) "\(x + y = z \)" folgt: \(z = x + y \).

1.3: Aus \(\rightarrow \) "\(z \in \mathbb{C} \)" folgt via 101-1: \((\text{Re}z \in \mathbb{R}) \land (\text{Im}z \in \mathbb{R}) \).

...
Beweis 102-4 . .

2.a): Aus 1.1“x + y ∈ C” folgt via 102-3: x ∈ C.

2.b): Aus 1.1“x + y ∈ C” folgt via 102-3: y ∈ C.

2.2: Rez ⇔ Re(x + y) 96-25 (Rex) + (Rey).

2.3: Imz ⇔ Im(x + y) 96-25 (Imx) + (Imy).

3.1: Aus 2.a)“x ∈ C” folgt via ∈SZ: x Zahl.

3.2: Aus 2.b)“y ∈ C” folgt via ∈SZ: y Zahl.

3.3: Aus 2.2“Rez = . . . = (Rex) + (Rey)” folgt: (Rex) + (Rey) = Rez.

3.4: Aus 2.3“Imz = . . . = (Imx) + (Imy)” folgt: (Imx) + (Imy) = Imz.

4.1: Aus 3.1“x Zahl” folgt via 96-9: (Rex ∈ T) ∧ (Imx ∈ T).

4.2: Aus 3.2“y Zahl” folgt via 96-9: (Rey ∈ T) ∧ (Imy ∈ T).

4.3: Aus 3.1“x Zahl” folgt via 96-24: x = (Rex) + i · (Imx).

4.4: Aus 3.2“y Zahl” folgt via 96-24: y = (Rey) + i · (Imy).

...
Beweis 102-4

...

5.1: Aus 4.1 \(\text{Re}x \in T \ldots \) ,
aus 4.2 \(\text{Re}y \in T \ldots \) ,
aus 3.3 \((\text{Re}x) + (\text{Re}y) = \text{Re}z \) und
aus 1.3 \(\text{Re}z \in \mathbb{R} \ldots \)
folgt via 102-2: \(\text{Re}x = (\text{Re}z) - (\text{Re}y) \).

5.2: Aus 4.1 \(\text{Re}x \in T \ldots \) ,
aus 4.2 \(\text{Re}y \in T \ldots \) ,
aus 3.3 \((\text{Re}x) + (\text{Re}y) = \text{Re}z \) und
aus 1.3 \(\text{Re}z \in \mathbb{R} \ldots \)
folgt via 102-2: \(\text{Re}y = (\text{Re}z) - (\text{Re}x) \).

5.3: Aus 4.1 \(\ldots \text{Im}x \in T \) ,
aus 4.2 \(\ldots \text{Im}y \in T \) ,
aus 3.4 \((\text{Im}x) + (\text{Im}y) = \text{Im}z \) und
aus 1.3 \(\ldots \text{Im}z \in \mathbb{R} \)
folgt via 102-2: \(\text{Im}x = (\text{Im}z) - (\text{Im}y) \).

5.4: Aus 4.1 \(\ldots \text{Im}x \in T \) ,
aus 4.2 \(\ldots \text{Im}y \in T \) ,
aus 3.4 \((\text{Im}x) + (\text{Im}y) = \text{Im}z \) und
aus 1.3 \(\ldots \text{Im}z \in \mathbb{R} \)
folgt via 102-2: \(\text{Im}y = (\text{Im}z) - (\text{Im}x) \).

...
Beweis 102-4

...

6.1:

\[x \]
\[\equiv^3 (\text{Re} x) + i \cdot (\text{Im} x) \]
\[\equiv^1 ((\text{Re} z) - (\text{Re} y)) + i \cdot (\text{Im} z) \]
\[\equiv^2 ((\text{Re} z) - (\text{Re} y)) + i \cdot ((\text{Im} z) - (\text{Im} y)) \]
\[= ((\text{Re} z) + (-\text{Re} y)) + i \cdot ((\text{Im} z) - (\text{Im} y)) \]
\[= ((\text{Re} z) + (-\text{Re} y)) + i \cdot ((\text{Im} z) + (-\text{Im} y)) \]
\[96-27 = (\text{Re} z) + \text{Re}(-y) + i \cdot ((\text{Im} z) + (-\text{Im} y)) \]
\[96-27 = (\text{Re} z) + \text{Re}(-y) + i \cdot ((\text{Im} z) + \text{Im}(-y)) \]
\[96-25 = z + (-y) \]
\[= z - y. \]

6.2:

\[y \]
\[\equiv^4 (\text{Re} y) + i \cdot (\text{Im} y) \]
\[\equiv^2 ((\text{Re} z) - (\text{Re} x)) + i \cdot (\text{Im} y) \]
\[\equiv^4 ((\text{Re} z) - (\text{Re} x)) + i \cdot ((\text{Im} z) - (\text{Im} x)) \]
\[= ((\text{Re} z) + (-\text{Re} x)) + i \cdot ((\text{Im} z) - (\text{Im} x)) \]
\[= ((\text{Re} z) + (-\text{Re} x)) + i \cdot ((\text{Im} z) + (-\text{Im} x)) \]
\[96-27 = (\text{Re} z) + \text{Re}(-x) + i \cdot ((\text{Im} z) + (-\text{Im} x)) \]
\[96-27 = (\text{Re} z) + \text{Re}(-x) + i \cdot ((\text{Im} z) + \text{Im}(-x)) \]
\[96-25 = z + (-x) \]
\[= z - x. \]

7. c): Aus 6.1 folgt:
\[x = z - y. \]

7. d): Aus 6.2 folgt:
\[y = z - x. \]
102-5. Interessanter Weise gilt $x - x = 0$ genau dann, wenn $x \in \mathbb{C}$:

102-5(Satz)

Die Aussagen i), ii) sind äquivalent:

i) $x - x = 0$.

ii) $x \in \mathbb{C}$.

RECH-Notation
Beweis 102-5

\[\begin{align*}
\text{i) } & \Rightarrow \text{ ii) } \quad \text{VS gleich} \\
\text{1:} & \quad \text{Aus VS gleich } "x - x = 0" \\
& \quad \text{folgt:} \\
\text{2:} & \quad \text{Aus } 1.1 "x + (-x) = 0" \text{ und} \\
& \quad \text{aus } 101-7 "0 \in \mathbb{C}" \\
& \quad \text{folgt via } 102-4: \quad x \in \mathbb{C}.
\end{align*} \]

\[\begin{align*}
\text{ii) } & \Rightarrow \text{ i) } \quad \text{VS gleich} \\
\text{1:} & \quad \text{Aus VS gleich } "x \in \mathbb{C}" \\
& \quad \text{folgt via } 101-1: \quad (\text{Re } x \in \mathbb{R}) \land (\text{Im } x \in \mathbb{R}).
\end{align*} \]

\[\begin{align*}
\text{2.1:} & \quad \text{Aus } 1 \quad \text{Re } x \in \mathbb{R} \ldots \\
& \quad \text{folgt via } \text{AAV}: \quad (\text{Re } x) - (\text{Re } x) = 0.
\end{align*} \]

\[\begin{align*}
\text{2.2:} & \quad \text{Aus } 1 \quad \text{Im } x \in \mathbb{R} \ldots \\
& \quad \text{folgt via } \text{AAV}: \quad (\text{Im } x) - (\text{Im } x) = 0.
\end{align*} \]

\[\begin{align*}
\text{3:} & \quad x - x \\
& \quad = x + (-x) \\
& \quad = (\text{Re } x) + (\text{Re } x) + i \cdot (\text{Im } x) + (\text{Im } x) \\
& \quad = (\text{Re } x) - (\text{Re } x) + i \cdot (\text{Im } x) + (\text{Im } x) \\
& \quad = (\text{Re } x) - (\text{Re } x) + i \cdot (\text{Im } x) - (\text{Im } x) \\
& \quad = 2 \cdot 0 + i \cdot (\text{Im } x) - (\text{Im } x) \\
& \quad \overset{2.2}{=} 0 + i \cdot 0 \\
& \quad \overset{96-35}{=} 0.
\end{align*} \]

\[\begin{align*}
\text{4:} & \quad \text{Aus 3} \\
& \quad \text{folgt:} \\
& \quad x - x = 0.
\end{align*} \]
102-6. Im FS: **FundamentalSatz** – werden vier Kriterien für “$x + y = 0$” formuliert. Die Beweis-Reihenfolge ist i) \Rightarrow ii) \Rightarrow iv) \Rightarrow v) \Rightarrow iii) \Rightarrow i):

102-6(Satz) (FS: FundamentalSatz −)

Die Aussagen i), ii), iii), iv), v) sind äquivalent:

i) $x + y = 0$.

ii) “$x \in \mathbb{C}$” und “$x = -y$”.

iii) “$x \in \mathbb{C}$” und “$y = -x$”.

iv) “$y \in \mathbb{C}$” und “$x = -y$”.

v) “$y \in \mathbb{C}$” und “$y = -x$”.

RECH-Notation.
Beweis 102-6 \([i] \Rightarrow [ii]\) VS gleich

1: Aus VS gleich “\(x + y = 0\)” und
 aus 101-5 “\(0 \in \mathbb{C}\)”
 folgt via 102-4:
 \[(x \in \mathbb{C}) \land (x = 0 - y).\]

3: Via 98-12 gilt:
 \[0 - y = -y.\]

4: Aus 1 “\(\ldots x = 0 - y\)” und
 aus 3 “\(0 - y = -y\)”
 folgt:
 \[x = -y.\]

5: Aus 1 “\(x \in \mathbb{C} \ldots\)” und
 aus 4 “\(x = -y\)”
 folgt:
 \[(x \in \mathbb{C}) \land (x = -y).\]

\([ii] \Rightarrow [iv]\) VS gleich

1: Aus VS gleich “\(x \in \mathbb{C} \ldots\)” und
 aus VS gleich “\(\ldots x = -y\)”
 folgt:
 \[-y \in \mathbb{C}.\]

2: Aus 1 “\(-y \in \mathbb{C}\)”
 folgt via 101-9:
 \[y \in \mathbb{C}.\]

3: Aus 2 “\(y \in \mathbb{C}\)” und
 aus VS gleich “\(\ldots x = -y\)”
 folgt:
 \[(y \in \mathbb{C}) \land (x = -y).\]

\([iv] \Rightarrow [v]\) VS gleich

1: Aus VS gleich “\(y \in \mathbb{C} \ldots\)”
 folgt via \(\in \text{SZ}:\)
 \[y \text{ Zahl}.\]

2: Aus VS gleich “\(\ldots x = -y\)” und
 aus 1 “\(y \text{ Zahl}\)”
 folgt via 100-11:
 \[-x = y.\]

3: Aus 2
 folgt:
 \[y = -x.\]

4: Aus VS gleich “\(y \in \mathbb{C}\)” und
 aus 3 “\(y = -x\)”
 folgt:
 \[(y \in \mathbb{C}) \land (y = -x).\]
Beweis 102-6 \[\Rightarrow \text{iii} \] \(\text{VS gleich} \)

1: Aus \(\text{VS gleich } y \in \mathbb{C} \ldots \) und aus \(\text{VS gleich } \ldots y = -x \) folgt:

\[-x \in \mathbb{C}. \]

2: Aus 1" \(-x \in \mathbb{C} \)" folgt via 101-9:

\[x \in \mathbb{C}. \]

3: Aus 2" \(x \in \mathbb{C} \)" und aus \(\text{VS gleich } \ldots y = -x \) folgt:

\[(x \in \mathbb{C}) \land (y = -x). \]

\[\text{iii} \Rightarrow \text{i} \] \(\text{VS gleich} \)

1.1: Aus \(\text{VS gleich } x \in \mathbb{C} \ldots \)
folgt via 102-5:

\[x - x = 0. \]

1.2: Aus \(\text{VS} \)
folgt:

\[y = -x. \]

2:

\[x + y = x + (-x) = x - x \overset{1.1}{=} 0. \]

3: Aus 2
folgt:

\[x + y = 0. \]

\[\square \]
102-7. In enger Anlehnung an FS, werden Kriterien für “$x - y = 0$” angegeben:

102-7(Satz)

Die Aussagen i), ii), iii) sind äquivalent:

i) $x - y = 0$.

ii) “$x \in \mathbb{C}$” und “$x = y$”.

iii) “$y \in \mathbb{C}$” und “$x = y$”.

RECH-Notation.

Beweis 102-7 \([i) \Rightarrow ii)] \)

VS gleich $x - y = 0$.

1: Aus VS folgt: $x + (-y) = 0$.

2: Aus 1“$x + (-y) = 0$” folgt via FS: $(x \in \mathbb{C}) \land (\neg y \in \mathbb{C}) \land (x = -(y))$.

3: Aus 2“…$\neg y \in \mathbb{C}$…” folgt via 101-9: $y \in \mathbb{C}$.

4: Aus 3“$y \in \mathbb{C}$” folgt via $\in\SZ$: y Zahl.

5: Aus 2“…$x = -(y)$” und aus 4“y Zahl” folgt via 100-11: $x = y$.

6: Aus 2“$x \in \mathbb{C}$…” und aus 5“$x = y$” folgt: $(x \in \mathbb{C}) \land (x = y)$.
Beweis 102-7 (ii) ⇒ (iii) VS gleich

1: Aus VS gleich “...x = y” und aus VS gleich “x ∈ C...” folgt:

2: Aus 1“y ∈ C” und aus VS gleich “...x = y” folgt:

(iii) ⇒ (i) VS gleich

1: Aus VS gleich “y ∈ C...” folgt via 102-5:

2: Aus 1“y − y = 0” und aus VS gleich “...x = y” folgt:
102-8. Hier wird eine “T-Version” vom FS formuliert. Interessanter Weise genügt es in i), dass \(x \) oder \(y \) aus \(T \) sind. Die Beweis-Reihenfolge ist i) \(\Rightarrow \) ii) \(\Rightarrow \) iv) \(\Rightarrow \) v) \(\Rightarrow \) iii) \(\Rightarrow \) i):

\[
102-8(Satz)
\]

Die Aussagen i), ii), iii), iv), v) sind äquivalent:

i) “\(x + y = 0 \)” und “\((x \in T) \lor (y \in T) \)”.

ii) “\(x \in \mathbb{R} \)” und “\(x = -y \)”.

iii) “\(x \in \mathbb{R} \)” und “\(y = -x \)”.

iv) “\(y \in \mathbb{R} \)” und “\(x = -y \)”.

v) “\(y \in \mathbb{R} \)” und “\(y = -x \)”.

RECH-Notation.
Beweis 102-8 \((i) \Rightarrow (ii) \) VS gleich \((x + y = 0) \land ((x \in T) \lor (y \in T)) \).

1: Aus VS gleich “\(x + y = 0 \)…” folgt via \(\text{FS}^- \):
\((x \in \mathbb{C}) \land (y \in \mathbb{C}) \land (x = -y) \).

2.1: Aus 1 “\((x \in \mathbb{C}) \land (y \in \mathbb{C}) \)…” und aus VS gleich “\(\ldots (x \in T) \lor (y \in T) \)” folgt:
\((x \in \mathbb{C}) \land (y \in \mathbb{C}) \land (x \in T) \lor (x \in \mathbb{C}) \land (y \in \mathbb{C}) \land (y \in T) \).

Fallunterscheidung

2.1.1. Fall

3: Aus 2.1.1. Fall “\(\ldots x \in T \)” und aus 2.1.1. Fall “\(x \in \mathbb{C} \)” folgt via \(\land \text{SZ} \):
\(x \in \mathbb{R} \).

2.1.2. Fall

3: Aus 2.1.2. Fall “\(\ldots y \in T \)” und aus 2.1.2. Fall “\(\ldots y \in \mathbb{C} \)” folgt via \(\land \text{SZ} \):
\(y \in \mathbb{R} \).

4: Aus 3 “\(y \in \mathbb{R} \)” folgt via 100-6:
\(-y \in \mathbb{R} \).

5: Aus 1 “\(\ldots x = -y \)” und aus 4 “\(-y \in \mathbb{R} \)” folgt:
\(x \in \mathbb{R} \).

Ende Fallunterscheidung In beiden Fällen gilt: \(A1 \text{ bij } “x \in \mathbb{R}” \)

2.2: Aus A1 gleich “\(x \in \mathbb{R} \)” und aus 1 “\(\ldots x = -y \)” folgt:
\((x \in \mathbb{R}) \land (x = -y) \).
Beweis 102-8 \[\text{ii)} \Rightarrow \text{iv)}\] VS gleich

1: Aus VS gleich “\(\ldots x = -y\)“ und
 aus VS gleich “\(x \in \mathbb{R}\ldots\)"
 folgt:
 \(-y \in \mathbb{R}\).

2: Aus 1 “\(-y \in \mathbb{R}\)”
 folgt via 100-6:
 \(y \in \mathbb{R}\).

3: Aus 2 “\(y \in \mathbb{R}\)” und
 aus VS gleich “\(\ldots x = -y\)"
 folgt:
 \((y \in \mathbb{R}) \land (x = -y)\).

\[\text{iv)} \Rightarrow \text{v)}\] VS gleich

1: Aus VS gleich “\(y \in \mathbb{R}\ldots\)”
 folgt via \(\in \text{SZ}\):
 \(y \in \mathbb{C}\).

2: Aus 1 “\(y \in \mathbb{C}\ldots\)” und
 aus VS gleich “\(\ldots x = -y\)"
 folgt via \(\text{FS}^-\):
 \(y = -x\).

3: Aus VS gleich “\(y \in \mathbb{R}\ldots\)” und
 aus 2 “\(y = -x\)”
 folgt:
 \((y \in \mathbb{R}) \land (y = -x)\).

\[\text{v)} \Rightarrow \text{iii)}\] VS gleich

1: Aus VS gleich “\(\ldots y = -x\)“ und
 aus VS gleich “\(y \in \mathbb{R}\ldots\)”
 folgt:
 \(-x \in \mathbb{R}\).

2: Aus 1 “\(-x \in \mathbb{R}\)”
 folgt via 100-6:
 \(x \in \mathbb{R}\).

3: Aus 2 “\(x \in \mathbb{R}\)” und
 aus VS gleich “\(\ldots y = -x\)”
 folgt:
 \((x \in \mathbb{R}) \land (y = -x)\).
Beweis 102-8 (iii) ⇒ i) VS gleich

1.1: Aus VS gleich “\(x \in \mathbb{R} \)…”
folgt via \(\in_{\mathbb{SZ}} \):
\(x \in T \).

1.2: Aus VS gleich “\(x \in \mathbb{R} \)…”
folgt via \(\in_{\mathbb{SZ}} \):
\(x \in \mathbb{C} \).

2.1: Aus 1.1
folgt:
\((x \in T) \lor (y \in T) \).

2.2: Aus 1.2 “\(x \in \mathbb{C} \)” und
aus VS gleich “…\(y = -x \)”
folgt via \(\text{FS}_- \):
\(x + y = 0 \).

3: Aus 2.2 und
aus 2.1
folgt:
\((x + y = 0) \land ((x \in T) \lor (y \in T)) \).

\(\square \)
102-9. Nun wird eine “T-Version” von 102-7 gegeben. In i) genügt es, dass \(x \) oder \(y \) aus \(\mathbb{T} \) sind:

| |
|---|---|
| **102-9(Satz)** | |

Die Aussagen i), ii), iii) sind äquivalent:

i) “\(x - y = 0 \) und “\((x \in \mathbb{T}) \lor (y \in \mathbb{T}) \)”.

ii) “\(x \in \mathbb{R} \) und “\(x = y \)”.

iii) “\(y \in \mathbb{R} \) und “\(x = y \)”.

RECH-Notation.
Beweis 102-9 \([i] \Rightarrow [ii]\) VS gleich \((x - y = 0) \land ((x \in T) \lor (y \in T)).\)

1: Aus VS gleich \(" x - y = 0\ldots\)"
folgt via 102-7:
\((x \in \mathbb{C}) \land (y \in \mathbb{C}) \land (x = y).\)

2.1: Aus 1\(" (x \in \mathbb{C}) \land (y \in \mathbb{C})\ldots\)" und
aus VS gleich \(" \ldots(x \in T) \lor (y \in T)\)"
folgt:
\((x \in \mathbb{C}) \land (y \in \mathbb{C}) \land (x \in T) \lor (y \in T).\)

\[\text{Fallunterscheidung}\]

\[\boxed{2.1.1.\text{Fall}}\]
\((x \in \mathbb{C}) \land (y \in \mathbb{C}) \land (x \in T).\)
Aus 2.1.1.\text{Fall}"\ldots x \in T" und
aus 2.1.1.\text{Fall}"x \in \mathbb{C}\ldots"
folgt via \(\land \text{SZ}:\)
\(x \in \mathbb{R}.\)

\[\boxed{2.1.2.\text{Fall}}\]
\((x \in \mathbb{C}) \land (y \in \mathbb{C}) \land (y \in T).\)
3: Aus 2.1.2.\text{Fall}"\ldots y \in T" und
aus 2.1.2.\text{Fall}"\ldots y \in \mathbb{C}\ldots"
folgt via \(\land \text{SZ}:\)
\(y \in \mathbb{R}.\)
4: Aus 1"\ldots x = y" und
aus 3"y \in \mathbb{R}"
folgt:
\(x \in \mathbb{R}.\)

\[\text{Ende Fallunterscheidung}\]
In beiden Fällen gilt:
\(\boxed{A1} \ "x \in \mathbb{R}"\)

2.2: Aus A1 gleich \(" x \in \mathbb{R}"\) und
aus 1"\ldots x = y"
folgt:
\((x \in \mathbb{R}) \land (x = y).\)
Beweis 102-9 \([\text{ii)} \Rightarrow \text{iii)}]\) VS gleich
\((x \in \mathbb{R}) \land (x = y)\).

1: Aus VS gleich “\(\ldots x = y\)” und
aus VS gleich “\(x \in \mathbb{R}\)”
folgt:
\(y \in \mathbb{R}\).

2: Aus \(1^\circ \ y \in \mathbb{R}\)” und
aus VS gleich “\(\ldots x = y\)”
folgt:
\((y \in \mathbb{R}) \land (x = y)\).

\([\text{iii)} \Rightarrow \text{i)}]\) VS gleich
\((y \in \mathbb{R}) \land (x = y)\).

1.1: Aus VS gleich “\(y \in \mathbb{R}\)”
folgt via \(\in \mathbb{S}Z\):
\(y \in \mathbb{T}\).

1.2: Aus VS gleich “\(y \in \mathbb{R}\)”
folgt via \(\in \mathbb{S}Z\):
\(y \in \mathbb{C}\).

2.1: Aus 1.1
folgt:
\((x \in \mathbb{T}) \lor (y \in \mathbb{T})\).

2.2: Aus 1.2 “\(y \in \mathbb{C}\)” und
aus VS gleich “\(\ldots x = y\)”
folgt via 102-7:
\(x - y = 0\).

3: Aus 2.2 und
aus 2.1
folgt:
\((x - y = 0) \land ((x \in \mathbb{T}) \lor (y \in \mathbb{T}))\).
}\]
102-10. Da 1, i komplexe Zahlen sind, folgt aus 102-5 das vorliegende Resultat. Die Aussage 0 − 0 = 0 ist bereits seit 98-15 bekannt:

\[
\begin{align*}
\textbf{102-10(Satz)} \\
\text{a) } 1 - 1 &= 0. \\
\text{b) } i - i &= 0.
\end{align*}
\]

\[\text{RECH-Notation.}\]

\textbf{Beweis 102-10}

1.a): Aus 101-5 “1 ∈ \mathbb{C}” folgt via 102-5: \(1 - 1 = 0.\)

1.b): Aus 101-5 “i ∈ \mathbb{C}” folgt via 102-5: \(i - i = 0.\)

□
102-11. In der **AKR: Additive KürzungsRegel** wird Hinreichendes dafür angegeben, dass aus $x + a = y + a$ die Aussage $x = y$ folgt. Interessanter Weise muss - unter anderem - nur x Zahl oder y Zahl gefordert werden:

102-11(Satz) (AKR: Additive KürzungsRegel)

*Es gelte:

$\rightarrow x + a = y + a$.

x Zahl.

oder

y Zahl.

$\rightarrow a \in \mathbb{C}$.

*Dann folgt:

a) x Zahl.

b) y Zahl.

c) $x = y$.

RECH-Notation.*
Beweis 102-11

1.1: Aus $\rightarrow^a \in \mathbb{C}$ folgt via $\in \mathbb{SZ}$:

$$a \in \mathbb{C}$$

1.2: Nach \rightarrow gilt:

$$x \in \mathbb{Z} \lor y \in \mathbb{Z}.$$
Beweis 102-11 . . .

1. a): Aus A2
folgt:

1. b): Aus A2
folgt:

1.3: Aus A2 gleich “x Zahl...”
folgt via FSA0:

1.4: Aus A2 gleich “...y Zahl”
folgt via FSA0:

1.5: Aus \(\rightarrow \) “\(a \in \mathbb{C} \)”
folgt via 102-5:

2:

\[
\begin{align*}
x & \quad \overset{1.3}{=} x + 0 \\
& \quad \overset{1.5}{=} x + (a - a) \\
& \quad = x + (a + (-a)) \\
\text{FSA} & \quad = (x + a) + (-a) \\
\overset{\rightarrow}{=} & \quad (y + a) + (-a) \\
\text{FSA} & \quad = y + (a + (-a)) \\
& \quad = y + (a - a) \\
& \quad \overset{1.5}{=} y + 0 \\
& \quad \overset{1.4}{=} y.
\end{align*}
\]

3. c): Aus 2
folgt:

\[
\begin{align*}
x & = y.
\end{align*}
\]

\[\square\]
102-12. Mit der **AVR: Additive VerschiebungsRegel** steht Hinreichendes zur Verfügung, um aus $x + a = y$ die Aussage $x = y - a$ folgt. Interessanter Weise muss - unter anderem - nur x Zahl oder y Zahl gefordert werden:

102-12 **Satz** (AVR: Additive VerschiebungsRegel)

Es gelte:

- $x + a = y$.

$$
\begin{array}{c}
\text{x Zahl.} \\
\text{oder} \\
\text{y Zahl.}
\end{array}
$$

- $a \in \mathbb{C}$.

Dann folgt:

a) x Zahl.

b) y Zahl.

c) $x = y - a$.

RECH-Notation.
Beweis 102-12

1.1: Aus $\rightarrow “a \in \mathbb{C}”$ folgt via $\in \mathbb{SZ}$:

<table>
<thead>
<tr>
<th>A1</th>
<th>“a Zahl”</th>
</tr>
</thead>
</table>

1.2: Nach \rightarrow gilt:

$$(x \text{ Zahl}) \lor (y \text{ Zahl}).$$

<table>
<thead>
<tr>
<th>Fallunterscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1.Fall</td>
</tr>
<tr>
<td>x Zahl.</td>
</tr>
<tr>
<td>2: Aus 1.2.1.Fall “x Zahl” und aus A1 gleich “a Zahl” folgt via 96-13:</td>
</tr>
<tr>
<td>3: Aus 2“x + a Zahl” und aus $\rightarrow “x + a = y”$ folgt:</td>
</tr>
<tr>
<td>4: Aus 1.2.1.Fall “x Zahl” und aus 3“y Zahl” folgt:</td>
</tr>
</tbody>
</table>

| **1.2.2.Fall** |
| y Zahl. |
2: Aus $\rightarrow “x + a = y”$ und aus 1.2.2.Fall “y Zahl” folgt:	$x + a$ Zahl.
3: Aus 2“x + a Zahl” folgt via 96-13:	x Zahl.
4: Aus 3“x Zahl” und aus 1.2.2.Fall “y Zahl” folgt:	$(x \text{ Zahl}) \land (y \text{ Zahl})$.

Ende Fallunterscheidung | In beiden Fällen gilt:

| A2 | “(x Zahl) \land (y Zahl)” |

...
Beweis 102-12 ...

1.a): Aus A2 folgt:

 \[x \text{ Zahl.} \]

1.b): Aus A2 folgt:

 \[y \text{ Zahl.} \]

1.3: Aus A2 gleich “\(x \text{ Zahl...} \)” folgt via FSA0:

 \[x = x + 0. \]

1.4: Aus \(a \in \mathbb{C} \) folgt via 102-5:

 \[a - a = 0. \]

2:

\[
\begin{align*}
\text{1.3 } & \quad x + 0 \\
\text{1.4 } & \quad x + (a - a) \\
= & \quad x + (a + (-a)) \\
\text{FSA } & \quad (x + a) + (-a) \\
\end{align*}
\]

\[\quad \Rightarrow y + (-a) \]

\[\quad = y - a. \]

3.c): Aus 2 folgt:

\[x = y - a. \]

\[\Box \]
102-13. Nun wird eine Folgerung aus AVR gezogen:

102-13(Satz)

Es gelte:

\[x - a = y. \]

\[\rightarrow \]

\begin{tabular}{l}
\textit{x Zahl.} \\
\vspace{0.5em}
\hline
\textbf{oder} \\
\vspace{0.5em}
\textit{y Zahl.}
\end{tabular}

\[\rightarrow \]

\[a \in \mathbb{C}. \]

Dann folgt:

\[a) \quad x \text{ Zahl.} \]

\[b) \quad y \text{ Zahl.} \]

\[c) \quad x = y + a. \]

RECH-Notation.
Beweis 102-13

1: Aus $\rightarrow " a \in C "$ folgt via 101-9: $-a \in C$.

2: Aus $\rightarrow " x - a = y "$ folgt: $x + (-a) = y$.

3: Aus 2$" x + (-a) = y "$, aus $\rightarrow " (x \ Zahl) \lor (y \ Zahl) "$ und aus 1$"-a \in C "$ folgt via AVR: $(x \ Zahl) \land (y \ Zahl) \land (x = y - (-a))$.

4.a): Aus 3 folgt: $x \ Zahl$.

4.b): Aus 3 folgt: $y \ Zahl$.

4.1: Aus $\rightarrow " a \in C "$ folgt via $\in SZ$: $a \ Zahl$.

5: Aus 4.1$" a \ Zahl "$ folgt via FS: $-(-a) = a$.

6: Aus 3$" \ldots x = y - (-a) "$ folgt: $x = y + (-(-a))$.

7.c): Aus 6$" x = y + (-(-a)) "$ und aus 5$"-(-a) = a "$ folgt: $x = y + a$. □
102-14. Wie im FS- und den begleitenden Resultaten angedeutet, kommt der Aussage \(x + y = 0 \) in Bezug auf \(x, y \) spezielle Bedeutung zu. Dies wird auch durch das nunmehrige Resultat bestätigt:

102-14(Satz)

Unter der Voraussetzung ...

\[\rightarrow x + y = 0. \]

... sind die Aussagen i), ii) äquivalent:

i) \(x = 0. \)

ii) \(y = 0. \)

RECH-Notation.
Beweis 102-14 \([\text{i)} \Rightarrow \text{ii)}]\) VS gleich

\begin{align*}
1: & \text{ Aus } \rightarrow "x + y = 0" \quad x = 0. \\
& \text{ folgt via FS } \leftarrow : \\
2: & \text{ Aus } 1" y \in \mathbb{C}" \quad y \in \mathbb{C}. \\
& \text{ folgt via } \in_{\text{SZ}}: \\
3: & \text{ Aus } 2" y \text{ Zahl}" \quad y \text{ Zahl.} \\
& \text{ folgt via } \text{FSA0}: \\
4: & \\
5: & \text{ Aus } 4 \quad y = 0. \\

\end{align*}

\[\text{ii) } \Rightarrow \text{i)} \text{ VS gleich} \]

\begin{align*}
1: & \text{ Aus } \rightarrow "x + y = 0" \quad x \in \mathbb{C}. \\
& \text{ folgt via FS } \leftarrow : \\
2: & \text{ Aus } 1" x \in \mathbb{C}" \quad x \text{ Zahl.} \\
& \text{ folgt via } \in_{\text{SZ}}: \\
3: & \text{ Aus } 2" x \text{ Zahl}" \quad x + 0 = x. \\
& \text{ folgt via } \text{FSA0}: \\
4: & \\
5: & \text{ Aus } 4 \quad x = 0. \\
\end{align*}
102-15. Wie im FS— und den begleitenden Resultaten angedeutet, kommt der Aussage \(x + y = 0\) in Bezug auf \(x, y\) spezielle Bedeutung zu. Dies wird auch durch das nunmehrige Resultat bestätigt:

\begin{boxed}{102-15(Satz)}
Unter der Voraussetzung …
\[\rightarrow x + y = 0.\]
… sind die Aussagen i), ii) äquivalent:

i) \(0 \neq x\).

ii) \(0 \neq y\).
\end{boxed}

RECH-Notation.

Beweis 102-15

1: Aus \(\rightarrow \) “\(x + y = 0\)” folgt via 102-14:
\[(x = 0) \iff (y = 0).\]

2: Aus 1 folgt:
\[\neg(x = 0) \iff \neg(y = 0).\]

3: Aus 2 folgt:
\[(0 \neq x) \iff (0 \neq y).\]
\(\square\)
FS−+: FundamentalSatz −+.
+SZ: +Satz Zahlen.
103-1. Nun wird der erste von vier Hilfs-Sätzen auf dem Weg zum Fundamentalsatz \(\rightarrow \) bewiesen:

\[
\text{103-1(Satz)}
\]

\[
\text{Aus } x \in \mathbb{R} \text{ und } y \in \mathbb{R} \text{ folgt } -(x + y) = -x - y.
\]

\text{RECH-Notation}.
Beweis \ref{beweis:VS_gleich} VS gleich

1.1: Aus VS gleich \(x \in \mathbb{R} \ldots\) folgt via \(\in \mathbb{S}Z\):
\(x \in \mathbb{C}\).

1.2: Aus VS gleich \(\ldots y \in \mathbb{R}\) folgt via \(\in \mathbb{S}Z\):
\(y \in \mathbb{C}\).

2.1: Aus 1.1 \("x \in \mathbb{C}\"") folgt via \ref{102-5}:
\(x - x = 0\).

2.2: Aus 1.2 \("y \in \mathbb{C}\"") folgt via \ref{102-5}:
\(y - y = 0\).

3: \((x + y) + (-x - y)\)
\(= (x + y) + ((-x) - y)\)
\(= (x + y) + ((-x) + (-y))\)
\(\overset{\text{FSA}}{=} (y + x) + ((-x) + (-y))\)
\(\overset{\text{FSA}}{=} y + (x + ((-x) + (-y)))\)
\(\overset{\text{FSA}}{=} y + ((x + (-x)) + (-y))\)
\(= y + ((x - x) + (-y))\)
\(\overset{2.1}{=} y + (0 + (-y))\)
\(= y + (0 - y)\)
\(\overset{98-12}{=} y + (-y)\)
\(= y - y\)
\(\overset{2.2}{=} 0\).

4: Aus 3 \"\((x + y) + (-x - y) = \ldots = 0\)" folgt via \textbf{FS-}:
\(-x - y = -(x + y)\).

5: Aus 3 folgt:
\(-(x + y) = -x - y\).
103-2. Hier wird der zweite von vier Hilfs-Sätzen auf dem Weg zum Fundamentalsatz --- etabliert:

103-2(Satz)

*Aus "*x* ∈ *S*" und "*y* ∈ *S*" folgt "*(x + y) = −x − y*".*

RECH-Notation.

Beweis 103-2 VS gleich

1.1: Aus VS gleich "*x* ∈ *S*..." folgt via 95-15:

(x ∈ ℝ) ∨ (x = +∞) ∨ (x = −∞).

1.2: Aus VS gleich "...*y* ∈ *S*" folgt via 95-15:

(y ∈ ℝ) ∨ (y = +∞) ∨ (y = −∞).

2: Aus 1.1 und aus 1.2 folgt:

(x ∈ ℝ) ∧ (y ∈ ℝ)

∧ (x ∈ ℝ) ∧ (y = +∞)

∧ (x ∈ ℝ) ∧ (y = −∞)

∧ (x = +∞) ∧ (y ∈ ℝ)

∧ (x = +∞) ∧ (y = +∞)

∧ (x = +∞) ∧ (y = −∞)

∧ (x = −∞) ∧ (y ∈ ℝ)

∧ (x = −∞) ∧ (y = +∞)

∧ (x = −∞) ∧ (y = −∞).

Fallunterscheidung

2.1.Fall

Aus 2.1.Fall "*x* ∈ ℝ..." und
aus 2.1.Fall "...*y* ∈ ℝ"
folgt via 103-1:

−(x + y) = −x − y.

...
Beweis 103-2 VS gleich \((x \in S) \land (y \in S)\).

...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>2.2 Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.2 Fall folgt: (y = +\infty).</td>
</tr>
<tr>
<td>3.2: Aus 2.2 Fall “(x \in \mathbb{R})” folgt via AAVI: (x + (+\infty) = +\infty).</td>
</tr>
<tr>
<td>3.3: Aus 2.2 Fall “(x \in \mathbb{R})” folgt via 97-3: (-x - (+\infty) = -x - (+\infty)) (\equiv) (-\infty) (\equiv) (-x) (\equiv) (-x - y).</td>
</tr>
</tbody>
</table>

| 4: \((-x + y) \equiv -(-x + (+\infty)) \equiv -(+\infty) \equiv -\infty \equiv -x - (+\infty)\) AAIVI \(\equiv\) \(-x - y\) |

| 6: Aus 5 folgt: \(- (x + y) = -x - y\). |

<table>
<thead>
<tr>
<th>2.3 Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.3 Fall folgt: (y = -\infty).</td>
</tr>
<tr>
<td>3.2: Aus 2.3 Fall “(x \in \mathbb{R})” folgt via AAVI: (x + (-\infty) = -\infty).</td>
</tr>
<tr>
<td>3.3: Aus 2.3 Fall “(x \in \mathbb{R})” folgt via 97-3: (-x - (-\infty) = +\infty).</td>
</tr>
</tbody>
</table>

| 4: \((-x + y) \equiv -(-x + (-\infty)) \equiv -(-\infty) \equiv +\infty \equiv -x - (-\infty)\) AAIVI \(\equiv\) \(-x - y\) |

| 6: Aus 5 folgt: \(- (x + y) = -x - y\). |
Beweis 103-2 VS gleich $(x \in S) \land (y \in S)$.

Fallunterscheidung

2.4.Fall $(x = +\infty) \land (y \in \mathbb{R})$.

3.1: Aus 2.4.Fall folgt: $x = +\infty$.

3.2: Aus 2.4.Fall "... $y \in \mathbb{R}$" folgt via AAVI: $(+\infty) + y = +\infty$.

3.3: Aus 2.4.Fall "... $y \in \mathbb{R}$" folgt via 97-3:

4: $-(x + y) \overset{3.1}{=} -((+\infty) + y) \overset{3.2}{=} -(+\infty) \overset{\text{AAVI}}{=} -\infty \overset{3.3}{=} -(+\infty) - y \overset{3.1}{=} -x - y$.

6: Aus 5 folgt: $-(x + y) = -x - y$.

2.5.Fall $(x = +\infty) \land (y = +\infty)$.

3.1: Aus 2.5.Fall folgt: $x = +\infty$.

3.2: Aus 2.5.Fall folgt: $y = +\infty$.

4: $-(x + y) \overset{3.1}{=} -((+\infty) + y) \overset{3.2}{=} -(+\infty) + (+\infty) \overset{\text{AAVI}}{=} -(+\infty) \overset{\text{AAVI}}{=} -\infty \overset{\text{AAVI}}{=} -x + ((-\infty) + (+\infty)) \overset{3.1}{=} -x + (-\infty) \overset{3.2}{=} -x + (-y) = -x - y$.

5: Aus 4 folgt: $-(x + y) = -x - y$.

...
Beweis 103-2 VS gleich

\((x \in \mathbb{S}) \land (y \in \mathbb{S})\).

...

Fallunterscheidung

...

2.6.Fall

\((x = +\infty) \land (y = -\infty)\).

3.1: Aus 2.6.Fall folgt:
\(x = +\infty\).

3.2: Aus 2.6.Fall folgt:
\(y = -\infty\).

4: \(- (x + y) \overset{3.1}{=} -((+\infty) + y) \overset{3.2}{=} -((+\infty) + (-\infty)) \overset{\text{AAVI}}{=} -\text{nan} \overset{97-4}{=} -(+\infty) - (-\infty) \overset{3.1}{=} -x - (-\infty) \overset{3.2}{=} -x - y.\)

5: Aus 4 folgt:
\(- (x + y) = -x - y.\)

2.7.Fall

\((x = -\infty) \land (y \in \mathbb{R})\).

3.1: Aus 2.7.Fall folgt:
\(x = -\infty\).

3.2: Aus 2.7.Fall "... \(y \in \mathbb{R}\)" folgt via \(\text{AAVI}\):
\((-\infty) + y = -\infty.\)

3.3: Aus 2.7.Fall "... \(y \in \mathbb{R}\)" folgt via 97-3:
\((-\infty) - y = +\infty.\)

4: \(- (x + y) \overset{3.1}{=} -((-\infty) + y) \overset{3.2}{=} -((-\infty) + (-\infty)) \overset{\text{AAVI}}{=} +\infty \overset{3.3}{=} -(-\infty) - y \overset{3.1}{=} -x - y.\)

6: Aus 5 folgt:
\(- (x + y) = -x - y.\)

...
Beweis 103-2 vs gleich $(x \in S) \land (y \in S)$.

...

Fallunterscheidung

...

| Fall | Bedingung | 3.1: Aus 2.8 Fall folgt: | 3.2: Aus 2.8 Fall folgt: | 4:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.Fall</td>
<td>$(x = -\infty) \land (y = +\infty)$</td>
<td>$x = -\infty$</td>
<td>$y = +\infty$</td>
<td>$-(x+y) \overset{\text{AA VI}}{=} -((-\infty) + y) \overset{\text{AA VI}}{=} -(-\infty) + (+\infty) \overset{\text{AA VI}}{=} -\text{nan}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\overset{\text{AA VI}}{=} \text{nan} \overset{\text{AA VI}}{=} -(-\infty) - (+\infty) \overset{\text{AA VI}}{=} -x - (+\infty) \overset{\text{AA VI}}{=} -x - y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-(x+y) = -x - y$</td>
</tr>
</tbody>
</table>

| Fall | Bedingung | 3.1: Aus 2.9 Fall folgt: | 3.2: Aus 2.9 Fall folgt: | 4:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9.Fall</td>
<td>$(x = -\infty) \land (y = -\infty)$</td>
<td>$x = -\infty$</td>
<td>$y = -\infty$</td>
<td>$-(x+y) \overset{\text{AA VI}}{=} -((-\infty) + y) \overset{\text{AA VI}}{=} -(-\infty) + (-\infty) \overset{\text{AA VI}}{=} -(\text{nan})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\overset{\text{AA VI}}{=} +\infty \overset{\text{AA VI}}{=} (+\infty) + (+\infty) \overset{\text{AA VI}}{=} (-\infty) + (-\infty) \overset{\text{AA VI}}{=} (-(-\infty)) + (-(-\infty))$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\overset{\text{AA VI}}{=} (-x) + (-(-\infty)) \overset{\text{AA VI}}{=} (-x) + (-y) = (-x) - y = -x - y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-(x+y) = -x - y$</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In allen Fällen gilt: $-(x+y) = -x - y$.

\[\square\]
103-3. Nun wird der dritte von vier Hilfs-Sätzen auf dem Weg zum Fundamentalsatz \(\rightarrow\) bewiesen:

103-3(Satz)

Aus “\(x \in T\)” und “\(y \in T\)” folgt “\(-(x + y) = -x - y\)”.

RECH-Notation

Beweis 103-3 \(\forall \mathbf{S}\) gleich

\[(x \in T) \land (y \in T).\]

1.1: Aus \(\forall \mathbf{S}\) gleich “\(x \in T\)...”
folgt via 95-16:

\[(x \in S) \lor (x = \text{nan}).\]

1.2: Aus \(\forall \mathbf{S}\) gleich “...\(y \in T\)”
folgt via 95-16:

\[(y \in S) \lor (y = \text{nan}).\]

2: Aus 1.1 und
aus 1.2
folgt:

\[(x \in S) \land (y \in S)
\lor (x \in S) \land (y = \text{nan})
\lor (x = \text{nan}) \land (y \in S)
\lor (x = \text{nan}) \land (y = \text{nan}).\]

Fallunterscheidung

2.1.Fall

Aus 1.2.Fall “\(x \in S\)...” und
aus 1.2.Fall “...\(y \in S\)”
folgt via 103-2:

\[-(x + y) = -x - y.\]

...
Beweis 103-3 VS gleich

\[(x \in \mathbb{T}) \land (y \in \mathbb{T}).\]

...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>2.2. Fall</th>
<th>[(x \in S) \land (y = \text{nan}).]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus VS gleich "(x \in \mathbb{T})..." folgt via AAVI:</td>
<td>[x + \text{nan} = \text{nan}.]</td>
</tr>
<tr>
<td>3.2: Aus VS gleich "(x \in \mathbb{T})..." folgt via 100-14:</td>
<td>[\text{nan} = -x + \text{nan} = x - \text{nan} = -x - y.]</td>
</tr>
<tr>
<td>3.3: Aus 2.2. Fall folgt:</td>
<td>[y = \text{nan}.]</td>
</tr>
<tr>
<td>4: [-(x + y) \equiv -(x + \text{nan}) \equiv -\text{nan} \equiv -x + \text{nan} \equiv -x - y.]</td>
<td></td>
</tr>
<tr>
<td>5: Aus 4 folgt:</td>
<td>[-(x + y) = -x - y.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3. Fall</th>
<th>[(x = \text{nan}) \land (y \in S).]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus VS gleich "...(y \in \mathbb{T})" folgt via AAVI:</td>
<td>[\text{nan} + y = \text{nan}.]</td>
</tr>
<tr>
<td>3.2: Aus VS gleich "...(y \in \mathbb{T})" folgt via 100-14:</td>
<td>[\text{nan} - y = \text{nan}.]</td>
</tr>
<tr>
<td>3.3: Aus 2.3. Fall folgt:</td>
<td>[x = \text{nan}.]</td>
</tr>
<tr>
<td>4: [-(x + y) \equiv -(\text{nan} + y) \equiv -\text{nan} \equiv -x - y \equiv -(x - y).]</td>
<td></td>
</tr>
<tr>
<td>6: Aus 5 folgt:</td>
<td>[-(x + y) = -x - y.]</td>
</tr>
</tbody>
</table>
Beweis 103-3 VS gleich

\((x \in \mathbb{T}) \land (y \in \mathbb{T})\).

...

Fallunterscheidung

...

\[\begin{align*}
2.4.\text{Fall} & \quad (x = \text{nan}) \land (y = \text{nan}). \\
3.1: & \quad \text{Aus } 2.4.\text{Fall folgt:} \quad x = \text{nan}. \\
3.2: & \quad \text{Aus } 2.4.\text{Fall folgt:} \quad y = \text{nan}. \\
4: & \quad -(x + y) \overset{3.1}{=} -(\text{nan} + y) \overset{3.2}{=} -(\text{nan} + \text{nan}) \overset{97-1}{=} -\text{nan} \overset{\text{AAVI}}{=} \text{nan} \\
 & \quad 97 \overset{1}{=} \text{nan} + \text{nan} \overset{\text{AAVI}}{=} (-\text{nan}) + (-\text{nan}) \overset{3.1}{=} (-x) + (-\text{nan}) \\
 & \quad \overset{3.2}{=} (-x) + (-y) = (-x) - y = -x - y. \\
5: & \quad \text{Aus } 4 \text{ folgt:} \quad -(x + y) = -x - y.
\end{align*} \]

Ende Fallunterscheidung

In allen Fällen gilt:

\[-(x + y) = -x - y. \]

\[\square \]
103-4. Hiermit wird der letzte der vier Hilfs-Sätze auf dem Weg zum FundamentalSatz \(\Rightarrow \) bewiesen:

\[
\text{103-4(Satz)}
\]
\[
\text{Aus } \text{"x Zahl" und } \text{"y Zahl" folgt } -(x + y) = -x - y\text{.}
\]

RECH-Notation.

Beweis 103-4 \(\text{VS} \) gleich \((x \text{ Zahl}) \land (y \text{ Zahl}) \).

1.1: Aus \(\text{VS} \) gleich \(\text{"x Zahl..."} \)

folgt via 96-9:

\((\text{Re} x \in \mathbb{T}) \land (\text{Im} x \in \mathbb{T}) \).

1.2: Aus \(\text{VS} \) gleich \(\text{"...y Zahl"} \)

folgt via 96-9:

\((\text{Re} y \in \mathbb{T}) \land (\text{Im} y \in \mathbb{T}) \).

2.1: Aus 1.1 \(\text{"}\text{Re} x \in \mathbb{T} \ldots\" \) und

aus 1.2 \(\text{"}\text{Re} y \in \mathbb{T} \ldots\" \)

folgt via 103-3:

\(-(\text{Re} x + (\text{Re} y)) = -(\text{Re} x) - (\text{Re} y) \).

2.2: Aus 1.1 \(\text{"}\text{Im} x \in \mathbb{T} \ldots\" \) und

aus 1.2 \(\text{"}\text{Im} y \in \mathbb{T} \ldots\" \)

folgt via 103-3:

\(-(\text{Im} x + (\text{Im} y)) = -(\text{Im} x) - (\text{Im} y) \).

...
Beweis 103-4 VS gleich

\((x \text{ Zahl}) \land (y \text{ Zahl}).\)

\[3:\]

\[-(x + y)\]

\[96-27 \quad (-\text{Re}(x + y)) + i \cdot (-\text{Im}(x + y))\]

\[96-25 \quad (-((\text{Re}x) + (\text{Re}y))) + i \cdot (-\text{Im}(x + y))\]

\[96-25 \quad (-((\text{Re}x) + (\text{Re}y))) + i \cdot (-((\text{Im}x) + (\text{Im}y)))\]

\[2.1 \quad ((-\text{Re}x) - (\text{Re}y)) + i \cdot (-((\text{Im}x) + (\text{Im}y)))\]

\[2.2 \quad ((-\text{Re}x) - (\text{Re}y)) + i \cdot (-((\text{Im}x) - (\text{Im}y)))\]

\[2.2 \quad ((-\text{Re}x) - (\text{Re}y)) + i \cdot (-((\text{Im}x) - (\text{Im}y)))\]

\[2.2 \quad ((-\text{Re}x) - (\text{Re}y)) + i \cdot ((-\text{Im}x) - (-\text{Im}y))\]

\[2.2 \quad ((-\text{Re}x) + (-\text{Re}y)) + i \cdot ((-\text{Im}x) + (-\text{Im}y))\]

\[96-27 \quad ((\text{Re}(-x)) + (-\text{Re}y)) + i \cdot ((-\text{Im}x) + (-\text{Im}y))\]

\[96-27 \quad ((\text{Re}(-x)) + (\text{Re}(-y))) + i \cdot ((-\text{Im}x) + (-\text{Im}y))\]

\[96-27 \quad ((\text{Re}(-x)) + (\text{Re}(-y))) + i \cdot ((\text{Im}(-x)) + (-\text{Im}y))\]

\[96-27 \quad ((\text{Re}(-x)) + (\text{Re}(-y))) + i \cdot ((\text{Im}(-x)) + (\text{Im}(-y)))\]

\[96-25 \quad (-x) + (-y)\]

\[= (-x) - y\]

\[= -x - y.\]

\[4:\]

Aus 3 folgt:

\[-(x + y) = -x - y.\]
103-5. Im **FS**---: **FundamentalSatz** --- sind die - vermutlich vertrauten - Regeln zum Umgang mit mns und der Summe - inklusive Vorzeichenwechsel - gesammelt. Interessanter Weise gelten diese Regeln für alle \(x, y \):

<table>
<thead>
<tr>
<th>103-5(Satz) (FS---: FundamentalSatz ---)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) ((-x + y) = -x - y = -y - x.)</td>
</tr>
<tr>
<td>b) ((-x - y) = -x + y = y - x.)</td>
</tr>
<tr>
<td>c) ((-x + y) = x - y = -y + x.)</td>
</tr>
<tr>
<td>d) ((-x - y) = x + y = y + x.)</td>
</tr>
<tr>
<td>e) (x - (-y) = x + y = y + x.)</td>
</tr>
<tr>
<td>f) (-x - (-y) = -x + y = y - x.)</td>
</tr>
<tr>
<td>g) ((-x) + y = x + y = y + x.)</td>
</tr>
<tr>
<td>h) ((-x) - y = x - y = -y + x.)</td>
</tr>
<tr>
<td>i) ((-x) - (-y) = x + y = y + x.)</td>
</tr>
</tbody>
</table>

RECH-Notation.
Beweis 103-5 a)

1.1: Via 95-6 gilt:
\[(x + y \text{ Zahl}) \lor (x + y \notin A).\]

Fallunterscheidung

<table>
<thead>
<tr>
<th>1.1.1. Fall</th>
<th>(x + y \text{ Zahl.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.1.1. Fall “(x + y \text{ Zahl}^)” folgt via 96-13:</td>
<td>((x \text{ Zahl}) \land (y \text{ Zahl}).)</td>
</tr>
<tr>
<td>3: Aus 2 “(x \text{ Zahl}^)” und aus 2 “(y \text{ Zahl}^)” folgt via 103-4:</td>
<td>(-x + y = -x - y.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1.2. Fall</th>
<th>(x + y \notin A.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Aus 1.2. Fall “(x + y \notin A^)” folgt via 96-14:</td>
<td>(x + y = U.)</td>
</tr>
<tr>
<td>2.2: Aus 1.2. Fall “(x + y \notin A^)” folgt via 96-14:</td>
<td>((x \notin A) \lor (y \notin A).)</td>
</tr>
</tbody>
</table>

Fallunterscheidung

<table>
<thead>
<tr>
<th>2.2.1. Fall</th>
<th>(x \notin A.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3: Aus 2.2.1. Fall “(x \notin A^)” folgt via 96-12:</td>
<td>(-x = U.)</td>
</tr>
<tr>
<td>4: (- (x + y) = -U \not= 19 \cdot U \not= 19 \cdot U + (-y) = U - y) (\not= 19 (-x) - y = -x - y.)</td>
<td>(-x + y = -x - y.)</td>
</tr>
<tr>
<td>5: Aus 4 folgt:</td>
<td>(-x + y = -x - y.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2.2. Fall</th>
<th>(y \notin A.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3: Aus 2.2.2. Fall “(y \notin A^)” folgt via 96-12:</td>
<td>(-y = U.)</td>
</tr>
<tr>
<td>4: (- (x + y) = -U \not= 19 \cdot U \not= 19 \cdot (x) + U = -x + U) (\not= 19 (-x) + (-y) = -x - y.)</td>
<td>(-x + y = -x - y.)</td>
</tr>
<tr>
<td>5: Aus 4 folgt:</td>
<td>(-x + y = -x - y.)</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In beiden Fällen gilt:
\[-(x + y) = -x - y.\]
Beweis 103-5 a)

...

Fallunterscheidung

...

Ende Fallunterscheidung In beiden Fällen gilt:

\[A_1 \mid -(x + y) = -x - y \]

1.2: \(-x - y = (-x) - y = (-x) + (-y) \overset{\text{FSA}}{=} (-y) + (-x) = (-y) - x = -y - x.\)

2: Aus A1 gleich \(-(x + y) = -x - y\) und

aus 1.2 \(-x - y = ... = -y - x\)

folgt: \(-(x + y) = -x - y = -y - x.\)

b)

1.1: Via 95-6 gilt:

\((y \text{ Zahl}) \lor (y \notin A)\).

Fallunterscheidung

1.1.1.**Fall**

\[y \text{ Zahl}.\]

2.1: Aus 1.1.1.**Fall** \(y \text{ Zahl}\)

follt via \text{FS} \(\land\):

\(-(-y) = y.\)

2.2: Via des bereits bewiesenen a) gilt:

\(-(x + (-y)) = -x - (-y).\)

3: \(-(x - y) = -(x + (-y)) \overset{2}{=} -x - (-y) = -x + (-(-y)) \overset{1}{=} -x + y.\)

4: Aus 3

folgt:

\(-(x - y) = -x + y.\)

1.1.2.**Fall**

\[y \notin A.\]

2.1: Aus 1.1.2.**Fall** \(y \notin A\)

folgt via 96-12:

\(-y = U.\)

2.2: Aus 1.1.2.**Fall** \(y \notin A\)

folgt via 96-14:

\((x + y) = U.\)

3: \(-(x - y) = -(x + (-y)) \overset{2}{=} -(x + U) \overset{19}{=} -U \overset{19}{=} U \overset{2}{=} (-x) + y = -x + y.\)

4: Aus 3

folgt:

\(-(x - y) = -x + y.\)

Ende Fallunterscheidung In beiden Fällen gilt:

\[A_1 \mid -(x - y) = -x + y \]
Beweis 103-5 b)

...

1.2: Via 98-8 gilt: \(y - x = -x + y \).

2: aus A1 gleich "\(- (x - y) = -x + y\)" und aus 1.2"\(y - x = -x + y\)"
folgt: \((- (x - y) = -x + y = y - x.)

c)

1: \(- (x + y) = -((-x) + y) \)

2: aus A1 gleich "\(- (x + y) = ... = x - y\)" und aus 2"\(x - y = -y + x\)"
folgt: \(- (x + y) = x - y = -y + x.

d)

1: \(- (x - y) = -((-x) + y) \)

2: Via FSA gilt: \(x + y = y + x\).

3: Aus 1"\(- (x - y) = ... = x + y\)" und aus 2"\(x + y = y + x\)"
folgt: \(- (x - y) = x + y = y + x.

e)

1: \(x - (-y) \)

2: Via FSA gilt: \(x + y = y + x\).

3: Aus 1"\(x - (-y) = ... = x + y\)" und aus 2"\(x + y = y + x\)"
folgt: \(x - (-y) = x + y = y + x.

f)

1: \(-x - (-y) \)

2: Via 98-8 gilt: \(y - x = -x + y\).

3: Aus 1"\(-x - (-y) = ... = -x + y\)" und aus 2"\(y - x = -x + y\)"
folgt: \(-x - (-y) = -x + y = y - x.

Beweis 103-5 g)

1: \(-x + y = \text{FSA } y + (-x) = y - (-x) = y + x = x + y.\)

2: Via \text{FSA} gilt:
\[x + y = y + x.\]

3: Aus 1 “\(-x + y = \ldots = x + y\)” und
aus 2 “\(x + y = y + x\)”
folgt:
\[-(-x) + y = x + y = y + x.\]

h)

1:
\[\begin{aligned} (-x) - y &= (-x) + (-y) \text{g) } x + (-y) = x - y. \\
\end{aligned}\]

2: Via \text{98-8} gilt:
\[x - y = -y + x.\]

3: Aus 1 “\(-x - y = \ldots = x - y\)” und
aus 2 “\(x - y = -y + x\)”
folgt:
\[-(-x) - y = x - y = -y + x.\]

i)

1:
\[\begin{aligned} (-x) - (-y) &= \text{h) } x - (-y) = x + y. \\
\end{aligned}\]

2: Via \text{FSA} gilt:
\[x + y = y + x.\]

3: Aus 1 “\(-x - (-y) = \ldots = x + y\)” und
aus 2 “\(x + y = y + x\)”
folgt:
\[-(-x) - (-y) = x + y = y + x.\]

\[\square\]
103-6. Hier werden “vierstellige” Folgerungen aus FSA und aus FS−+ gezogen:

103-6(Satz)

a) \((x + y) + (z + w) = (x + z) + (y + w)\).

b) \((x + y) + (z + w) = (x + w) + (y + z)\).

c) \((x + y) + (z - w) = (x + z) + (y - w)\).

d) \((x + y) + (z - w) = (x - w) + (y + z)\).

e) \((x + y) - (z + w) = (x - z) + (y - w)\).

f) \((x + y) - (z + w) = (x - w) + (y - z)\).

g) \((x - y) + (z + w) = (x + z) - (y - w)\).

h) \((x - y) + (z + w) = (x + w) - (y - z)\).

i) \((x + y) - (z - w) = (x - z) + (y + w)\).

j) \((x + y) - (z - w) = (x + w) + (y - z)\).

k) \((x - y) + (z - w) = (x + z) - (y + w)\).

l) \((x - y) + (z - w) = (x - w) - (y - z)\).

m) \((x - y) - (z + w) = (x - z) - (y + w)\).

n) \((x - y) - (z + w) = (x - w) - (y + z)\).

o) \((x - y) - (z - w) = (x - z) - (y - w)\).

p) \((x - y) - (z - w) = (x + w) - (y + z)\).

RECH-Notation.
Beweis 103-6 a)

1: \((x + y) + (z + w)\) \(\overset{\text{FSA}}{=} x + (y + (z + w))\) \(\overset{\text{FSA}}{=} x + ((y + z) + w)\)
\(\overset{\text{FSA}}{=} x + ((z + y) + w)\) \(\overset{\text{FSA}}{=} x + ((y + z) + w)\) \(\overset{\text{FSA}}{=} (x + z) + (y + w)\).

2: Aus 1 folgt:
\((x + y) + (z + w) = (x + z) + (y + w)\).

b)

1: \((x + y) + (z + w)\) \(\overset{\text{FSA}}{=} (x + y) + (w + z)\) \(\overset{\text{a)}}{=} (x + w) + (y + z)\).

2: Aus 1 folgt:
\((x + y) + (z + w) = (x + w) + (y + z)\).

c)

1: \((x+y)+(z−w) = (x+y)+(z+(−w))\) \(\overset{\text{a)}}{=} (x+z)+(y+(−w)) = (x+z)+(y−w)\).

2: Aus 1 folgt:
\((x + y) + (z - w) = (x + z) + (y - w)\).

d)

1: \((x+y)+(z−w) = (x+y)+(z+(−w))\) \(\overset{\text{b)}}{=} (x+(−w))+(y+z) = (x−w)+(y+z)\).

2: Aus 1 folgt:
\((x + y) + (z - w) = (x - w) + (y + z)\).

e)

1: \((x + y) - (z + w) = (x + y) + (−(z + w))\) \(\overset{\text{FSA}−}{=} (x + y) + (−z − w)\)
\(= (x + y) + ((−z) − w) = (x + y) + ((−z) + (−w))\)
\(\overset{\text{a)}}{=} (x + (−z)) + (y + (−w)) = (x − z) + (y + (−w)) = (x − z) + (y − w)\).

2: Aus 1 folgt:
\((x + y) - (z + w) = (x - z) + (y - w)\).

f)

1: \((x + y) - (z + w) = (x + y) + (−(z + w))\) \(\overset{\text{FSA}−}{=} (x + y) + (−z − w)\)
\(= (x + y) + ((−z) − w) = (x + y) + ((−z) + (−w))\)
\(\overset{\text{b)}{=}} (x + (−w)) + (y + (−z)) = (x − w) + (y + (−z)) = (x − w) + (y − z)\).

2: Aus 1 folgt:
\((x + y) - (z + w) = (x - w) + (y - z)\).
Beweis 103-6 g)

1: $(x - y) + (z + w) = (x + (-y)) + (z + w) \overset{a)}{=} (x + z) + ((-y) + w) \\
 = (x + z) + (-y + w) \overset{FS}{=} (x + z) + (-y - w) = (x + z) - (y - w).$

2: Aus 1 folgt:
$(x - y) + (z + w) = (x + z) - (y - w).$

h)

1: $(x - y) + (z + w) = (x + (-y)) + (z + w) \overset{b)}{=} (x + w) + ((-y) + z) \\
 = (x + w) + (-y + z) \overset{FS}{=} (x + w) + (-y - z) = (x + w) - (y - z).$

2: Aus 1 folgt:
$(x - y) + (z + w) = (x + w) - (y - z).$

i)

1: $(x + y) - (z - w) = (x + y) - (z + (-w)) \overset{e)}{=} (x - z) + (y - (-w)) \\
 \quad \ quad
Beweis 103-6 1)

1: \((x - y) + (z - w) = (x + (-y)) + (z - w) = (x + (-y)) + (z + (-w))\)
\[\begin{align*}
&\overset{b)}{(x + (-w)) + ((-y) + z) = (x - w) + ((-y) + z) = (x - w) + (-y + z) \\
&\text{FS}^{-+} (x - w) + (-y - z)) = (x - w) - (y - z).
\end{align*}\]

2: Aus 1 folgt: \((x - y) + (z - w) = (x - w) - (y - z)\).

m)

1: \((x - y) - (z + w) = (x + (-y)) - (z + w)\) e) \(\overset{e)}{(x - z) + ((-y) - w))\)
\[\begin{align*}
&= (x - z) + ((-y) - w) \overset{FS}{{=}+} (x - z) + ((-y) - w) = (x - z) - (y + w).
\end{align*}\]

2: Aus 1 folgt: \((x - y) - (z + w) = (x - z) - (y + w)\).

n)

1: \((x - y) - (z + w) = (x + (-y)) - (z + w)\) f) \(\overset{f)}{(x - w) + ((-y) - z))\)
\[\begin{align*}
&= (x - w) + ((-y) - z) \overset{FS}{{=}+} (x - w) + ((-y) - z) = (x - w) - (y + z).
\end{align*}\]

2: Aus 1 folgt: \((x - y) - (z + w) = (x - w) - (y + z)\).

o)

1: \((x - y) - (z - w) = (x + (-y)) - (z - w)\) e) \(\overset{e)}{(x - z) + ((-y) - (-w))\)
\[\begin{align*}
&= (x - z) + ((-y) - (-w)) \overset{FS}{{=}+} (x - z) + ((-y) - (-w)) = (x - z) - (y - w).
\end{align*}\]

2: Aus 1 folgt: \((x - y) - (z - w) = (x - z) - (y - w)\).

p)

1: \((x - y) - (z - w) = (x + (-y)) - (z - w)\) f) \(\overset{f)}{(x - (-w)) + ((-y) - z)\)
\[\begin{align*}
&= (x - (-w)) + ((-y) - z) \overset{FS}{{=}+} (x + w) + ((-y) - z) = (x + w) - (y + z).
\end{align*}\]

2: Aus 1 folgt: \((x - y) - (z - w) = (x + w) - (y + z)\).
103-7. Im +Satz Zahlen wird angegeben, in welcher der Mengen \(R, S, T, C, B, A \) die Summe \(x + y \) liegt, wenn \(x \) in \(R, S, T, C, B, A \) und \(y \) in \(R, S, T, C, B, A \) ist. Die Beweis-Reihenfolge ist a) - b) - c) - g) - l) - p) - q) - d) - e) - f) - h) - i) - j) - k) - m) - n) - o) - r) - s) - t) - u):

103-7(Satz) (+SZ: +Satz Zahlen)

a) Aus "\(x \in R \) und \(y \in R \)" folgt "\(x + y \in R \)."
b) Aus "\(x \in R \) und \(y \in S \)" folgt "\(x + y \in S \)."
c) Aus "\(x \in R \) und \(y \in T \)" folgt "\(x + y \in T \)."
d) Aus "\(x \in R \) und \(y \in C \)" folgt "\(x + y \in C \)."
e) Aus "\(x \in R \) und \(y \in B \)" folgt "\(x + y \in B \)."
f) Aus "\(x \in R \) und \(y \) Zahl" folgt "\(x + y \) Zahl".
g) Aus "\(x \in S \) und \(y \in S \)" folgt "\(x + y \in T \)."
h) Aus "\(x \in S \) und \(y \in T \)" folgt "\(x + y \in T \)."
i) Aus "\(x \in S \) und \(y \in C \)" folgt "\(x + y \in B \)."
j) Aus "\(x \in S \) und \(y \in B \)" folgt "\(x + y \) Zahl".
k) Aus "\(x \in S \) und \(y \) Zahl" folgt "\(x + y \) Zahl".
l) Aus "\(x \in T \) und \(y \in T \)" folgt "\(x + y \in T \)."
m) Aus "\(x \in T \) und \(y \in C \)" folgt "\(x + y \) Zahl".
n) Aus "\(x \in T \) und \(y \in B \)" folgt "\(x + y \) Zahl".
o) Aus "\(x \in T \) und \(y \) Zahl" folgt "\(x + y \) Zahl".

...
103-7(Satz) (+SZ: +Satz Zahlen) …

p) Aus “x ∈ C” und “y ∈ C” folgt “x + y ∈ C”.

q) Aus “x ∈ C” und “y ∈ B” folgt “x + y ∈ B”.

r) Aus “x ∈ C” und “y Zahl” folgt “x + y Zahl”.

s) Aus “x ∈ B” und “y ∈ B” folgt “x + y Zahl”.

t) Aus “x ∈ B” und “y Zahl” folgt “x + y Zahl”.

u) Aus “x Zahl” und “y Zahl” folgt “x + y Zahl”.

———

RECH-Notation.

Beweis 103-7 a) VS gleich

Aus VS gleich “x ∈ R…” und aus VS gleich “…y ∈ R” folgt via AAV:

(x ∈ R) ∧ (y ∈ R).

x + y ∈ R.
Beweis 103-7 b) VS gleich

1: Aus VS gleich "... y ∈ S" folgt via 95-15:

\((x ∈ \mathbb{R}) ∧ (y ∈ \mathbb{S})\). \((y ∈ \mathbb{R}) \lor (y = +∞) \lor (y = −∞)\).

Fallunterscheidung

<table>
<thead>
<tr>
<th>Fall</th>
<th>(y \in \mathbb{R})</th>
<th>(y = +∞)</th>
<th>(y = −∞)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Fall</td>
<td>(x + y \in \mathbb{R})</td>
<td>(x + (+∞) = +∞)</td>
<td>(x + y = +∞)</td>
</tr>
<tr>
<td>1.2. Fall</td>
<td>(x + (−∞) = −∞)</td>
<td>(x + (+∞) = +∞)</td>
<td>(x + (−∞) = −∞)</td>
</tr>
<tr>
<td>1.3. Fall</td>
<td>(x + y \in \mathbb{S})</td>
<td>(x + y \in \mathbb{S})</td>
<td>(x + y \in \mathbb{S})</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung

In allen Fällen gilt: \(x + y \in \mathbb{S}\).
Beweis 103-7 c) VS gleich

1: Aus VS gleich “...y ∈ T”
folgt via 95-16:

\[(x ∈ \mathbb{R}) \land (y ∈ \mathbb{T})\].

\[(y ∈ \mathbb{S}) ∨ (y = \text{nan})\].

Fallunterscheidung

1.1.Fall
\[y ∈ \mathbb{S}\].

2: Aus VS gleich “x ∈ \mathbb{R}...” und
aus 1.1.Fall “y ∈ \mathbb{S}”
folgt via des bereits bewiesenen b):
\[x + y ∈ \mathbb{S}\].

3: Aus 2“x + y ∈ \mathbb{S}”
folgt via ∈ SZ:
\[x + y ∈ \mathbb{T}\].

1.2.Fall
\[y = \text{nan}\].

2: Aus VS gleich “x ∈ \mathbb{R}...”
folgt via ∈ SZ:
\[x ∈ \mathbb{T}\].

3: Aus 2“x ∈ \mathbb{T}”
folgt via AAVI:
\[x + \text{nan} = \text{nan}\].

4: Aus 3“x + \text{nan} = \text{nan}”
folgt via 95-16:
\[x + \text{nan} ∈ \mathbb{T}\].

5: Aus 4“x + \text{nan} ∈ \mathbb{T}” und
aus 1.2.Fall “y = \text{nan}”
folgt:
\[x + y ∈ \mathbb{T}\].

Ende Fallunterscheidung
In beiden Fällen gilt:
\[x + y ∈ \mathbb{T}\].
Beweis 103-7 g) VS gleich

1.1: Aus VS gleich “$x \in S$...” folgt via 95-15:

\[(x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty).\]

1.2: Aus VS gleich “...$y \in S$” folgt via 95-15:

\[(y \in \mathbb{R}) \lor (y = +\infty) \lor (y = -\infty).\]

2: Aus 1.1 und aus 1.2 folgt:

\[\begin{align*}
(x \in \mathbb{R}) & \land (y \in \mathbb{R}) \\
\lor (x \in \mathbb{R}) & \land (y = +\infty) \\
\lor (x \in \mathbb{R}) & \land (y = -\infty) \\
\lor (x = +\infty) & \land (y \in \mathbb{R}) \\
\lor (x = +\infty) & \land (y = +\infty) \\
\lor (x = +\infty) & \land (y = -\infty) \\
\lor (x = -\infty) & \land (y \in \mathbb{R}) \\
\lor (x = -\infty) & \land (y = +\infty) \\
\lor (x = -\infty) & \land (y = -\infty).
\end{align*}\]

Fallunterscheidung

2.1.Fall \[(x \in \mathbb{R}) \land (y \in \mathbb{R}).\]

3: Aus 2.1.Fall “$x \in \mathbb{R}$...” und aus 2.1.Fall “...$y \in \mathbb{R}$” folgt via AAV:

\[x + y \in \mathbb{R}.\]

4: Aus 3 “$x + y \in \mathbb{R}$” folgt via $\in SZ$:

\[x + y \in T.\]

2.2.Fall \[(x \in \mathbb{R}) \land (y = +\infty).\]

3: Aus 2.2.Fall “$x \in \mathbb{R}$...” folgt via AAV:

\[x + (+\infty) = +\infty.\]

4: Aus 3 “$x + (+\infty) = +\infty$” folgt via 95-16:

\[x + (+\infty) \in T.\]

5: Aus 4 “$x + (+\infty) \in T$” und aus 2.2.Fall “...$y = +\infty$” folgt:

\[x + y \in T.\]

...
Beweis 103-7 g) VS gleich

\((x \in S) \land (y \in S) \).

Fallunterscheidung

\[\text{2.3.Fall} \quad (x \in \mathbb{R}) \land (y = -\infty). \]

3: Aus 2.3.Fall“\(x \in \mathbb{R} \)...”

folgt via AAVI:

\[x + (-\infty) = -\infty. \]

4: Aus 3“\(x + (-\infty) = -\infty \)”

folgt via 95-16:

\[x + (-\infty) \in T. \]

5: Aus 4“\(x + (-\infty) \in T \)” und

aus 2.3.Fall“\(... y = -\infty \)”

folgt:

\[x + y \in T. \]

\[\text{2.4.Fall} \quad (x = +\infty) \land (y \in \mathbb{R}). \]

3: Aus 2.4.Fall“\(... y \in \mathbb{R} \)”

folgt via AAVI:

\[(+\infty) + y = +\infty. \]

4: Aus 3“\((+\infty) + y = +\infty \)”

folgt via 95-16:

\[(+\infty) + y \in T. \]

5: Aus 4“\((+\infty) + y \in T \)” und

aus 2.4.Fall“\(x = +\infty \)...”

folgt:

\[x + y \in T. \]

\[\text{2.5.Fall} \quad (x = +\infty) \land (y = +\infty). \]

3.1: Aus 2.5.Fall

folgt:

\[x = +\infty. \]

3.2: Aus 2.5.Fall

folgt:

\[y = +\infty. \]

4:

\[x + y \overset{3.1}{=} (+\infty) + y \overset{3.2}{=} (+\infty) + (+\infty) \overset{\text{AAVI}}{=} +\infty. \]

3: Aus 2“\(x + y = ... = +\infty \)”

folgt via 95-16:

\[x + y \in T. \]
Beweis 103-7 g) VS gleich

\((x \in S) \land (y \in S) \).

Fallunterscheidung

2.6. Fall \((x = +\infty) \land (y = -\infty) \).

3.1: Aus 2.6. Fall folgt: \(x = +\infty \).

3.2: Aus 2.6. Fall folgt: \(y = -\infty \).

4: \(x + y \equiv (+\infty) + y \equiv (+\infty) + (-\infty) \overset{\text{AAVI}}{=} \text{nan} \).

5: Aus 4" \(x + y = \ldots = \text{nan} \" folgt via 95-16: \(x + y \in T \).

2.7. Fall \((x = -\infty) \land (y \in R) \).

3: Aus 2.7. Fall"\ldots y \in R" folgt via AAVI: \((-\infty) + y = -\infty \).

4: Aus 3" \((-\infty) + y = -\infty \" folgt via 95-16: \((-\infty) + y \in T \).

5: Aus 4" \((-\infty) + y \in T \" und aus 2.7. Fall" \(x = -\infty \ldots \"

folgt: \(x + y \in T \).

2.8. Fall \((x = -\infty) \land (y = +\infty) \).

3.1: Aus 2.8. Fall folgt: \(x = -\infty \).

3.2: Aus 2.8. Fall folgt: \(y = +\infty \).

4: \(x + y \equiv (-\infty) + y \equiv (-\infty) + (+\infty) \overset{\text{AAVI}}{=} \text{nan} \).

5: Aus 4" \(x + y = \ldots = \text{nan} \" folgt via 95-16: \(x + y \in T \).
Beweis 103-7 g) VS gleich \((x \in S) \land (y \in S)\).

...

Fallunterscheidung

...

2.9.Fall \((x = -\infty) \land (y = -\infty)\).

3.1: Aus 2.9.Fall folgt: \(x = -\infty\).

3.2: Aus 2.9.Fall folgt: \(y = -\infty\).

4: \(x + y^3 = (-\infty) + y^3 = (-\infty) + (-\infty) \stackrel{AA VI}{=} -\infty\).

5: Aus 4“\(x + y = \ldots = -\infty\)” folgt via 95-16: \(x + y \in T\).

Ende Fallunterscheidung In allen Fällen gilt: \(x + y \in T\).

1) VS gleich \((x \in T) \land (y \in T)\).

1.1: Aus VS gleich “\(x \in T\)” folgt via 95-16: \((x \in S) \lor (x = \text{nan})\).

1.2: Aus VS gleich “\(\ldots y \in T\)” folgt via 95-16: \((y \in S) \lor (y = \text{nan})\).

2: Aus 1.1 und aus 1.2 folgt:

\[
(x \in S) \land (y \in S) \\
\lor (x \in S) \land (y = \text{nan}) \\
\lor (x = \text{nan}) \land (y \in S) \\
\lor (x = \text{nan}) \land (y = \text{nan}).
\]

Fallunterscheidung

2.1.Fall \((x \in S) \land (y \in S)\).

Aus 2.1.Fall “\(x \in S\)” und aus 2.1.Fall “\(\ldots y \in S\)” folgt via des bereits bewiesenen g): \(x + y \in T\).

...
Beweis 103-7 1) VS gleich \((x \in \mathbb{T}) \land (y \in \mathbb{T})\).

... Fallunterscheidung ...

2.2. Fall \((x \in S) \land (y = \text{nan})\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3:</td>
<td>Aus VS gleich “(x \in T)” folgt via AAVI: (x + \text{nan} = \text{nan}).</td>
</tr>
<tr>
<td>4:</td>
<td>Aus 3”(x + \text{nan} = \text{nan})” folgt via 95-16: (x + \text{nan} \in T).</td>
</tr>
<tr>
<td>5:</td>
<td>Aus 4“(x + \text{nan} \in T)” und aus 2.2.Fall”...(y = \text{nan})” folgt: (x + y \in T).</td>
</tr>
</tbody>
</table>

2.3. Fall \((x = \text{nan}) \land (y \in S)\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3:</td>
<td>Aus VS gleich “...(y \in T)” folgt via AAVI: (\text{nan} + y = \text{nan}).</td>
</tr>
<tr>
<td>4:</td>
<td>Aus 3”(\text{nan} + y = \text{nan})” folgt via 95-16: (\text{nan} + y \in T).</td>
</tr>
<tr>
<td>5:</td>
<td>Aus 4“(\text{nan} + y \in T)” und aus 2.3.Fall”(x = \text{nan})” folgt: (x + y \in T).</td>
</tr>
</tbody>
</table>

2.4. Fall \((x = \text{nan}) \land (y = \text{nan})\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1:</td>
<td>Aus 2.4.Fall folgt: (x = \text{nan}).</td>
</tr>
<tr>
<td>3.2:</td>
<td>Aus 2.4.Fall folgt: (y = \text{nan}).</td>
</tr>
<tr>
<td>4:</td>
<td>(x + y \equiv \text{nan} \lor y \equiv \text{nan} \Rightarrow x + y \in \mathbb{T}).</td>
</tr>
<tr>
<td>5:</td>
<td>Aus 4“(x + y = \ldots = \text{nan})” folgt via 95-16: (x + y \in T).</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In allen Fällen gilt: \(x + y \in T\).
Beweis 103-7 p) VS gleich

Aus VS gleich “\(x \in \mathbb{C}\ldots\)” und
aus VS gleich “\(\ldots y \in \mathbb{C}\)”
folgt via 102-3:

\[x + y \in \mathbb{C}.\]

q) VS gleich

\[(x \in \mathbb{C}) \land (y \in \mathbb{B}).\]

1.1: Aus VS gleich “\(x \in \mathbb{C}\ldots\)”
folgt via 101-1:

\[(\text{Re} x \in \mathbb{R}) \land (\text{Im} x \in \mathbb{R}).\]

1.2: Aus VS gleich “\(\ldots y \in \mathbb{B}\)”
folgt via 101-4:

\[(\text{Re} y \in \mathbb{S}) \land (\text{Im} y \in \mathbb{S}).\]

2.1: Aus 1.1“\(\text{Re} x \in \mathbb{R}\ldots\)” und
aus 1.2“\(\text{Re} y \in \mathbb{S}\ldots\)”
folgt via des bereits bewiesenen b):

\[(\text{Re} x) + (\text{Re} y) \in \mathbb{S}.\]

2.2: Aus 1.1“\(\ldots \text{Im} x \in \mathbb{R}\)” und
aus 1.2“\(\ldots \text{Im} y \in \mathbb{S}\)”
folgt via des bereits bewiesenen b):

\[(\text{Im} x) + (\text{Im} y) \in \mathbb{S}.\]

3.1: Via 96-25 gilt:

\[\text{Re}(x + y) = (\text{Re} x) + (\text{Re} y).\]

3.2: Via 96-25 gilt:

\[\text{Im}(x + y) = (\text{Im} x) + (\text{Im} y).\]

4.1: Aus 3.1“\(\text{Re}(x + y) = (\text{Re} x) + (\text{Re} y)\)” und
aus 2.1“\((\text{Re} x) + (\text{Re} y) \in \mathbb{S}\)”
folgt:

\[\text{Re}(x + y) \in \mathbb{S}.\]

4.2: Aus 3.2“\(\text{Im}(x + y) = (\text{Im} x) + (\text{Im} y)\)” und
aus 2.2“\((\text{Im} x) + (\text{Im} y) \in \mathbb{S}\)”
folgt:

\[\text{Im}(x + y) \in \mathbb{S}.\]

5: Aus 4.1“\(\text{Re}(x + y) \in \mathbb{S}\)” und
aus 4.2“\(\text{Im}(x + y) \in \mathbb{S}\)”
folgt via 101-3:

\[x + y \in \mathbb{B}.\]

d) VS gleich

\[(x \in \mathbb{R}) \land (y \in \mathbb{C}).\]

1: Aus VS gleich “\(x \in \mathbb{R}\ldots\)”
folgt via \(\in\mathbb{SZ}\):

\[x \in \mathbb{C}.\]

2: Aus 1“\(x \in \mathbb{C}\)” und
aus VS gleich “\(\ldots y \in \mathbb{C}\)”
folgt via des bereits bewiesenen p):

\[x + y \in \mathbb{C}.\]
Beweis 103-7 e) VS gleich

1: Aus VS gleich “$x \in \mathbb{R}$. . .”
 folgt via $\in \mathbb{SZ}$: $x \in \mathbb{C}$.

2: Aus 1“$x \in \mathbb{C}$” und
 aus VS gleich “. . . $y \in \mathbb{B}$”
 folgt via des bereits bewiesenen q):
 $x + y \in \mathbb{B}$.

f) VS gleich

1: Aus VS gleich “$x \in \mathbb{R}$. . .”
 folgt via $\in \mathbb{SZ}$: x Zahl.

2: Aus 1“x Zahl” und
 aus VS gleich “. . . y Zahl”
 folgt via 96-13:
 $x + y$ Zahl.

h) VS gleich

1: Aus VS gleich “$x \in \mathbb{S}$. . .”
 folgt via $\in \mathbb{SZ}$: $x \in \mathbb{T}$.

2: Aus 1“$x \in \mathbb{T}$” und
 aus VS gleich “. . . $y \in \mathbb{T}$”
 folgt via des bereits bewiesenen 1):
 $x + y \in \mathbb{T}$.

i) VS gleich

1: Aus VS gleich “$x \in \mathbb{S}$. . .”
 folgt via $\in \mathbb{SZ}$: $x \in \mathbb{B}$.

2: Aus VS gleich “. . . $y \in \mathbb{C}$” und
 aus 1“$x \in \mathbb{B}$”
 folgt via des bereits bewiesenen q):
 $y + x \in \mathbb{B}$.

3: Via FSA gilt:
 $x + y = y + x$.

4: Aus 3“$x + y = y + x$” und
 aus 2“$y + x \in \mathbb{B}$”
 folgt:
 $x + y \in \mathbb{B}$.
Beweis 103-7 j) VS gleich

1.1: Aus VS gleich “$x \in S\ldots$”
 folgt via \in_{SZ}: x Zahl.

1.2: Aus VS gleich “… $y \in B$”
 folgt via \in_{SZ}: y Zahl.

2: Aus 1.1“x Zahl” und
 aus 1.2“y Zahl”
 folgt via 96-13:
 $x + y$ Zahl.

k) VS gleich

1: Aus VS gleich “$x \in S\ldots$”
 folgt via \in_{SZ}: x Zahl.

2: Aus 1“x Zahl” und
 aus VS gleich “… y Zahl”
 folgt via 96-13:
 $x + y$ Zahl.

m) VS gleich

1.1: Aus VS gleich “$x \in T\ldots$”
 folgt via \in_{SZ}: x Zahl.

1.2: Aus VS gleich “… $y \in C$”
 folgt via \in_{SZ}: y Zahl.

2: Aus 1.1“x Zahl” und
 aus 1.2“y Zahl”
 folgt via 96-13:
 $x + y$ Zahl.

n) VS gleich

1.1: Aus VS gleich “$x \in T\ldots$”
 folgt via \in_{SZ}: x Zahl.

1.2: Aus VS gleich “… $y \in B$”
 folgt via \in_{SZ}: y Zahl.

2: Aus 1.1“x Zahl” und
 aus 1.2“y Zahl”
 folgt via 96-13:
 $x + y$ Zahl.
Beweis 103-7 o) VS gleich

1: Aus VS gleich "\(x \in \mathbb{T}\ldots\)"
 folgt via \(\in\) \(\mathbb{SZ}\):
 \(x\) Zahl.

2: Aus 1"\(x\) Zahl" und
 aus VS gleich "\(\ldots\ y\) Zahl"
 folgt via 96-13:
 \(x + y\) Zahl.

r) VS gleich

1: Aus VS gleich "\(x \in \mathbb{C}\ldots\)"
 folgt via \(\in\) \(\mathbb{SZ}\):
 \(x\) Zahl.

2: Aus 1"\(x\) Zahl" und
 aus VS gleich "\(\ldots\ y\) Zahl"
 folgt via 96-13:
 \(x + y\) Zahl.

s) VS gleich

1.1: Aus VS gleich "\(x \in \mathbb{B}\ldots\)"
 folgt via \(\in\) \(\mathbb{SZ}\):
 \(x\) Zahl.

1.2: Aus VS gleich "\(\ldots\ y \in \mathbb{B}\)"
 folgt via \(\in\) \(\mathbb{SZ}\):
 \(y\) Zahl.

2: Aus 1.1"\(x\) Zahl" und
 aus 1.2"\(y\) Zahl"
 folgt via 96-13:
 \(x + y\) Zahl.

t) VS gleich

1: Aus VS gleich "\(x \in \mathbb{B}\ldots\)"
 folgt via \(\in\) \(\mathbb{SZ}\):
 \(x\) Zahl.

2: Aus 1"\(x\) Zahl" und
 aus VS gleich "\(\ldots\ y\) Zahl"
 folgt via 96-13:
 \(x + y\) Zahl.

u) VS gleich

Aus VS gleich "\(x\) Zahl\ldots\)" und
aus VS gleich "\(\ldots\ y\) Zahl"
folgt via 96-13:
\(x + y\) Zahl.
104-1. \(T \setminus \mathbb{R} \) besteht genau aus den Zahlen nan, \(+\infty\), \(-\infty\):

\[\begin{align*}
104-1(\text{Satz}) \quad & \\
Die \text{ Aussagen i}, \text{ ii)} \text{ sind äquivalent:} \\
i) & \; x \in T \setminus \mathbb{R}. \\
ii) & \; "x = \text{nan}" \text{ oder } "x = +\infty" \text{ oder } "x = -\infty".
\end{align*}\]

Beweis 104-1 \(\begin{align*}
(1) \Rightarrow \text{ii)]} \quad & \\
VS \text{ gleich} \quad & x \in T \setminus \mathbb{R}. \\
\end{align*}\]

1: Aus VS gleich "\(x \in T \setminus \mathbb{R} \)" folgt via 5-3: \((x \in T) \land (x \notin \mathbb{R}) \).

2: Aus 1 "\(x \in T \ldots \)" folgt via 95-16: \((x \in \mathbb{R}) \lor (x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty) \).

3: Aus 2 "\((x \in \mathbb{R}) \lor (x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty) \)" und aus 1 "\(\ldots x \notin \mathbb{R} \)" folgt: \((x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty) \).
Beweis 104-1 (ii) ⇒ i) VS gleich \((x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty) \).

1: Nach VS gilt:
\((x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty) \).

Fallunterscheidung

1.1. Fall
\[
\begin{align*}
2: & \text{ Aus 95-12 } \text{"nan } \in \mathbb{T}\text{" und }\
& \text{ aus } \mathbf{AAI} \text{"nan } \notin \mathbb{R}\text{"} \\
& \text{ folgt via 5-3: } \\
3: & \text{ Aus 1.1. Fall } \text{"x = nan" und } \\
& \text{ aus 2 } \text{"nan } \in \mathbb{T}\backslash\mathbb{R}\text{"} \\
& \text{ folgt: }
\end{align*}
\]
\(\text{nan } \in \mathbb{T}\backslash\mathbb{R} \).

1.2. Fall
\[
\begin{align*}
2: & \text{ Aus 95-12 } \text{"+}\infty \in \mathbb{T}\text{" und } \\
& \text{ aus } \mathbf{AAI} \text{"+}\infty \notin \mathbb{R}\text{"} \\
& \text{ folgt via 5-3: } \\
3: & \text{ Aus 1.2. Fall } \text{"x = +}\infty\text{" und } \\
& \text{ aus 2 } \text{"+}\infty \in \mathbb{T}\backslash\mathbb{R}\text{"} \\
& \text{ folgt: }
\end{align*}
\]
\(+\infty \in \mathbb{T}\backslash\mathbb{R} \).

1.3. Fall
\[
\begin{align*}
2: & \text{ Aus 95-12 } \text{"-}\infty \in \mathbb{T}\text{" und } \\
& \text{ aus } \mathbf{AAI} \text{"-}\infty \notin \mathbb{R}\text{"} \\
& \text{ folgt via 5-3: } \\
3: & \text{ Aus 1.3. Fall } \text{"x = -}\infty\text{" und } \\
& \text{ aus 2 } \text{"-}\infty \in \mathbb{T}\backslash\mathbb{R}\text{"} \\
& \text{ folgt: }
\end{align*}
\]
\(-\infty \in \mathbb{T}\backslash\mathbb{R} \).

Ende Fallunterscheidung In allen Fällen gilt:
\(x \in \mathbb{T}\backslash\mathbb{R} \).

\(\square\)
104-2. Klarer Weise gilt $\text{nan}, +\infty, -\infty \in T \setminus R$ und $T \setminus R \subseteq A$ und $T \setminus R \subseteq T$:

<table>
<thead>
<tr>
<th>104-2(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\text{nan} \in T \setminus R$.</td>
</tr>
<tr>
<td>b) $+\infty \in T \setminus R$.</td>
</tr>
<tr>
<td>c) $-\infty \in T \setminus R$.</td>
</tr>
<tr>
<td>d) $T \setminus R \subseteq T$.</td>
</tr>
<tr>
<td>e) $T \setminus R \subseteq A$.</td>
</tr>
</tbody>
</table>

Beweis 104-2 a)

Aus “$\text{nan} = \text{nan}$” folgt via 104-1: $\text{nan} \in T \setminus R$.

b)

Aus “$+\infty = +\infty$” folgt via 104-1: $+\infty \in T \setminus R$.

c)

Aus “$-\infty = -\infty$” folgt via 104-1: $-\infty \in T \setminus R$.

d)

Via 5-5 gilt: $T \setminus R \subseteq T$.

e)

Aus d) “$T \setminus R \subseteq T$” und aus \subseteq_{SZ}“$T \subseteq A$” folgt via 0-6: $T \setminus R \subseteq A$. □
104-3. Falls \(x \in \mathbb{T} \setminus \mathbb{R} \), dann \(\text{Re} x \in \mathbb{T} \setminus \mathbb{R} \), \(\text{Im} x = 0 \) und es gilt \(\text{rez}(x) \in \{0, \text{nan}\} \). Aussagen über \(-x\) folgen in 104-4:

104-3(Satz)

Es gelte:

\[\rightarrow \quad x \in \mathbb{T} \setminus \mathbb{R}. \]

Dann folgt:

a) \(\text{Re} x \in \mathbb{T} \setminus \mathbb{R} \).

b) \(\text{Im} x = 0 \).

c) \(\text{rez}(x) = 0 \) oder \(\text{rez}(x) = \text{nan} \).

REIM-Notation.

Beweis 104-3 ab)

1: Aus \(\rightarrow \) \(\rightarrow \quad x \in \mathbb{T} \setminus \mathbb{R} \)"
folgt via 5-3:

\[x \in \mathbb{T}. \]

2: Aus 1" \(x \in \mathbb{T} \)"
folgt via FST:

\[(\text{Im} x = 0) \land (x = \text{Re} x). \]

3.a): Aus 2"... x = \text{Re} x" und
aus \(\rightarrow \) " \(x \in \mathbb{T} \setminus \mathbb{R} \)"
folgt:

\[\text{Re} x \in \mathbb{T} \setminus \mathbb{R}. \]

3.b): Aus 2
folgt:

\[\text{Im} x = 0. \]
Beweis 104-3 c)

1: Aus $\rightarrow "x \in T \setminus \mathbb{R}"$ folgt via 104-1: $(x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty)$.

<table>
<thead>
<tr>
<th>1.1. Fall</th>
<th>$x = \text{nan}$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.1. Fall $"x = \text{nan}"$ und aus $\text{AAVI} \ "\text{rez(nan)} = \text{nan}"$ folgt:</td>
<td>rez$(x) = \text{nan}$.</td>
</tr>
<tr>
<td>3: Aus 2 folgt:</td>
<td>$(\text{rez}(x) = 0) \lor (\text{rez}(x) = \text{nan})$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2. Fall</th>
<th>$x = +\infty$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.2. Fall $"x = +\infty"$ und aus $\text{AAVI} \ "\text{rez}(+\infty) = 0"$ folgt:</td>
<td>rez$(x) = 0$.</td>
</tr>
<tr>
<td>3: Aus 2 folgt:</td>
<td>$(\text{rez}(x) = 0) \lor (\text{rez}(x) = \text{nan})$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3. Fall</th>
<th>$x = -\infty$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.3. Fall $"x = -\infty"$ und aus $\text{AAVI} \ "\text{rez}(-\infty) = 0"$ folgt:</td>
<td>rez$(x) = 0$.</td>
</tr>
<tr>
<td>3: Aus 2 folgt:</td>
<td>$(\text{rez}(x) = 0) \lor (\text{rez}(x) = \text{nan})$.</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In allen Fällen gilt: $(\text{rez}(x) = 0) \lor (\text{rez}(x) = \text{nan})$. □
104-4. Es gilt \(p \in T \setminus \mathbb{R} \) genau dann, wenn \(-p \in T \setminus \mathbb{R}\) und dies ist genau dann der Fall, wenn \(-(-p) \in T \setminus \mathbb{R}\):

\[
\begin{align*}
\textbf{104-4(Satz)} \\
Die Aussagen i), ii), iii) sind äquivalent: \\
i) & \ p \in T \setminus \mathbb{R}.
\text{ii)} & \ -p \in T \setminus \mathbb{R}.
\text{iii)} & \ -(-p) \in T \setminus \mathbb{R}.
\end{align*}
\]

RECH-Notation.
Beweis 104.4 \(i) \Rightarrow ii)\)

VS gleich \(p \in \mathbb{T} \setminus \mathbb{R}\).

1: Aus VS gleich \(p \in \mathbb{T} \setminus \mathbb{R}\) folgt via 5-3:
\((p \in \mathbb{T}) \land (p \notin \mathbb{R})\).

2.1: Aus 1 “\(p \in \mathbb{T} \ldots\)” folgt via 100-6:
\(-p \in \mathbb{T}\).

2.2: Es gilt:
\((-p \in \mathbb{R}) \lor (-p \notin \mathbb{R})\).

Fallunterscheidung

2.2.1. Fall

3: Aus 2.2.1. Fall “\(-p \in \mathbb{R}\)” folgt via 100-6:
\(-p \in \mathbb{R}\).

4: Es gilt 3 “\(p \in \mathbb{R}\).”
Es gilt 1 “\(\ldots p \notin \mathbb{R}\).”
Ex falso quodlibet folgt:
\(-p \notin \mathbb{R}\).

2.2.2. Fall

\(-p \notin \mathbb{R}\).

Ende Fallunterscheidung

In beiden Fällen gilt: \(\text{A1} \quad \neg p \notin \mathbb{R}\).

3: Aus 2.1 “\(-p \in \mathbb{T}\)” und aus A1 gleich “\(-p \notin \mathbb{R}\)” folgt via 5-3:
\(-p \in \mathbb{T} \setminus \mathbb{R}\).
Beweis 104-4 [ii) ⇒ iii)] VS gleich $-p \in T \setminus \mathbb{R}$.

1: Aus VS gleich $-p \in T \setminus \mathbb{R}$ folgt via 5-3:

$(-p \in T) \land (-p \notin \mathbb{R})$.

2.1: Aus 1$-p \in T...$ folgt via 100-6:

$-(−p) \in T$.

2.2: Es gilt:

$(-(−p) \in \mathbb{R}) \lor (−(−p) \notin \mathbb{R})$.

Fallunterscheidung

2.2.1. Fall

3: Aus 2.2.1. Fall $-(-p) \in \mathbb{R}$ folgt via 100-6:

$-p \in \mathbb{R}$.

4: Es gilt 3$-p \in \mathbb{R}$.

Es gilt 1$-p \notin \mathbb{R}$.

Ex falso quodlibet folgt:

$-(-p) \notin \mathbb{R}$.

2.2.2. Fall

$-(-p) \notin \mathbb{R}$.

Ende Fallunterscheidung

In beiden Fällen gilt: A1 $-(-p) \notin \mathbb{R}$.

3: Aus 2.1 $-(-p) \in T$ und aus A1 gleich $-(-p) \notin \mathbb{R}$ folgt via 5-3:

$-(-p) \in T \setminus \mathbb{R}$.
Beweis \(104-4\) \(\text{iii) } \Rightarrow \text{i) }\) VS gleich

1: Aus VS gleich "\(-(-p) \in T \setminus \mathbb{R}\)" folgt via 5-3:
\((-(-p) \in T) \land (-(-p) \notin \mathbb{R})\).

2.1: Aus 1"\(-(-p) \in T\)..." folgt via 100-6:
\(p \in T\).

2.2: Es gilt:
\((p \in \mathbb{R}) \lor (p \notin \mathbb{R})\).

Fallunterscheidung

2.2.1. Fall

3: Aus 2.2.1. Fall "\(p \in \mathbb{R}\)" folgt via 100-6:
\(-(-p) \in \mathbb{R}\).

4: Es gilt 3"\(-(-p) \in \mathbb{R}\)."
Es gilt 1"\(-(-p) \notin \mathbb{R}\)."
Ex falso quodlibet folgt:
\(p \notin \mathbb{R}\).

2.2.2. Fall

\(p \notin \mathbb{R}\).

Ende Fallunterscheidung
In beiden Fällen gilt:
\(\text{A1 } \text{"} p \notin \mathbb{R} \text{"} \)

3: Aus 2.1"\(p \in T\)" und aus A1 gleich "\(p \notin \mathbb{R}\)" folgt via 5-3:
\(p \in T \setminus \mathbb{R}\).

\(\square\)
104-5. Falls \(x, y \in T \setminus \mathbb{R} \), dann \(x + y, x \cdot y \in T \setminus \mathbb{R} \) und \(x : y = 0 \) oder \(x : y = \text{nan} \):

\[
\begin{align*}
104-5(\text{Satz}) \\
Es \ gelte: \\
\rightarrow x \in T \setminus \mathbb{R}.
\rightarrow y \in T \setminus \mathbb{R}.
Dann folgt:
\begin{align*}
a) & \quad x + y \in T \setminus \mathbb{R}. \\
b) & \quad x \cdot y \in T \setminus \mathbb{R}. \\
c) & \quad "x : y = 0" \text{ oder } "x : y = \text{nan}". \\
\end{align*}
\]

Beweis 104-5 ab)

1.1: Aus \(\rightarrow "x \ldots \in T \setminus \mathbb{R}" \) folgt via 104-1:

\[
(x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty).
\]

1.2: Aus \(\rightarrow "\ldots y \in T \setminus \mathbb{R}" \) folgt via 104-1:

\[
(y = \text{nan}) \lor (y = +\infty) \lor (y = -\infty).
\]

2: Aus 1.1 und aus 1.2 folgt:

\[
\begin{align*}
(x = \text{nan}) \land (y = \text{nan}) \\
\lor (x = \text{nan}) \land (y = +\infty) \\
\lor (x = \text{nan}) \land (y = -\infty) \\
\lor (x = +\infty) \land (y = \text{nan}) \\
\lor (x = +\infty) \land (y = +\infty) \\
\lor (x = +\infty) \land (y = -\infty) \\
\lor (x = -\infty) \land (y = \text{nan}) \\
\lor (x = -\infty) \land (y = +\infty) \\
\lor (x = -\infty) \land (y = -\infty).
\end{align*}
\]

Fallunterscheidung...
Beweis 104-5 ab) ...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>2.1. Fall</th>
<th>((x = \text{nan}) \land (y = \text{nan})).</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.1. Fall folgt:</td>
<td>(x = \text{nan}).</td>
</tr>
<tr>
<td>3.2: Aus 2.1. Fall folgt:</td>
<td>(y = \text{nan}).</td>
</tr>
<tr>
<td>4.1:</td>
<td>(x + y \stackrel{3.1}{=} \text{nan} + y \stackrel{3.2}{=} \text{nan} + \text{nan} \stackrel{97-1}{=} \text{nan}).</td>
</tr>
<tr>
<td>4.2:</td>
<td>(x \cdot y \stackrel{3.1}{=} \text{nan} \cdot y \stackrel{3.2}{=} \text{nan} \cdot \text{nan} \stackrel{97-5}{=} \text{nan}).</td>
</tr>
<tr>
<td>5.1: Aus 4.1“(x + y = \ldots = \text{nan})” und aus 104-2“(\text{nan} \in \mathbb{T} \setminus \mathbb{R})” folgt:</td>
<td>(x + y \in \mathbb{T} \setminus \mathbb{R}).</td>
</tr>
<tr>
<td>5.2: Aus 4.2“(x \cdot y = \ldots = \text{nan})” und aus 104-2“(\text{nan} \in \mathbb{T} \setminus \mathbb{R})” folgt:</td>
<td>(x \cdot y \in \mathbb{T} \setminus \mathbb{R}).</td>
</tr>
<tr>
<td>6: Aus 5.1 und aus 5.2 folgt:</td>
<td>((x + y \in \mathbb{T} \setminus \mathbb{R}) \land (x \cdot y \in \mathbb{T} \setminus \mathbb{R})).</td>
</tr>
</tbody>
</table>

...
Beweis 104-5 ab) ...

Fallunterscheidung

\[\text{2.2.Fall} \quad (x = \text{nan}) \land (y = +\infty). \]

3.1: Aus 2.2.Fall folgt: \(x = \text{nan}. \)

3.2: Aus 2.2.Fall folgt: \(y = +\infty. \)

4.1: \(x + y \stackrel{3.1}{=} \text{nan} + y \stackrel{3.2}{=} \text{nan} + (+\infty) \stackrel{97-1}{=} \text{nan}. \)

4.2: \(x \cdot y \stackrel{3.1}{=} \text{nan} \cdot y \stackrel{3.2}{=} \text{nan} \cdot (+\infty) \stackrel{97-5}{=} \text{nan}. \)

5.1: Aus 4.1“ \(x + y = \ldots = \text{nan} \)” und aus 104-2“ \text{nan} \in T \setminus R”
folgt: \(x + y \in T \setminus R. \)

5.2: Aus 4.2“ \(x \cdot y = \ldots = \text{nan} \)” und aus 104-2“ \text{nan} \in T \setminus R”
folgt: \(x \cdot y \in T \setminus R. \)

6: Aus 5.1 und aus 5.2 folgt: \((x + y \in T \setminus R) \land (x \cdot y \in T \setminus R).\)
Beweis 104-5 ab) ...

Fallunterscheidung

\[\text{2.3. Fall} \quad (x = \text{nan}) \land (y = -\infty). \]

3.1: Aus 2.3. Fall
folgt:
\[x = \text{nan}. \]

3.2: Aus 2.3. Fall
folgt:
\[y = -\infty. \]

4.1:
\[x + y \overset{3.1}{=} \text{nan} + y \overset{3.2}{=} \text{nan} + (-\infty) \overset{97-1}{=} \text{nan}. \]

4.2:
\[x \cdot y \overset{3.1}{=} \text{nan} \cdot y \overset{3.2}{=} \text{nan} \cdot (-\infty) \overset{97-5}{=} \text{nan}. \]

5.1: Aus 4.1 "\(x + y = \ldots = \text{nan} \)" und
aus 104-2 "\(\text{nan} \in T \setminus \mathbb{R} \)"
folgt:
\[x + y \in T \setminus \mathbb{R}. \]

5.2: Aus 4.2 "\(x \cdot y = \ldots = \text{nan} \)" und
aus 104-2 "\(\text{nan} \in T \setminus \mathbb{R} \)"
folgt:
\[x \cdot y \in T \setminus \mathbb{R}. \]

6: Aus 5.1 und
aus 5.2
folgt:
\[(x + y \in T \setminus \mathbb{R}) \land (x \cdot y \in T \setminus \mathbb{R}). \]
Beweis 104-5 ab)...

Fallunterscheidung

...

2.4. Fall

\[(x = +\infty) \land (y = \text{nan})\].

3.1: Aus 2.4. Fall folgt:
\[x = +\infty\].

3.2: Aus 2.4. Fall folgt:
\[y = \text{nan}\].

4.1:
\[x + y \overset{3.1}{=} (+\infty) + y \overset{3.2}{=} (+\infty) + \text{nan} \overset{97^{-1}}{=} \text{nan}\].

4.2:
\[x \cdot y \overset{3.1}{=} (+\infty) \cdot y \overset{3.2}{=} (+\infty) \cdot \text{nan} \overset{97^{-5}}{=} \text{nan}\].

5.1: Aus 4.1 "\(x + y = \ldots = \text{nan}\)" und aus 104-2 "\(\text{nan} \in T \setminus \mathbb{R}\)" folgt:
\[x + y \in T \setminus \mathbb{R}\].

5.2: Aus 4.2 "\(x \cdot y = \ldots = \text{nan}\)" und aus 104-2 "\(\text{nan} \in T \setminus \mathbb{R}\)" folgt:
\[x \cdot y \in T \setminus \mathbb{R}\].

6: Aus 5.1 und aus 5.2 folgt:
\[(x + y \in T \setminus \mathbb{R}) \land (x \cdot y \in T \setminus \mathbb{R})\].

...
Beweis 104-5 ab) ...

Fallunterscheidung

...

2.5. Fall

3.1: Aus 2.5. Fall folgt: $x = +\infty$.

3.2: Aus 2.5. Fall folgt: $y = +\infty$.

4.1: $x + y \overset{3.1}{=} (+\infty) + y \overset{3.2}{=} (+\infty) + (+\infty) \overset{AAVI}{=} +\infty$.

4.2: $x \cdot y \overset{3.1}{=} (+\infty) \cdot y \overset{3.2}{=} (+\infty) \cdot (+\infty) \overset{AAVI}{=} +\infty$.

5.1: Aus 4.1" $x + y = \ldots = +\infty$" und aus 104-2" $+\infty \in T \setminus R$" folgt: $x + y \in T \setminus R$.

5.2: Aus 4.2" $x \cdot y = \ldots = +\infty$" und aus 104-2" $+\infty \in T \setminus R$" folgt: $x \cdot y \in T \setminus R$.

6: Aus 5.1 und aus 5.2 folgt: $(x + y \in T \setminus R) \land (x \cdot y \in T \setminus R)$.

...
Beweis 104-5 ab)...

Fallunterscheidung

...

\textbf{2.6.Fall} \quad \quad \quad (x = +\infty) \wedge (y = -\infty).

3.1: Aus 2.6.Fall
 folgt: \quad x = +\infty.

3.2: Aus 2.6.Fall
 folgt: \quad y = -\infty.

4.1: \quad x + y \overset{3.1}{=} \overset{3.2}{=} (+\infty) + (-\infty) \overset{AAVI}{=} \text{nan}.

4.2: \quad x \cdot y \overset{3.1}{=} \overset{3.2}{=} (+\infty) \cdot (-\infty) \overset{AAVI}{=} -\infty.

5.1: Aus 4.1" $x + y = \ldots = \text{nan}$" und
 aus 104-2" $\text{nan} \in T \setminus \mathbb{R}$"
 folgt: \quad x + y \in T \setminus \mathbb{R}.

5.2: Aus 4.2" $x \cdot y = \ldots = -\infty$" und
 aus 104-2" $-\infty \in T \setminus \mathbb{R}$"
 folgt: \quad x \cdot y \in T \setminus \mathbb{R}.

6: Aus 5.1 und
 aus 5.2
 folgt: \quad (x + y \in T \setminus \mathbb{R}) \wedge (x \cdot y \in T \setminus \mathbb{R}).

...
Beweis 104-5 ab) ...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>2.7. Fall</th>
<th>((x = -\infty) \land (y = \text{nan})).</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.7. Fall folgt:</td>
<td>(x = -\infty).</td>
</tr>
<tr>
<td>3.2: Aus 2.7. Fall folgt:</td>
<td>(y = \text{nan}).</td>
</tr>
<tr>
<td>4.1: (x + y = (-\infty) + y = (-\infty) + \text{nan} = \text{nan})</td>
<td></td>
</tr>
<tr>
<td>4.2: (x \cdot y = (-\infty) \cdot y = (-\infty) \cdot \text{nan} = \text{nan})</td>
<td></td>
</tr>
<tr>
<td>5.1: Aus 4.1 “(x + y = \ldots = \text{nan})” und aus 104-2 “(\text{nan} \in T \setminus R)” folgt:</td>
<td>(x + y \in T \setminus R).</td>
</tr>
<tr>
<td>5.2: Aus 4.2 “(x \cdot y = \ldots = \text{nan})” und aus 104-2 “(\text{nan} \in T \setminus R)” folgt:</td>
<td>(x \cdot y \in T \setminus R).</td>
</tr>
<tr>
<td>6: Aus 5.1 und aus 5.2 folgt:</td>
<td>((x + y \in T \setminus R) \land (x \cdot y \in T \setminus R)).</td>
</tr>
</tbody>
</table>

...
Fallunterscheidung

2.8. Fall \((x = -\infty) \land (y = +\infty)\).

3.1: Aus 2.8. Fall
folgt:

\[x = -\infty.\]

3.2: Aus 2.8. Fall
folgt:

\[y = +\infty.\]

4.1:
\[x + y \overset{3.1}{=} (-\infty) + y \overset{3.2}{=} (-\infty) + (+\infty) \overset{\text{AAVI}}{=} \text{nan}.\]

4.2:
\[x \cdot y \overset{3.1}{=} (-\infty) \cdot y \overset{3.2}{=} (-\infty) \cdot (+\infty) \overset{\text{AAVI}}{=} -\infty.\]

5.1: Aus 4.1\("x + y = \ldots = \text{nan}"\) und
aus 104-2\(\text{"nan} \in T \setminus \mathbb{R}\)
folgt:

\[x + y \in T \setminus \mathbb{R}.\]

5.2: Aus 4.2\("x \cdot y = \ldots = -\infty"\) und
aus 104-2\(\text{"}-\infty \in T \setminus \mathbb{R}\)
folgt:

\[x \cdot y \in T \setminus \mathbb{R}.\]

6: Aus 5.1 und
aus 5.2
folgt:

\[(x + y \in T \setminus \mathbb{R}) \land (x \cdot y \in T \setminus \mathbb{R}).\]
Beweis 104-5 ab) ...

Fallunterscheidung

\[\begin{array}{|c|}
\hline
2.9.\text{Fall} & (x = -\infty) \land (y = -\infty). \\
3.1: & \text{Aus 2.9.\text{Fall}} \\
& \text{folgt:} \\
& x = -\infty. \\
3.2: & \text{Aus 2.9.\text{Fall}} \\
& \text{folgt:} \\
& y = -\infty. \\
4.1: & x + y \stackrel{3.1}{=} (-\infty) + y \stackrel{3.2}{=} (-\infty) + (-\infty) \overset{\text{AAVI}}{=} -\infty. \\
4.2: & x \cdot y \stackrel{3.1}{=} (-\infty) \cdot y \stackrel{3.2}{=} (-\infty) \cdot (-\infty) \overset{\text{AAVI}}{=} +\infty. \\
5.1: & \text{Aus 4.1" } x + y = \ldots = -\infty" \text{ und} \\
& \text{aus 104-2" } -\infty \in T \setminus \mathbb{R}" \\
& \text{folgt:} \\
& x + y \in T \setminus \mathbb{R}. \\
5.2: & \text{Aus 4.2" } x \cdot y = \ldots = +\infty" \text{ und} \\
& \text{aus 104-2" } +\infty \in T \setminus \mathbb{R}" \\
& \text{folgt:} \\
& x \cdot y \in T \setminus \mathbb{R}. \\
6: & \text{Aus 5.1 und} \\
& \text{aus 5.2} \\
& \text{folgt:} \\
& (x + y \in T \setminus \mathbb{R}) \land (x \cdot y \in T \setminus \mathbb{R}). \\
\hline
\end{array} \]

Ende Fallunterscheidung In allen Fällen gilt:

\[A1 \right \text{"} (x + y \in T \setminus \mathbb{R}) \land (x \cdot y \in T \setminus \mathbb{R}) \right \text{"} \]

3.a): Aus A1 \\
folgt:

\[x + y \in T \setminus \mathbb{R}. \]

3.b): Aus A1 \\
folgt:

\[x \cdot y \in T \setminus \mathbb{R}. \]
Beweis 104-5 c)

1.1: Aus $\to \text{“} x \in \mathbb{T} \setminus \mathbb{R} \text{“}$
folgt via 5-3:

\[x \in \mathbb{T}. \]

1.2: Es gilt:

\[(x = 0) \lor (0 \neq x). \]

1.3: Aus $\to \text{“} y \in \mathbb{T} \setminus \mathbb{R} \text{“}$
folgt via 104-3:

\[(\operatorname{rez}(y) = 0) \lor (\operatorname{rez}(y) = \text{nan}). \]

2: Aus 1.2 und

aus 1.3
folgt:

\[
(x = 0) \land (\operatorname{rez}(y) = 0) \\
\lor (0 \neq x) \land (\operatorname{rez}(y) = 0) \\
\lor (x = 0) \land (\operatorname{rez}(y) = \text{nan}) \\
\lor (0 \neq x) \land (\operatorname{rez}(y) = \text{nan}).
\]

Fallunterscheidung

\begin{tabular}{|l|}
\hline
2.1. Fall \\
\hline
3.1: Aus 2.1. Fall \\
folgt: \\
\hline
3.2: Aus 2.1. Fall \\
folgt: \\
\hline
4: \\
\hline
5: Aus 4“$x : y = \ldots = 0$” \\
folgt: \\
\hline
\end{tabular}

\[
(x = 0) \land (\operatorname{rez}(y) = 0).
\]

\begin{tabular}{|l|}
\hline
2.2. Fall \\
\hline
3.1: Aus 1.1“$x \in \mathbb{T}$” \\
folgt via $\in \mathbb{SZ}$: \\
\hline
3.2: Aus 2.2. Fall \\
folgt: \\
\hline
4: Aus 3.1“$x \text{ Zahl}$” \\
folgt via $\mathbb{FSM0}$: \\
\hline
5: \\
\hline
6: Aus 5“$x : y = \ldots = 0$” \\
folgt: \\
\hline
\end{tabular}

\[
(0 \neq x) \land (\operatorname{rez}(y) = 0).
\]

...
Beweis 104-5 c) ...

Fallunterscheidung

...
104-6. Falls \(x \in T \setminus \mathbb{R} \) und \(y \in T \), dann \(x + y \in T \setminus \mathbb{R} \):

104-6(Satz)

Aus “\(x \in T \setminus \mathbb{R} \)” und “\(y \in T \)” folgt “\(x + y \in T \setminus \mathbb{R} \)”.

RECH-Notation.

Beweis **104-6** VS gleich

\[(x \in T \setminus \mathbb{R}) \land (y \in T) \]

1: Aus VS gleich “\(x \in T \setminus \mathbb{R} \)...”
folgt via **104-1**:

\[(x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty) \]

Fallunterscheidung

1.1.Fall

\[x = \text{nan} \]

2: Aus VS gleich “...\(y \in T \)”
folgt via **AAVI**:

\[\text{nan} + y = \text{nan} \]

3: Aus 3“\(x + y = \ldots = \text{nan} \)” und
aus **104-2**“\(\text{nan} \in T \setminus \mathbb{R} \)”
folgt:

\[x + y \equiv \text{nan} \]

\[x + y \equiv \text{nan} \] de

\[x + y \in T \setminus \mathbb{R} \]

...
Fallunterscheidung

1.2. Fall

2: Es gilt:

\[x = +\infty. \]

\((y \in \mathbb{R}) \lor (y \notin \mathbb{R}) \).

2.1. Fall

3: Aus 2.1. Fall \("y \in \mathbb{R}" \) folgt via AAV1:

\[(+\infty) + y = +\infty. \]

4:

\[x + y \stackrel{\text{1.2. Fall}}{=} (+\infty) + y = +\infty. \]

5: Aus 4\("x + y = \ldots = +\infty" \) und aus 104-2 \("+\infty \in T \setminus R" \) folgt:

\[x + y \in T \setminus R. \]

2.2. Fall

3: Aus VS gleich \("\ldots y \in T" \) und aus 2.2. Fall \("y \notin \mathbb{R}" \) folgt via 5-3:

\[y \in T \setminus R. \]

4: Aus VS gleich \("x \in T \setminus R" \) und aus 3\("y \in T \setminus R" \) folgt via 104-5:

\[x + y \in T \setminus R. \]

Ende Fallunterscheidung

In beiden Fällen gilt:

\[x + y \in T \setminus R. \]
Beweis 104-6 ...

Fallunterscheidung

1.3. Fall \(x = -\infty \).

2: Es gilt: \((y \in \mathbb{R}) \lor (y \notin \mathbb{R}) \).

Fallunterscheidung

2.1. Fall \(y \in \mathbb{R} \).

3: Aus 2.1. Fall "\(y \in \mathbb{R} \)"

folgt via AAVI: \((-\infty) + y = -\infty \).

4: \(x + y \overset{1.2. \text{Fall}}{=} (-\infty) + y \overset{3}{=} -\infty \).

5: Aus 4 "\(x + y = \ldots = -\infty \)" und

aus 104-2 "\(-\infty \in T \setminus \mathbb{R} \)"

folgt: \(x + y \in T \setminus \mathbb{R} \).

2.2. Fall \(y \notin \mathbb{R} \).

3: Aus VS gleich "\(\ldots y \in T \)" und

aus 2.2. Fall "\(y \notin \mathbb{R} \)"

folgt via 5-3: \(y \in T \setminus \mathbb{R} \).

4: Aus VS gleich "\(x \in T \setminus \mathbb{R} \)" und

aus 3 "\(y \in T \setminus \mathbb{R} \)"

folgt via 104-5: \(x + y \in T \setminus \mathbb{R} \).

Ende Fallunterscheidung In beiden Fällen gilt:

\(x + y \in T \setminus \mathbb{R} \).

Ende Fallunterscheidung In allen Fällen gilt:

\(x + y \in T \setminus \mathbb{R} \).
104-7. Falls \(x \in T \), dann gilt \(x - x = \text{nan} \) genau dann, wenn \(x \in T \setminus \mathbb{R} \):

104-7(Satz)

Die Aussagen i), ii) sind äquivalent:

i) "\(x \in T \)" und "\(x - x = \text{nan} \)."

ii) \(x \in T \setminus \mathbb{R} \).

RECH-Notation.

Beweis 104-7 \([i] \Rightarrow [ii]\) VS gleich \((x \in T) \land (x - x = \text{nan})\).

1: Es gilt: \((x \in \mathbb{R}) \lor (x \notin \mathbb{R})\).

Fallunterscheidung

1.1. Fall \(x \in \mathbb{R} \).

2: Aus 1.1. Fall "\(x \in \mathbb{R} \)"
folgt via \(\in \text{SZ} \):

\[x \in \mathbb{C} \]

3: Aus 2 "\(x \in \mathbb{C} \)"
folgt via 102-5:

\[x - x = 0 \]

4: Aus VS gleich "...x - x = nan" und
aus 3 "\(x - x = 0 \)"
folgt:

\[\text{nan} = 0 \]

5: Es gilt 4 "\(\text{nan} = 0 \)".

Via 95-7 gilt "\(0 \neq \text{nan} \)"
Ex falso quodlibet folgt:

\[x \in T \setminus \mathbb{R} \]

1.2. Fall \(x \notin \mathbb{R} \).

Aus VS gleich "\(x \in T \ldots \)" und
aus 1.2. Fall "\(x \notin \mathbb{R} \)"
folgt via 5-3:

\[x \in T \setminus \mathbb{R} \]

Ende Fallunterscheidung In beiden Fällen gilt: \(x \in T \setminus \mathbb{R} \).
Beweis 104-7 \(\text{ii) } \Rightarrow \text{i) }\) VS gleich \(x \in \mathbb{T} \setminus \mathbb{R}\).

1.1: Aus VS gleich \(x \in \mathbb{T} \setminus \mathbb{R}\) folgt via 5-3: \(x \in \mathbb{T}\).

1.2: Aus VS gleich \(x \in \mathbb{T} \setminus \mathbb{R}\) folgt via 104-1:

\[(x = \text{nan}) \lor (x = +\infty) \lor (x = -\infty).\]

Fallunterscheidung

1.2.1. Fall \(x = \text{nan}\).

2: Via 97-4 gilt: \(\text{nan} - \text{nan} = \text{nan}\).

3: Aus 1.2.1. Fall “\(x = \text{nan}\)” und aus 2”\(\text{nan} - \text{nan} = \text{nan}\)” folgt: \(x - x = \text{nan}\).

1.2.2. Fall \(x = +\infty\).

2: Via 97-4 gilt: \((+\infty) - (+\infty) = \text{nan}\).

3: Aus 1.2.2. Fall “\(x = +\infty\)” und aus 2”\((+\infty) - (+\infty) = \text{nan}\)” folgt: \(x - x = \text{nan}\).

1.2.3. Fall \(x = -\infty\).

2: Via 97-4 gilt: \((-\infty) - (-\infty) = \text{nan}\).

3: Aus 1.2.2. Fall “\(x = -\infty\)” und aus 2”\((-\infty) - (-\infty) = \text{nan}\)” folgt: \(x - x = \text{nan}\).

Ende Fallunterscheidung

In allen Fällen gilt: \(A1 \mid “x - x = \text{nan}”\)

2: Aus 1.1 “\(x \in \mathbb{T}\)” und aus A1 gleich “\(x - x = \text{nan}\)” folgt:

\[(x \in \mathbb{T}) \land (x - x = \text{nan}).\]

\(\square\)
A \ C.

Ersterstellung: 02/02/06 Letzte Änderung: 29/01/12
105-1. Es gilt $x \in A \setminus C$ genau dann, wenn $\Re x \in T \setminus R$ oder $\Im x \in T \setminus R$ und dies ist genau dann der Fall, wenn x eine Zahl ist, die nicht in C ist:

\begin{quote}
\textbf{105-1(Satz)}

Die Aussagen i), ii), iii) sind äquivalent:

i) $x \in A \setminus C$.

ii) "$\Re x \in T \setminus R$" oder "$\Im x \in T \setminus R$".

iii) "x Zahl" und "$x \notin C$".
\end{quote}

--

\textbf{REIM-Notation.}
Beweis 105-1 \[(i) \implies (ii) \] VS gleich

1: Aus VS gleich "\(x \in A \setminus C \)"
folgt via 5-3:
\[(x \in A) \land (x \notin C). \]

2: Aus 1"\(x \in A \ldots \)"
folgt via 95-4(Def):
\(x \) Zahl.

3.1: Aus 2"\(x \) Zahl"
folgt via 96-9:
\(\text{Re} x \in T. \)

3.2: Aus 2"\(x \) Zahl"
folgt via 96-9:
\(\text{Im} x \in T. \)

4: Aus 1"\(\ldots x \notin C \)"
folgt via 101-2:
\((\text{Re} x \notin \mathbb{R}) \lor (\text{Im} x \notin \mathbb{R}). \)

Fallunterscheidung

4.1. Fall

5: Aus 3.1"\(\text{Re} x \in T \)" und
aus 4.1. Fall"\(\text{Re} x \notin \mathbb{R} \)"
folgt via 5-3:
\(\text{Re} x \in T \setminus \mathbb{R}. \)

6: Aus 5
folgt:
\((\text{Re} x \in T \setminus \mathbb{R}) \lor (\text{Im} x \in T \setminus \mathbb{R}). \)

4.2. Fall

5: Aus 3.2"\(\text{Im} x \in T \)" und
aus 4.2. Fall"\(\text{Im} x \notin \mathbb{R} \)"
folgt via 5-3:
\(\text{Im} x \in T \setminus \mathbb{R}. \)

6: Aus 5
folgt:
\((\text{Re} x \in T \setminus \mathbb{R}) \lor (\text{Im} x \in T \setminus \mathbb{R}). \)

Ende Fallunterscheidung In beiden Fällen gilt:
\((\text{Re} x \in T \setminus \mathbb{R}) \lor (\text{Im} x \in T \setminus \mathbb{R}). \)
Beweis 105-1 \([\text{ii}) \Rightarrow \text{iii}\]) VS gleich \((\Re x \in T \setminus \mathbb{R}) \lor (\Im x \in T \setminus \mathbb{R})\).

1: Nach VS gilt:
\((\Re x \in T \setminus \mathbb{R}) \lor (\Im x \in T \setminus \mathbb{R})\).

Fallunterscheidung

1.1. Fall

2.1: Aus 1.1. Fall \(\Re x \in T \setminus \mathbb{R}\) folgt via **ElementAxiom**: \(\Re x \in \text{Menge}\).

2.2: Aus 1.1. Fall \(\Re x \in T \setminus \mathbb{R}\) folgt via **5-3**: \(\Re x \notin \mathbb{R}\).

3.1: Aus 2.1 \(\Re x \text{ Menge}\) folgt via **96-9**: \(x \text{ Zahl}\).

3.2: Aus 2.2 \(\Re x \notin \mathbb{R}\) folgt via **101-2**: \(x \notin \mathbb{C}\).

4: Aus 3.1 und aus 3.2 folgt:
\((x \text{ Zahl}) \land (x \notin \mathbb{C})\).

1.2. Fall

2.1: Aus 1.2. Fall \(\Im x \in T \setminus \mathbb{R}\) folgt via **ElementAxiom**: \(\Im x \in \text{Menge}\).

2.2: Aus 1.2. Fall \(\Im x \in T \setminus \mathbb{R}\) folgt via **5-3**: \(\Im x \notin \mathbb{R}\).

3.1: Aus 2.1 \(\Im x \text{ Menge}\) folgt via **96-9**: \(x \text{ Zahl}\).

3.2: Aus 2.2 \(\Im x \notin \mathbb{R}\) folgt via **101-2**: \(x \notin \mathbb{C}\).

4: Aus 3.1 und aus 3.2 folgt:
\((x \text{ Zahl}) \land (x \notin \mathbb{C})\).

Ende Fallunterscheidung In beiden Fällen gilt: \((x \text{ Zahl}) \land (x \notin \mathbb{C})\).
Beweis 105-1: \(\text{(iii) } \Rightarrow \text{i) } \) VS gleich

1: Aus VS gleich “\(x \) Zahl...”
folgt via 95-4(Def):

\[x \in A. \]

2: Aus 1 “\(x \in A \)” und
aus VS gleich “...\(x \notin C \)”
folgt via 5-3:

\[x \in A \setminus C. \]

\[\square\]
105-2. Es wird eine “einparametige Liste” von Elementen aus $A \setminus C$ angegeben:

<table>
<thead>
<tr>
<th>105-2(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es gelte:</td>
</tr>
<tr>
<td>$\rightarrow x \in T$.</td>
</tr>
<tr>
<td>Dann folgt:</td>
</tr>
<tr>
<td>a) $\text{nan} + i \cdot x \in A \setminus C$.</td>
</tr>
<tr>
<td>b) $(+\infty) + i \cdot x \in A \setminus C$.</td>
</tr>
<tr>
<td>c) $(-\infty) + i \cdot x \in A \setminus C$.</td>
</tr>
<tr>
<td>d) $x + i \cdot \text{nan} \in A \setminus C$.</td>
</tr>
<tr>
<td>e) $x + i \cdot (+\infty) \in A \setminus C$.</td>
</tr>
<tr>
<td>f) $x + i \cdot (-\infty) \in A \setminus C$.</td>
</tr>
</tbody>
</table>

RECH-Notation.
Beweis 105-2 abc)

1.1: Aus 95-12 "nan ∈ T" und
aus → "x ∈ T"
ofglt via AAIIV:
Re(nan + i · x) = nan.

1.2: Aus 95-12 "+∞ ∈ T" und
aus → "x ∈ T"
ofglt via AAIIV:
Re((+∞) + i · x) = +∞.

1.3: Aus 95-12 "−∞ ∈ T" und
aus → "x ∈ T"
ofglt via AAIIV:
Re((−∞) + i · x) = −∞.

2.1: Aus 1.1 "Re(nan + i · x) = nan" und
aus 104-2 "nan ∈ T \ R"
ofglt:
Re(nan + i · x) ∈ T \ R.

2.2: Aus 1.2 "Re((+∞) + i · x) = +∞" und
aus 104-2 "+∞ ∈ T \ R"
ofglt:
Re((+∞) + i · x) ∈ T \ R.

2.3: Aus 1.3 "Re((−∞) + i · x) = −∞" und
aus 104-2 "−∞ ∈ T \ R"
ofglt:
Re((−∞) + i · x) ∈ T \ R.

3. a): Aus 2.1 "Re(nan + i · x) ∈ T \ R"
ofglt via 105-1:
nan + i · x ∈ A \ C.

3. b): Aus 2.2 "Re((+∞) + i · x) ∈ T \ R"
ofglt via 105-1:
(+∞) + i · x ∈ A \ C.

3. c): Aus 2.3 "Re((−∞) + i · x) ∈ T \ R"
ofglt via 105-1:
(−∞) + i · x ∈ A \ C.
Beweis 105-2 def)

1.1: Aus $\rightarrow "x \in T"$ und aus $95-12 "\text{nan} \in T"$ folgt via AAIV:
$$\text{Im}(x + i \cdot \text{nan}) = \text{nan}.$$

1.2: Aus $\rightarrow "x \in T"$ und aus $95-12 "+\infty \in T"$ folgt via AAIV:
$$\text{Im}(x + i \cdot (+\infty)) = +\infty.$$

1.3: Aus $\rightarrow "x \in T"$ und aus $95-12 "-\infty \in T"$ folgt via AAIV:
$$\text{Im}(x + i \cdot (-\infty)) = -\infty.$$

2.1: Aus 1.1" $\text{Im}(x + i \cdot \text{nan}) = \text{nan}$" und aus $104-2 "\text{nan} \in T \setminus \mathbb{R}"$ folgt:
$$\text{Im}(x + i \cdot \text{nan}) \in T \setminus \mathbb{R}.$$

2.2: Aus 1.2" $\text{Im}(x + i \cdot (+\infty)) = +\infty$" und aus $104-2 " +\infty \in T \setminus \mathbb{R}"$ folgt:
$$\text{Im}(x + i \cdot (+\infty)) \in T \setminus \mathbb{R}.$$

2.3: Aus 1.3" $\text{Im}(x + i \cdot (-\infty)) = -\infty$" und aus $104-2 " -\infty \in T \setminus \mathbb{R}"$ folgt:
$$\text{Im}(x + i \cdot (-\infty)) \in T \setminus \mathbb{R}.$$

3.d): Aus 2.1" $\text{Im}(x + i \cdot \text{nan}) \in T \setminus \mathbb{R}$" folgt via 105-1:
$$x + i \cdot \text{nan} \in A \setminus \mathbb{C}. $$

3.e): Aus 2.2" $\text{Im}(x + i \cdot (+\infty)) \in T \setminus \mathbb{R}$" folgt via 105-1:
$$x + i \cdot (+\infty) \in A \setminus \mathbb{C}. $$

3.f): Aus 2.3" $\text{Im}(x + i \cdot (-\infty)) \in T \setminus \mathbb{R}$" folgt via 105-1:
$$x + i \cdot (-\infty) \in A \setminus \mathbb{C}. $$
105-3. Die folgende Liste resultiert aus 105-2, indem in 105-2 die Variable x durch $\text{nan}, +\infty, -\infty \in \mathbb{T}$ ersetzt wird:

<table>
<thead>
<tr>
<th>105-3(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\text{nan} + i \cdot \text{nan} \in A \setminus \mathbb{C}$.</td>
</tr>
<tr>
<td>b) $\text{nan} + i \cdot (+\infty) \in A \setminus \mathbb{C}$.</td>
</tr>
<tr>
<td>c) $\text{nan} + i \cdot (-\infty) \in A \setminus \mathbb{C}$.</td>
</tr>
<tr>
<td>d) $(+\infty) + i \cdot \text{nan} \in A \setminus \mathbb{C}$.</td>
</tr>
<tr>
<td>e) $(+\infty) + i \cdot (+\infty) \in A \setminus \mathbb{C}$.</td>
</tr>
<tr>
<td>f) $(+\infty) + i \cdot (-\infty) \in A \setminus \mathbb{C}$.</td>
</tr>
<tr>
<td>g) $(-\infty) + i \cdot \text{nan} \in A \setminus \mathbb{C}$.</td>
</tr>
<tr>
<td>h) $(-\infty) + i \cdot (+\infty) \in A \setminus \mathbb{C}$.</td>
</tr>
<tr>
<td>i) $(-\infty) + i \cdot (-\infty) \in A \setminus \mathbb{C}$.</td>
</tr>
</tbody>
</table>

RECH-Notation.
Beweis 105-3 a)
Aus 95-12 \(\text{nan} \in \mathbb{T} \) folgt via 105-2:
\(\text{nan} + i \cdot \text{nan} \in \mathbb{A} \setminus \mathbb{C} \).

b)
Aus 95-12 \(+\infty \in \mathbb{T} \) folgt via 105-2:
\(\text{nan} + i \cdot (+\infty) \in \mathbb{A} \setminus \mathbb{C} \).

c)
Aus 95-12 \(-\infty \in \mathbb{T} \) folgt via 105-2:
\(\text{nan} + i \cdot (-\infty) \in \mathbb{A} \setminus \mathbb{C} \).

d)
Aus 95-12 \(\text{nan} \in \mathbb{T} \) folgt via 105-2:
\((+\infty) + i \cdot \text{nan} \in \mathbb{A} \setminus \mathbb{C} \).

e)
Aus 95-12 \(+\infty \in \mathbb{T} \) folgt via 105-2:
\((+\infty) + i \cdot (+\infty) \in \mathbb{A} \setminus \mathbb{C} \).

f)
95-12 \(-\infty \in \mathbb{T} \) folgt via 105-2:
\((+\infty) + i \cdot (-\infty) \in \mathbb{A} \setminus \mathbb{C} \).

g)
Aus 95-12 \(\text{nan} \in \mathbb{T} \) folgt via 105-2:
\((-\infty) + i \cdot \text{nan} \in \mathbb{A} \setminus \mathbb{C} \).

h)
Aus 95-12 \(+\infty \in \mathbb{T} \) folgt via 105-2:
\((-\infty) + i \cdot (+\infty) \in \mathbb{A} \setminus \mathbb{C} \).

i)
Aus 95-12 \(-\infty \in \mathbb{T} \) folgt via 105-2:
\((-\infty) + i \cdot (-\infty) \in \mathbb{A} \setminus \mathbb{C} \).
105-4. Es gilt $T \setminus \mathbb{R} \subseteq A \setminus \mathbb{C}$ und via 104-2 folgt hieraus nan, $+\infty$, $-\infty \in A \setminus \mathbb{C}$:

\[
\begin{align*}
105-4(\text{Satz}) \\
\text{a) } & T \setminus \mathbb{R} \subseteq A \setminus \mathbb{C}.
\text{b) } & \text{nan} \in A \setminus \mathbb{C}.
\text{c) } & +\infty \in A \setminus \mathbb{C}.
\text{d) } & -\infty \in A \setminus \mathbb{C}.
\end{align*}
\]

Beweis 105-4

REIM-Notation.

a)

\[
\begin{align*}
\text{Thema1} \\
2: & \text{ Aus Thema1" } \alpha \in T \setminus \mathbb{R} \text{" folgt via 5-3: } \alpha \in T.
3: & \text{ Aus } 2\text{" } \alpha \in T \text{" folgt via } \text{FST: } \alpha = \text{Re}\alpha.
4: & \text{ Aus Thema1" } \alpha \in T \setminus \mathbb{R} \text{" und aus } 3\text{" } \alpha = \text{Re}\alpha \text{" folgt: } \text{Re}\alpha \in T \setminus \mathbb{R}.
5: & \text{ Aus } 4\text{" } \text{Re}\alpha \in T \setminus \mathbb{R} \text{" folgt via 105-1: } \alpha \in A \setminus \mathbb{C}.
\end{align*}
\]

\begin{align*}
\text{Ergo Thema1: } & \forall \alpha : (\alpha \in T \setminus \mathbb{R}) \Rightarrow (\alpha \in A \setminus \mathbb{C}).
\text{Konsequenz via 0-2(Def): } & T \setminus \mathbb{R} \subseteq A \setminus \mathbb{C}.
\end{align*}
Beweis 105-4 bcd)

1: Via des bereits bewiesenen a) gilt: \(T \setminus \mathbb{R} \subseteq A \setminus \mathbb{C} \).

2.b): Aus 104-2 “\(\text{nan} \in T \setminus \mathbb{R} \)” und aus 1 “\(T \setminus \mathbb{R} \subseteq A \setminus \mathbb{C} \)” folgt via 0-4: \(\text{nan} \in A \setminus \mathbb{C} \).

2.c): Aus 104-2 “\(+\infty \in T \setminus \mathbb{R} \)” und aus 1 “\(T \setminus \mathbb{R} \subseteq A \setminus \mathbb{C} \)” folgt via 0-4: \(+\infty \in A \setminus \mathbb{C} \).

2.d): Aus 104-2 “\(-\infty \in T \setminus \mathbb{R} \)” und aus 1 “\(T \setminus \mathbb{R} \subseteq A \setminus \mathbb{C} \)” folgt via 0-4: \(-\infty \in A \setminus \mathbb{C} \).

\(\square \)
105-5. Es gilt $p \in A \setminus C$ genau dann, wenn $-p \in A \setminus C$ und dies ist genau dann der Fall, wenn $-(p) \in A \setminus C$:

\begin{framed}
105-5(Satz)

Die Aussagen i), ii), iii) sind äquivalent:

i) $p \in A \setminus C$.

ii) $-p \in A \setminus C$.

iii) $-(p) \in A \setminus C$.

\end{framed}
Beweis 105-5 [i] ⇒ [ii]) VS gleich

1: Aus VS gleich “\(p \in A \setminus C \)” folgt via 105-1:
\[p \in A \setminus C. \]

2.1: Aus 1 “\(p \) Zahl...” folgt via 100-6:
\[\neg p \text{ Zahl} \]

2.2: Es gilt:
\[(\neg p \in C) \lor (\neg p \notin C) \]

Fallunterscheidung

2.2.1. Fall

3: Aus 2.2.1. Fall “\(\neg p \in C \)” folgt via 101-9:
\[p \in C. \]

4: Es gilt 3 “\(p \in C \)”.
Es gilt 1 “\(\ldots p \notin C \)”.
Ex falso quodlibet folgt:
\[\neg p \notin C. \]

2.2.2. Fall

\[\neg p \notin C. \]

Ende Fallunterscheidung

In beiden Fällen gilt:
\[A1 \mid "\neg p \notin C" \]

3: Aus 2.1 “\(\neg p \) Zahl” und aus A1 gleich “\(\neg p \notin C \)” folgt via 105-1:
\[\neg p \in A \setminus C. \]
Beweis: 105-5 \((\text{ii)} \Rightarrow \text{iii})\) VS gleich

1: Aus VS gleich \(−p \in A \setminus C\)
folgt via 105-1:
\((-p \text{ Zahl}) \land (-p \notin C).\)

2.1: Aus 1\(−p \text{ Zahl...}\)
folgt via 100-6:
\((-(-p) \text{ Zahl}).\)

2.2: Es gilt:
\((-(-p) \in C) \lor (-(-p) \notin C).\)

\[\text{Fallunterscheidung}\]

\begin{align*}
\text{2.2.1.Fall} & \quad \neg(-p) \in C. \\
3: & \quad \text{Aus 2.2.1.Fall} \("-p \in C"\)
\quad \text{folgt via 101-9:} \quad -p \in C. \\
4: & \quad \text{Es gilt 3\("-p \in C"\).}
\quad \text{Es gilt 1\(\ldots -p \notin C".}
\quad \text{Ex falso quodlibet folgt:} \quad -(-p) \notin C. \\
\end{align*}

\begin{align*}
\text{2.2.2.Fall} & \quad \neg(-p) \notin C. \\
\end{align*}

\[\text{Ende Fallunterscheidung}\]

In beiden Fällen gilt:

\[\text{A1} \quad \neg(-p) \notin C.\]

3: Aus 2.1\(--(-p) \text{ Zahl}"\) und
aus A1 gleich \(--(-p) \notin C"\)
folgt via 105-1:
\((-(-p) \in A \setminus C).\)
Beweis 105-5

1: Aus VS gleich $\neg(-p) \in A \setminus C$
folgt via 105-1:
$(\neg(-p) \text{ Zahl}) \land (\neg(-p) \notin C)$.

2.1: Aus 1$\neg(-p) \text{ Zahl...}$
folgt via 100-6:
$p \text{ Zahl}.$

2.2: Es gilt:
$(p \in C) \lor (p \notin C)$.

<table>
<thead>
<tr>
<th>Fallunterscheidung</th>
</tr>
</thead>
</table>

2.2.1. Fall

3: Aus 2.2.1. Fall$\ p \in C$
folgt via 101-9:
$\neg(-p) \in C$.

4: Es gilt 3$\neg(-p) \in C$.
Es gilt 1$\ldots\neg(-p) \notin C$.
Ex falso quodlibet folgt:
$p \notin C$.

2.2.2. Fall

$p \notin C$.

Ende Fallunterscheidung
In beiden Fällen gilt:

| A1 |$p \notin C$ |

3: Aus 2.1$p \text{ Zahl...}$ und
aus A1 gleich $p \notin C$
folgt via 105-1:
$p \in A \setminus C$.

\[\square\]
105-6. Die Summe von \(x \in A \setminus C \) und \(y \) Zahl ist stets in \(A \setminus C \):

105-6(Satz)

\[\text{Aus } \{x \in A \setminus C \} \text{ und } \{y \text{ Zahl}\} \text{ folgt } \{x + y \in A \setminus C\}. \]

RECH-Notation.

Beweis 105-6 VS gleich \((x \in A \setminus C) \land (y \text{ Zahl})\).

REIM-Notation.

1: Aus VS gleich “\(x \in A \setminus C \)” folgt via 105-1: \((x \text{ Zahl}) \land (x \notin C)\).

2: Aus 1“\(x \) Zahl” und aus VS gleich “\(\ldots y \) Zahl” folgt via 96-13: \(x + y \) Zahl.

3: Es gilt:

\[(x + y \in C) \lor (x + y \notin C).\]

Fallunterscheidung

3.1.Fall

4: Aus 4.1.Fall“\(x + y \in C \)” folgt via 102-3: \(x \in C \).

5: Es gilt 4“\(x \in C \)”. Es gilt 1“\(\ldots x \notin C \)”. Ex falso quodlibet folgt: \(x + y \in A \setminus C \).

3.2.Fall

Aus 2“\(x + y \) Zahl” und aus 3.2.Fall“\(x + y \notin C \)” folgt via 105-1: \(x + y \in A \setminus C \).

Ende Fallunterscheidung In beiden Fällen gilt: \(x + y \in A \setminus C \).
105-7. Es gilt \(\text{Re}(x - x) = \text{nan} \) oder \(\text{Im}(x - x) = \text{nan} \) genau dann, wenn \(x \in A \setminus \mathbb{C} \):

\[
105-7(\text{Satz})
\]

Die Aussagen i), ii) sind äquivalent:

i) “\(\text{Re}(x - x) = \text{nan} \)” oder “\(\text{Im}(x - x) = \text{nan} \)”.

ii) \(x \in A \setminus \mathbb{C} \).

\[
\text{RECH-Notation}
\]

Beweis 105-7

\[
\text{REIM-Notation}
\]
Beweis 105-7 \(i \Rightarrow ii \) VS gleich \(((\text{Re}(x - x) = \text{nan}) \lor (\text{Im}(x - x) = \text{nan}))\).

1: Nach VS gilt: \(((\text{Re}(x - x) = \text{nan}) \lor (\text{Im}(x - x) = \text{nan}))\).

Fallunterscheidung

\[1.1.\text{Fall}\]

\[\begin{align*}
2: & \text{ Aus } 1.1.\text{Fall} "\text{Re}(x - x) = \text{nan}" \text{ und aus } 95-12 "\text{nan} \in \mathbb{T}" \text{ folgt: } \text{Re}(x - x) \in \mathbb{T}. \\
3: & \text{ Aus } 2 "\text{Re}(x - x) \in \mathbb{T}" \text{ folgt via } 96-9: x - x \text{ Zahl.} \\
4: & \text{ Aus } 3 \text{ folgt: } x + (-x) \text{ Zahl.} \\
5: & \text{ Aus } 4 "x + (-x) \text{ Zahl}" \text{ folgt via } 96-13: x \text{ Zahl.} \\
6: & \text{ Es gilt: } (x \in \mathbb{C}) \lor (x \notin \mathbb{C}).
\[\end{align*}\]

Fallunterscheidung

\[6.1.\text{Fall}\]

\[\begin{align*}
7: & \text{ Aus } 6.1.\text{Fall} "x \in \mathbb{C}" \text{ folgt via } 102-5: x - x = 0. \\
8: & \text{ Aus } 7 "x - x = 0" \text{ und aus } AAIII "\text{Re} = 0" \text{ folgt: } \text{Re}(x - x) = 0. \\
9: & \text{ Aus } 8 "\text{Re}(x - x) = 0" \text{ und aus } 1.1.\text{Fall} "\text{Re}(x - x) = \text{nan}" \text{ folgt: } 0 = \text{nan.} \\
10: & \text{ Es gilt } 9 "0 = \text{nan}". \\
& \text{ Es gilt } 95-7 "0 \neq \text{nan}". \\
& \text{Ex falso quodlibet folgt: } x \in A \setminus \mathbb{C}.
\[\end{align*}\]

\[6.2.\text{Fall}\]

\[\begin{align*}
& \text{Aus } 5 "x \text{ Zahl}" \text{ und aus } 6.2.\text{Fall} "x \notin \mathbb{C}" \text{ folgt via } 105-1: x \in A \setminus \mathbb{C}.
\[\end{align*}\]

Ende Fallunterscheidung In beiden Fällen gilt: \(x \in A \setminus \mathbb{C} \).
Beweis 105-7 \([i] \Rightarrow [ii]\) VS gleich \(((\text{Re}(x - x) = \text{nan}) \lor (\text{Im}(x - x) = \text{nan}))\).

\[\begin{align*}
\text{Fallunterscheidung} \\
\end{align*}\]

1.2. Fall

2: Aus 1.2. Fall \(\text{Im}(x - x) = \text{nan}\) und
aus 95-12 \(\text{nan} \in \mathbb{T}\)
folgt:
\(\text{Im}(x - x) \in \mathbb{T}\).

3: Aus 2 \(\text{Im}(x - x) \in \mathbb{T}\)
folgt via 96-9:
\(x - x \text{ Zahl}\).

4: Aus 3
folgt:
\(x + (-x) \text{ Zahl}\).

5: Aus 4 \(x + (-x) \text{ Zahl}\)
folgt via 96-13:
\(x \text{ Zahl}\).

6: Es gilt:
\((x \in \mathbb{C}) \lor (x \notin \mathbb{C})\).

\[\begin{align*}
\text{Fallunterscheidung} \\
\end{align*}\]

6.1. Fall

7: Aus 6.1. Fall \(x \in \mathbb{C}\)
folgt via 102-5:
\(x - x = 0\).

8: Aus 7 \(x - x = 0\) und
aus AAIll \(\text{Im}0 = 0\)
folgt:
\(\text{Im}(x - x) = 0\).

9: Aus 8 \(\text{Im}(x - x) = 0\) und
aus 1.2. Fall \(\text{Im}(x - x) = \text{nan}\)
folgt:
\(0 = \text{nan}\).

10: Es gilt 9 \(0 = \text{nan}\).
Es gilt 95-7 \(0 \neq \text{nan}\).
Ex falso quodlibet folgt:
\(x \in \mathbb{A} \setminus \mathbb{C}\).

6.2. Fall

\(x \notin \mathbb{C}\).

Aus 5 \(x \text{ Zahl}\) und
aus 6.2. Fall \(x \notin \mathbb{C}\)
folgt via 105-1:
\(x \in \mathbb{A} \setminus \mathbb{C}\).

\[\begin{align*}
\text{Ende Fallunterscheidung} \\
\text{In beiden Fällen gilt:} \quad x \in \mathbb{A} \setminus \mathbb{C}.
\end{align*}\]
Beweis 105-7 \([i] \Rightarrow [ii]\) VS gleich \((\text{Re}(x - x) = \text{nan}) \lor (\text{Im}(x - x) = \text{nan})\).

\[\]

Fallunterscheidung

\[\]

Ende Fallunterscheidung

In beiden Fällen gilt: \(x \in A \setminus C\).

\([ii] \Rightarrow [i]\) VS gleich \(x \in A \setminus C\).

1: Aus VS gleich "\(x \in A \setminus C\)"

folgt via 105-1:

\((\text{Re} x \in T \setminus \mathbb{R}) \lor (\text{Im} x \in T \setminus \mathbb{R})\).

Fallunterscheidung

\[\]

1.1. Fall

\[\]

2: Aus 1.1. Fall "\(\text{Re} x \in T \setminus \mathbb{R}\)"

folgt via 104-7:

\((\text{Re} x) - (\text{Re} x) = \text{nan}\).

3: \(\text{Re}(x-x) = \text{Re}(x+(-x)) 96=25 (\text{Re} x)+(\text{Re}(-x)) 96=27 (\text{Re} x)+(-\text{Re} x)\)

\[\]

4: Aus 3 "\(\text{Re}(x-x) = \ldots = \text{nan}\)"

folgt: \((\text{Re}(x-x) = \text{nan}) \lor (\text{Im}(x-x) = \text{nan})\).

1.2. Fall

\[\]

2: Aus 1.2. Fall "\(\text{Im} x \in T \setminus \mathbb{R}\)"

folgt via 104-7:

\((\text{Im} x) - (\text{Im} x) = \text{nan}\).

3: \(\text{Im}(x-x) = \text{Im}(x+(-x)) 96=25 (\text{Im} x)+(\text{Im}(-x)) 96=27 (\text{Im} x)+(-\text{Im} x)\)

\[\]

4: Aus 3 "\(\text{Im}(x-x) = \ldots = \text{nan}\)"

folgt: \((\text{Re}(x-x) = \text{nan}) \lor (\text{Im}(x-x) = \text{nan})\).

Ende Fallunterscheidung

In beiden Fällen gilt:

\((\text{Re}(x-x) = \text{nan}) \lor (\text{Im}(x-x) = \text{nan})\).
FundamentalSatz in \mathbb{R}.

NTF\mathbb{R}: NullTeilerFreiheit in \mathbb{R}.
106-1. Mit diesem folgenden Satz wird der erste Schritt in Richtung des später zu beweisenden FundamentalSatz getan:

106-1(Satz)

Es gelte:

\[\to x \in \mathbb{R} \]

\[\to y \in \mathbb{R} \]

Dann folgt:

a) \((-x) \cdot y = -x \cdot y. \]

b) \(x \cdot (-y) = -x \cdot y. \]

c) \((-x) \cdot (-y) = x \cdot y. \]

RECH-Notation.
Beweis 106-1 a)

1.1: Aus \(x \in \mathbb{R} \) folgt via \(\in \mathbb{SZ} \):
\[x \in \mathbb{C}. \]

1.2: Aus \(x \in \mathbb{R} \) folgt via 100-6:
\[-x \in \mathbb{R}. \]

1.3: Aus \(y \in \mathbb{R} \) folgt via \(\in \mathbb{SZ} \):
\[y \text{ Zahl}. \]

1.4: Aus \(x \in \mathbb{R} \) und aus \(y \in \mathbb{R} \) folgt via AAV:
\[x \cdot y = y \cdot x. \]

2.1: Aus 1.1\(x \in \mathbb{C} \) folgt via 102-5:
\[x - x = 0. \]

2.2: Aus 1.3 \(y \text{ Zahl} \) folgt via FSM0:
\[y \cdot 0 = 0. \]

2.3: Aus \(y \in \mathbb{R} \) und aus 1.2 \(-x \in \mathbb{R} \) folgt via AAV:
\[y \cdot (-x) = (-x) \cdot y. \]

2.4: Aus \(y \in \mathbb{R} \), aus \(x \in \mathbb{R} \) und aus 1.2 \(-x \in \mathbb{R} \) folgt via AAV:
\[y \cdot (x + (-x)) = y \cdot x + y \cdot (-x). \]

3: \(0 \)
\[\overset{\text{2.2}}{=} y \cdot 0 \]
\[\overset{\text{2.1}}{=} y \cdot (x - x) \]
\[= y \cdot (x + (-x)) \]
\[\overset{\text{2.4}}{=} y \cdot x + y \cdot (-x) \]
\[\overset{\text{1.4}}{=} x \cdot y + y \cdot (-x) \]
\[\overset{\text{2.3}}{=} x \cdot y + (-x) \cdot y. \]

4: Aus 3\(0 = \ldots = x \cdot y + (-x) \cdot y \) folgt via FS−:
\[(-x) \cdot y = -x \cdot y. \]
Beweis 106-1 b)

1.1: Aus \rightarrow "$y \in \mathbb{R}$" und
 aus \rightarrow "$x \in \mathbb{R}$"
 folgt via AAV: $y \cdot x = x \cdot y$.

1.2: Aus \rightarrow "$y \in \mathbb{R}$"
 folgt via 100-6: $-y \in \mathbb{R}$.

1.3: Aus \rightarrow "$y \in \mathbb{R}$" und
 aus \rightarrow "$x \in \mathbb{R}$"
 folgt via des bereits bewiesenen a): $(-y) \cdot x = -y \cdot x$.

2: Aus \rightarrow "$x \in \mathbb{R}$" und
 aus 1.2 "$-y \in \mathbb{R}$"
 folgt via AAV: $x \cdot (-y) = (-y) \cdot x$.

3: $x \cdot (-y) = (-y) \cdot x = -y \cdot x = -(y \cdot x) = -x \cdot y$.

4: Aus 3
 folgt: $x \cdot (-y) = -x \cdot y$.

c)

1: Aus \rightarrow "$y \in \mathbb{R}$"
 folgt via 100-6: $-y \in \mathbb{R}$.

2: Aus \rightarrow "$x \in \mathbb{R}$" und
 aus 1 "$-y \in \mathbb{R}$"
 folgt via des bereits bewiesenen a): $(-x) \cdot (-y) = -x \cdot (-y)$.

3: Aus \rightarrow "$x \in \mathbb{R}$" und
 aus \rightarrow "$y \in \mathbb{R}$"
 folgt via des bereits bewiesenen b): $x \cdot (-y) = -x \cdot y$.

4: $(-x) \cdot (-y) = -x \cdot (-y) = -(-x \cdot y) = x \cdot y$.

5: Aus 4
 folgt: $(-x) \cdot (-y) = x \cdot y$.

\[\square\]
106-2. In \(\mathbb{R} \) gibt es NullTeilerFreiheit:

\[
\begin{align*}
106-2(\text{Satz}) & \quad (\text{NTF}_{\mathbb{R}}: \text{NullTeilerFreiheit in } \mathbb{R}) \\
\text{Unter den Voraussetzungen} & \ldots \\
\Rightarrow & \ x \in \mathbb{R}. \\
\Rightarrow & \ y \in \mathbb{R}. \\
\ldots & \text{sind die Aussagen i), ii) äquivalent:} \\
i) & \ x \cdot y = 0. \\
ii) & \ "x = 0" \text{ oder } "y = 0".
\end{align*}
\]

RECH-Notation.
Beweis 106-2 \([i) \Rightarrow ii)\] VS gleich

1: Es gilt:

\[(0 \neq x) \land (0 \neq y) \lor (x = 0) \lor (y = 0).\]

Fallunterscheidung

<table>
<thead>
<tr>
<th>1.1. Fall</th>
<th>((0 \neq x) \land (0 \neq y)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Aus (\rightarrow "x \in \mathbb{R}") folgt via AAV:</td>
<td>(rez(x) \in \mathbb{R}).</td>
</tr>
<tr>
<td>2.2: Aus 1.1. Fall "(0 \neq x) ..." und aus (\rightarrow "x \in \mathbb{R}") folgt via 96-37:</td>
<td>(rez(x) \cdot x = 1).</td>
</tr>
<tr>
<td>2.3: Aus (\rightarrow "y \in \mathbb{R}") folgt via AAV:</td>
<td>(1 \cdot y = y).</td>
</tr>
<tr>
<td>3.1: Aus 2.1 "(rez(x) \in \mathbb{R})" folgt via SZ:</td>
<td>(rez(x)) Zahl.</td>
</tr>
<tr>
<td>3.2: Aus 2.1 "(rez(x) \in \mathbb{R})", aus (\rightarrow "x \in \mathbb{R}") und aus (\rightarrow "y \in \mathbb{R}") folgt via AAV:</td>
<td>(rez(x) \cdot (x \cdot y) = (rez(x) \cdot x) \cdot y).</td>
</tr>
<tr>
<td>4: Aus 3.1 "(rez(x)) Zahl" folgt via FSM0:</td>
<td>(rez(x) \cdot 0 = 0).</td>
</tr>
</tbody>
</table>

| 5: \(0 \equiv rez(x) \cdot 0 \equiv rez(x) \cdot (x \cdot y) \equiv (rez(x) \cdot x) \cdot y \equiv 1 \cdot y \equiv y\). |
|-----------------|-----------------|
| 6: Aus 4 folgt: | \(0 = y\). |
| 7: Es gilt 6 "\(0 = y\)\". Es gilt 1.1. Fall "... \(0 \neq y\)". Ex falso quodlibet folgt: | \((x = 0) \lor (y = 0)\). |

| 1.2. Fall | \((x = 0) \lor (y = 0)\). |

Ende Fallunterscheidung In beiden Fällen gilt: \((x = 0) \lor (y = 0)\).
Beweis 106-2 \(\text{(ii) } \Rightarrow \text{i) } \)

VS gleich \((x = 0) \lor (y = 0)\).

1: Nach VS gilt:
\((x = 0) \lor (y = 0)\).

Fallunterscheidung

1.1. Fall \(x = 0 \).

2: Aus \(\rightarrow \text{"} y \in \mathbb{R} \text{"} \)
 folgt via \(\in \text{SZ}: \)
 \(y \text{ Zahl.} \)

3: Aus \(2\text{"} y \text{ Zahl"} \)
 folgt via \(\text{FSM0}: \)
 \(0 \cdot y = 0. \)

4: Aus 1.1. Fall \(\text{"} x = 0 \text{"} \) und
 aus \(2\text{"} 0 \cdot y = 0 \text{"} \)
 folgt:
 \(x \cdot y = 0. \)

1.2. Fall \(y = 0 \).

2: Aus \(\rightarrow \text{"} x \in \mathbb{R} \text{"} \)
 folgt via \(\in \text{SZ}: \)
 \(x \text{ Zahl.} \)

3: Aus \(2\text{"} x \text{ Zahl"} \)
 folgt via \(\text{FSM0}: \)
 \(x \cdot 0 = 0. \)

4: Aus 1.2. Fall \(\text{"} y = 0 \text{"} \) und
 aus \(2\text{"} x \cdot 0 = 0 \text{"} \)
 folgt:
 \(x \cdot y = 0. \)

Ende Fallunterscheidung

In beiden Fällen gilt:
\(x \cdot y = 0. \)
\(\square \)
106-3. Via Negation folgt aus NTF\(\mathbb{R}\) das vorliegende Kriterium:

106-3(Satz)

Unter den Voraussetzungen . . .

\[\rightarrow x \in \mathbb{R}. \]

\[\rightarrow y \in \mathbb{R}. \]

. . . sind die Aussagen i), ii) äquivalent:

i) \(0 \neq x \cdot y.\)

ii) “0 \neq x” und “0 \neq y”.

RECH-Notation.

Beweis 106-3

1: Aus \(\rightarrow \) “\(x \in \mathbb{R}\)” und

aus \(\rightarrow \) “\(y \in \mathbb{R}\)”

folgt via NTF\(\mathbb{R}\):

\[x \cdot y = 0 \iff (x = 0) \lor (y = 0). \]

2: Aus 1

folgt:

\(\neg(x \cdot y = 0) \iff \neg((x = 0) \lor (y = 0)). \)

3: Aus 2

folgt:

\(\neg(x \cdot y = 0) \iff \neg(x = 0) \land \neg(y = 0). \)

4: Aus 3

folgt:

\(0 \neq x \cdot y \iff (0 \neq x) \land (0 \neq y).\)
Parameter Axiom III. \(\leq \).
\(\leq \)-Notation.
FS\(\leq \) : FundamentalSatz \(\leq \).
KGM: Kommutativ Gesetz Multiplikation.

Ersterstellung: 20/07/05 Letzte Änderung: 03/02/12
ParameterAxiom III. Die klassische KleinerGleich-Relation betritt in axi- matischer Weise die Essays. Im Folgenden wird ParameterAxiom III ohne explizite Referenz verwendet, i.e. es wird im Folgenden \leq ohne expliziten Bezug auf ParameterAxiom III als Klasse angesehen:

\[
\text{ParameterAxiom III} \quad \exists \Omega : \Omega = \leq.
\]
107-1. Bei der im ParameterAxiom III in die Essays eingebrachten Klasse \(\leq \) handelt es sich um die KleinerGleich-Relation. Die Klasse \(\leq \) ist die Kleiner-Relation und wird mit einem eigenen, an die HOIR-Notation angelehnten Symbol bezeichnet:

\[
\begin{align*}
107-1(\text{Definition}) \\
\text{a) } & < = \text{ir} \leq. \\
\text{b) } & \text{“}\mathcal{C} \text{ KleinerGleich-Relation” genau dann, wenn gilt:} \\
& \mathcal{C} = \leq. \\
\text{c) } & \text{“}\mathcal{C} \text{ Kleiner-Relation” genau dann, wenn gilt:} \\
& \mathcal{C} = <.
\end{align*}
\]
107-2. Die vorliegenden Aussagen verstehen sich fast von selbst:

107-2(Satz)

a) \(\leq \) KleinerGleich-Relation.

b) Aus “\(\mathcal{C} \) KleinerGleich-Relation” und “\(\mathcal{D} \) KleinerGleich-Relation” folgt “\(\mathcal{C} = \mathcal{D} \)”.

c) < KleinerRelation.

d) Aus “\(\mathcal{C} \) Kleiner-Relation” und “\(\mathcal{D} \) Kleiner-Relation” folgt “\(\mathcal{C} = \mathcal{D} \)”.

Beweis 107-2 a)

Aus “\(\leq = \leq \)” folgt via **107-1(Def)**: \(\leq \) KleinerGleichRelation.

b) VS gleich \((\mathcal{C} \text{ KleinerGleich-Relation}) \land (\mathcal{D} \text{ KleinerGleich-Relation})\).

1.1: Aus VS gleich “\(\mathcal{C} \) KleinerGleich-Relation…” folgt via **107-1**: \(\mathcal{C} = \leq \).

1.2: Aus VS gleich “…\(\mathcal{D} \) KleinerGleich-Relation” folgt via **107-1**: \(\mathcal{D} = \leq \).

2: Aus 1.1 und aus 1.2 folgt: \(\mathcal{C} = \mathcal{D} \).

c)

Aus “\(< = < \)” folgt via **107-1(Def)**: < KleinerRelation.

d) VS gleich \((\mathcal{C} \text{ Kleiner-Relation}) \land (\mathcal{D} \text{ Kleiner-Relation})\).

1.1: Aus VS gleich “\(\mathcal{C} \) Kleiner-Relation…” folgt via **107-1**: \(\mathcal{C} = < \).

1.2: Aus VS gleich “…\(\mathcal{D} \) Kleiner-Relation” folgt via **107-1**: \(\mathcal{D} = < \).

2: Aus 1.1 und aus 1.2 folgt: \(\mathcal{C} = \mathcal{D} \).
≤-Notation. Eine der Standard-Notationen der Mathematik wird hiermit in die Essays übernommen:

\[
\begin{array}{l}
\text{≤-Notation} \\
1) \quad \text{"} p \leq q \text{" genau dann, wenn gilt:} \\
\quad (p, q) \in \leq . \\
2) \quad \text{"} p < q \text{" genau dann, wenn gilt:} \\
\quad (p, q) \in \leq .
\end{array}
\]
Arithmetisches Axiom VII. Hiermit werden die grundlegenden Aussagen über ≤ und über die Zusammenhänge elementaren Rechnens mit der Kleiner-Relation getroffen. Mit “$-\infty < x < +\infty$” von d) ist die Aussage “$(-\infty < x) \land (x < +\infty)$” gemeint:

AAVII: Arithmetisches Axiom VII

a) \leq antiSymmetrische Halbordnung in S.
b) S ist \leqKette.
c) \leq Total Vollständig.
d) Aus “$x \in \mathbb{R}$” folgt “$-\infty < x < +\infty$.”
e) Aus “$x \in \mathbb{R}$” und “$y \in \mathbb{R}$” und “$x < y$” folgt “$0 < y - x$”.
f) Aus “$x \in \mathbb{R}$” und “$y \in \mathbb{R}$” und “$0 < y - x$” folgt “$x < y$”.
g) Aus “$x \in \mathbb{R}$” und “$y \in \mathbb{R}$” und “$0 < x$” und “$0 < y$”

folgt “$0 < x \cdot y$”.
h) Aus “$x \in \mathbb{R}$” und “$0 < x$” folgt “$x \cdot (+\infty) = (+\infty) \cdot x = +\infty$”.
i) Aus “$x \in \mathbb{R}$” und “$0 < x$” folgt “$x \cdot (-\infty) = (-\infty) \cdot x = -\infty$”.
j) Aus “$x \in \mathbb{R}$” und “$x < 0$” folgt “$x \cdot (+\infty) = (+\infty) \cdot x = -\infty$”.
k) Aus “$x \in \mathbb{R}$” und “$x < 0$” folgt “$x \cdot (-\infty) = (-\infty) \cdot x = +\infty$”.

RECH. \leq-Notation.
107-3. Die unscheinbar wirkende Aussage “$x \leq y$” hat mannigfaltige Konsequenzen, die alle in den axiomatisch fest gelegten Eigenschaften von \leq begründet sind:

107-3(Satz)

Es gelte:

$\rightarrow x \leq y$.

Dann folgt:

a) $x \in S$.

b) $y \in S$.

c) $x \leq x$.

d) $y \leq y$.

e) $x = \text{Re}x$.

f) $y = \text{Re}y$.

g) $\text{Re}x \leq y$.

h) $x \leq \text{Re}y$.

i) $\text{Re}x \leq \text{Re}y$.

REIM. \leq-Notation.

Beweis 107-3

1: Via AA VII gilt: \leq antiSymmetrische Halbordnung in S.

2: Aus 1 “\leq antiSymmetrische Halbordnung in S” folgt via 34-13: $(\leq \text{Relation in } S) \land (\leq \text{reflexiv in } S)$.

...
Beweis 107-3

...

3.a): Aus 2“≤ Relation in \mathbb{S}...” und aus \rightarrow “$x \leq y$”
folgt via 34-1: $x \in \mathbb{S}$.

3.b): Aus 2“≤ Relation in \mathbb{S}...” und aus \rightarrow “$x \leq y$”
folgt via 34-1: $y \in \mathbb{S}$.

3.c): Aus 2“≤ Relation in \mathbb{S}...”, aus 2“... ≤ reflexiv in \mathbb{S}” und aus \rightarrow “$x \leq y$”
folgt via 34-11: $x \leq x$.

3.d): Aus 2“≤ Relation in \mathbb{S}...”, aus 2“... ≤ reflexiv in \mathbb{S}” und aus \rightarrow “$x \leq y$”
folgt via 34-11: $y \leq y$.

4.1: Aus 3.a) “$x \in \mathbb{S}$”
folgt via $\in \mathbb{SZ}$: $x \in \mathbb{T}$.

4.2: Aus 3.b) “$y \in \mathbb{S}$”
folgt via $\in \mathbb{SZ}$: $y \in \mathbb{T}$.

5.e): Aus 4.1“$x \in \mathbb{T}$”
folgt via FST: $x = \text{Re}x$.

5.f): Aus 4.2“$y \in \mathbb{T}$”
folgt via FST: $y = \text{Re}y$.

6.g): Aus 5.e) “$x = \text{Re}x$” und aus \rightarrow “$x \leq y$”
folgt: $\text{Re}x \leq y$.

6.h): Aus \rightarrow “$x \leq y$” und aus 5.f) “$y = \text{Re}y$”
folgt: $x \leq \text{Re}y$.

7.i): Aus 6.g) “$\text{Re}x \leq y$” und aus 5.f) “$y = \text{Re}y$”
folgt: $\text{Re}x \leq \text{Re}y$.

\square
107-4. Interessanter Weise ist über AAVII hinaus gehend $x \in \mathbb{R}$ äquivalent zu $-\infty < x < +\infty$:

\begin{center}
\begin{tabular}{ll}
\hline
107-4(Satz) & \\
Die Aussagen \textit{i)}, \textit{ii)} sind äquivalent: & \\
\textit{i)} $x \in \mathbb{R}$. & \\
\textit{ii)} $-\infty < x < +\infty$. & \\
\hline
\end{tabular}
\end{center}

\begin{itemize}
\item \textbf{Beweis 107-4} \hspace{1cm} \textbf{VS gleich} \hspace{1cm} $x \in \mathbb{R}$.
\item Aus \textbf{VS gleich} "$x \in \mathbb{R}$" folgt via AAVII: $-\infty < x < +\infty$.
\item \textbf{VS gleich} "$-\infty < x \ldots$" folgt via \textbf{41-3}: $-\infty \leq x$.
\item \textbf{VS gleich} "$-\infty < x \ldots$" folgt via \textbf{41-3}: $-\infty \neq x$.
\item \textbf{VS gleich} "$\ldots x < +\infty$" folgt via \textbf{41-3}: $x \neq +\infty$.
\item Aus 1.1 "$-\infty \leq x$" folgt via \textbf{107-3}: $x \in \mathbb{S}$.
\item Aus 1.2 folgt: $x \neq -\infty$.
\item Aus 2.1 "$x \in \mathbb{S}$", aus 1.3 "$x \neq +\infty$" und aus 2.2 "$x \neq -\infty$" folgt via \textbf{95-17}: $x \in \mathbb{R}$.
\end{itemize}
107-5. Die Aussage \(x \in S \) ist - unter anderem - äquivalent zu \(x \leq x \):

\[
\begin{align*}
107-5&\text{(Satz)} \\
Die Aussagen &i), ii), iii), iv), v) sind äquivalent:
\end{align*}
\]

i) \(x \in S \).

ii) \(x \leq x \).

iii) \(-\infty \leq x \).

iv) \(x \leq +\infty \).

v) \(-\infty \leq x \leq +\infty \).

\(\leq \)\text{:Notation.}

\textbf{Beweis 107-5} \[1) \Rightarrow ii)] \text{VS gleich} \quad x \in S . \]

1: Aus \text{AAVII}“\(\leq \) antiSymmetrische Halbordnung in \(S \)”\nfolgt via \text{34-13}: \(\leq \text{reflexiv in } S \).

2: Aus 1“\(\leq \) reflexiv in \(S \)” und
aus \text{VS gleich} “\(x \in S \)”\nfolgt via \text{30-17(Def)}: \(x \leq x \).
Beweis 107-5 \[\text{ii) } \Rightarrow \text{ iii)} \]

1: Aus VS gleich "\(x \leq x \)"
folgt via 107-3:
\[x \in S. \]

2: Aus 1"\(x \in S \)"
folgt via 95-15:
\[(x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty). \]

\[\text{Fallunterscheidung} \]

\[\begin{array}{ll}
\text{2.1.Fall} & x \in \mathbb{R}. \\
3: & \text{Aus 2.1.Fall } "x \in \mathbb{R}"
\text{ folgt via AAVII: } -\infty < x. \\
4: & \text{Aus 3" } -\infty < x"
\text{ folgt via 41-3: } -\infty \leq x.
\end{array} \]

\[\begin{array}{ll}
\text{2.2.Fall} & x = +\infty. \\
3.1: & \text{Via AAVII gilt: } \leq \text{ antiSymmetrische Halbordnung in } S.
3.2: & \text{Via AAI gilt: } 0 \in \mathbb{R}.
4.1: & \text{Aus 3.1" } \leq \text{ antiSymmetrische Halbordnung in } S"
\text{ folgt via 34-13: } \leq \text{ transitiv.} \\
4.2: & \text{Aus 3.2" } 0 \in \mathbb{R}"
\text{ folgt via AAVII: } -\infty < 0 < +\infty.
5: & \text{Aus 4.1" } \leq \text{ transitiv" ,}
\text{ aus 4.2" } -\infty < 0 \ldots " \text{ und}
\text{ aus 4.2" } \ldots 0 < +\infty"
\text{ folgt via 44-1: } -\infty \leq +\infty.
6: & \text{Aus 5" } -\infty \leq +\infty" \text{ und}
\text{ aus 2.2.Fall } "x = +\infty"
\text{ folgt: } -\infty \leq x.
\end{array} \]

...
Beweis 107-5 \(\text{ii)} \Rightarrow \text{iii)} \) VS gleich \(x \leq x. \)

Fallunterscheidung

\[
\begin{align*}
2.3. \text{Fall} \\
\text{3.1:} & \text{ Via 95-11 gilt: } -\infty \in \mathbb{S}. \\
\text{3.2:} & \text{ Via AA VII gilt: } -\infty \leq \text{ antiSymmetrische Halbordnung in } \mathbb{S}. \\
\text{4:} & \text{ Aus 3.2“} \leq \text{ antiSymmetrische Halbordnung in } \mathbb{S}” \\
& \text{ folgt via 34-13: } \leq \text{ reflexiv in } \mathbb{S}. \\
\text{5:} & \text{ Aus 4“} \leq \text{ reflexiv in } \mathbb{S}” \text{ und } \\
& \text{ aus 3.2“} -\infty \in \mathbb{S}” \\
& \text{ folgt via 30-17(Def): } -\infty \leq -\infty. \\
\text{6:} & \text{ Aus 5“} -\infty \leq -\infty” \text{ und } \\
& \text{ aus 2.3.} \text{Fall“} x = -\infty” \\
& \text{ folgt: } -\infty \leq x.
\end{align*}
\]

Ende Fallunterscheidung In allen Fällen gilt: \(-\infty \leq x. \)

\[
\begin{align*}
\text{iii)} \Rightarrow \text{iv)} \) VS gleich \(-\infty \leq x. \)
\]

\[
\begin{align*}
\text{1:} & \text{ Aus VS gleich “} -\infty \leq x” \\
& \text{ folgt via 107-3: } x \in \mathbb{S}. \\
\text{2:} & \text{ Aus 1“} x \in \mathbb{S}” \\
& \text{ folgt via 95-15: } (x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty). \\
\end{align*}
\]

Fallunterscheidung

\[
\begin{align*}
2.1. \text{Fall} \\
\text{3:} & \text{ Aus 2.1.} \text{Fall“} x \in \mathbb{R}” \\
& \text{ folgt via AA VII: } x < +\infty. \\
\text{4:} & \text{ Aus 3“} x < +\infty” \\
& \text{ folgt via 41-3: } x \leq +\infty.
\end{align*}
\]

...
Beweis 107-5 \([iii) \Rightarrow iv]\) VS gleich \(-\infty \leq x\).

...

Fallunterscheidung

...

2.2. Fall

3.1: Via 95-11 gilt: \(+\infty \in S\).

3.2: Via AAVII gilt: \(\leq\) antiSymmetrische Halbordnung in \(S\).

4: Aus 3.2“\(\leq\) antiSymmetrische Halbordnung in \(S\)”
folgt via 34-13: \(\leq\) reflexiv in \(S\).

5: Aus 4“\(\leq\) reflexiv in \(S\)” und
aus 3.2“\(+\infty \in S\)”
folgt via 30-17(Def): \(+\infty \leq +\infty\).

6: Aus 2.2.Fall“\(x = +\infty\)” und
aus 5“\(+\infty \leq +\infty\)”
folgt: \(x \leq +\infty\).

2.3. Fall

3.1: Via AAVII gilt: \(\leq\) antiSymmetrische Halbordnung in \(S\).

3.2: Via AAII gilt: \(0 \in \mathbb{R}\).

4.1: Aus 3.1“\(\leq\) antiSymmetrische Halbordnung in \(S\)”
folgt via 34-13: \(\leq\) transitiv.

4.2: Aus 3.2“\(0 \in \mathbb{R}\)”
folgt via AAVII: \(-\infty < 0 < +\infty\).

5: Aus 4.1“\(\leq\) transitiv”,
aus 4.2“\(-\infty < 0\)” und
aus 4.2“\(0 < +\infty\)”
folgt via 44-1: \(-\infty \leq +\infty\).

6: Aus 2.2.Fall“\(x = -\infty\)” und
aus 5“\(-\infty \leq +\infty\)”
folgt: \(x \leq +\infty\).

Ende Fallunterscheidung In allen Fällen gilt: \(x \leq +\infty\).
Beweis 107-5 \((iv) \Rightarrow v \) VS gleich

1: Aus VS gleich "\(x \leq +\infty \)"
 folgt via 107-3:
 \[x \in \mathbb{S}. \]

2: Aus 1 "\(x \in \mathbb{S} \)"
 folgt via 95-15:
 \[(x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty). \]

\begin{tabular}{|l|}
\hline
\textbf{Fallunterscheidung} \\
\hline
\hline
\textbf{2.1.Fall} & \(x \in \mathbb{R}. \) \\
\hline
3: Aus 2.1.Fall "\(x \in \mathbb{R} \)"
 folgt via AAVII: & \(-\infty < x. \) \\
4: Aus 3 "\(-\infty < x \)"
 folgt via 41-3: & \(-\infty \leq x. \) \\
5: Aus 4 "\(-\infty \leq x \)" und
 aus VS gleich "\(x \leq +\infty \)"
 folgt: & \(-\infty \leq x \leq +\infty. \) \\
\hline
\hline
\textbf{2.2.Fall} & \(x = +\infty. \) \\
\hline
3.1: Via AAVII gilt: & \(\leq \) antiSymmetrische Halbordnung in \(\mathbb{S}. \) \\
3.2: Via AAI gilt: & \(0 \in \mathbb{R}. \) \\
4.1: Aus 3.1 "\(\leq \) antiSymmetrische Halbordnung in \(\mathbb{S} \)"
 folgt via 34-13: & \(\leq \) transitiv. \\
4.2: Aus 3.2 "\(0 \in \mathbb{R} \)"
 folgt via AAVII: & \(-\infty < 0 < +\infty. \) \\
5: Aus 4.1 "\(\leq \) transitiv",
 aus 4.2 "\(-\infty < 0 \ldots \)" und
 aus 4.2 "\(\ldots 0 < +\infty \)"
 folgt via 44-1: & \(-\infty \leq +\infty. \) \\
6: Aus 5 "\(-\infty \leq +\infty \)" und
 aus 2.2.Fall "\(x = +\infty \)"
 folgt: & \(-\infty \leq x. \) \\
7: Aus 6 "\(-\infty \leq x \)" und
 aus VS gleich "\(x \leq +\infty \)"
 folgt: & \(-\infty \leq x \leq +\infty. \) \\
\hline
\end{tabular}
Beweis 107-5 \(\{ iv \} \Rightarrow v \) \(\operatorname{VS} \) gleich \(x \leq +\infty \).

...Fallunterscheidung...

2.3. Fall

3.1: Via 95-11 gilt: \(-\infty \in S \).

3.2: Via AAVII gilt: \(\leq \) antiSymmetrische Halbordnung in \(S \).

4: Aus 3.2\(\leq \) antiSymmetrische Halbordnung in \(S \)"
folgt via 34-13: \(\leq \) reflexiv in \(S \).

5: Aus 4\(\leq \) reflexiv in \(S \) und
aus 3.2\(-\infty \in S \)"
folgt via 30-17(Def): \(-\infty \leq -\infty \).

6: Aus 5\(-\infty \leq -\infty \) und
aus 2.3. Fall“\(x = -\infty \)"
folgt: \(-\infty \leq x \).

7: Aus 6\(-\infty \leq x \) und
aus VS gleich “\(x \leq +\infty \)"
folgt: \(-\infty \leq x \leq +\infty \).

Ende Fallunterscheidung In allen Fällen gilt: \(-\infty \leq x \leq +\infty \).

\(\{ v \} \Rightarrow i \) \(\operatorname{VS} \) gleich \(-\infty \leq x \leq +\infty \).

Aus \(\operatorname{VS} \) gleich “\(-\infty \leq x \ldots \)
folgt via 107-3: \(x \in S \).

\(\square \)
107-6. Hier werden einige wenig verblüffende Aussagen über die Kleiner(Gleich)-Relation und 0, 1, +∞, −∞ getroffen:

107-6(Satz)

a) $0 \leq 0$.

b) $1 \leq 1$.

c) $+\infty \leq +\infty$.

d) $-\infty \leq -\infty$.

e) $0 < 1$.

f) $-\infty < 0 < +\infty$.

g) $-\infty < 1 < +\infty$.

h) $-\infty < +\infty$.

i) $-\infty \neq +\infty$.

Beweis 107-6

1: Via 95-11 gilt: $(0 \in S) \land (1 \in S) \land (+\infty \in S) \land (-\infty \in S)$.

2. a): Aus 1“$0 \in S$...”
folgt via 107-5: $0 \leq 0$.

2. b): Aus 1“...1 $\in S$...”
folgt via 107-5: $1 \leq 1$.

2. c): Aus 1“...+$\infty \in S$...”
folgt via 107-5: $+\infty \leq +\infty$.

2. d): Aus 1“...$-\infty \in S$...”
folgt via 107-5: $-\infty \leq -\infty$.
Beweis 107-6 e)

1.1: Via AAVII gilt: \(S \text{ ist } \leq \text{-Kette.} \)

1.2: Via 95-11 gilt: \(0 \in S. \)

1.3: Via 95-11 gilt: \(1 \in S. \)

2: Aus 1.1“\(S \text{ ist } \leq \text{-Kette} \),
 aus 1.2“\(0 \in S \)” und
 aus 1.3“\(1 \in S \)”
folgt via 41-9: \((0 < 1) \lor (0 = 1) \lor (1 < 0). \)

<table>
<thead>
<tr>
<th>Fallunterscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.Fall</td>
</tr>
<tr>
<td>2.2.Fall</td>
</tr>
</tbody>
</table>

Es gilt 2.2. Fall“\(0 = 1 \)”.
Via 95-2 gilt “\(0 \neq 1 \)”.
Ex falso quodlibet folgt: \(0 < 1. \)

...
Beweis 107-6 e)

...

Fallunterscheidung

...

2.3. Fall

<table>
<thead>
<tr>
<th></th>
<th>1 < 0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Via AAI gilt: ((0 \in \mathbb{R}) \land (1 \in \mathbb{R})).</td>
</tr>
</tbody>
</table>
| 4 | Aus 3 “...1 ∈ \mathbb{R}” und
aus 3 “0 ∈ \mathbb{R}...” und
aus 2.3.Fall “1 < 0”
folgt via AAVII: 0 < 0 - 1. |
| 5.1 | Via 98-12 gilt: 0 - 1 = -1. |
| 5.2 | Via 100-7 gilt: -1 ∈ \mathbb{R}. |
| 6 | Aus 4 “0 < 0 - 1” und
aus 5.1 “0 - 1 = -1”
folgt: 0 < -1. |
| 7 | Aus 5.2 “-1 ∈ \mathbb{R}”,
aus 5.2 “-1 ∈ \mathbb{R}”,
aus 6 “0 < -1” und
aus 6 “0 < -1”
folgt via AAVII: 0 < (-1) · (-1). |
| 8 | Aus 3 “...1 ∈ \mathbb{R}” und
aus 3 “...1 ∈ \mathbb{R}”
folgt via 106-1: (-1) · (-1) = 1 · 1. |
| 9 | Via 98-19 gilt: 1 · 1 = 1. |
| 10 | Aus 7 “0 < (-1) · (-1)” und
aus 8 “(-1) · (-1) = 1 · 1”
folgt: 0 < 1 · 1. |
| 11 | Aus 10 “0 < 1 · 1” und
aus 9 “1 · 1 = 1”
folgt: 0 < 1. |

Ende Fallunterscheidung

In allen Fällen gilt: 0 < 1.
Beweis 107-6 fghi)

1.1: Via **AAI** gilt: \((0 \in \mathbb{R}) \land (1 \in \mathbb{R})\).

1.2: Via **AAVII** gilt: \(\leq\) antiSymmetrische Halbordnung in \(\mathbb{S}\).

2.f): Aus 1.1“0 \in \mathbb{R}...”
folgt via **AAVII**: \(-\infty < 0 < +\infty\).

2.g): Aus 1.1“...1 \in \mathbb{R}”
folgt via **AAVII**: \(-\infty < 1 < +\infty\).

2.1: Aus 1.2“\leq\) antiSymmetrische Halbordnung in \(\mathbb{S}\)”
folgt via **34-13**: \((\leq\) transitiv) \(\land\) \((\leq\) antiSymmetrisch).

3.h): Aus 2.1“\leq\) transitiv...”
 aus 2.1“... \leq\) antiSymmetrisch”
 aus 2.f)“\(-\infty < 0...” und
 aus 2.f)“...0 < +\infty”
folgt via **46-16**: \(-\infty < +\infty\).

4.i): Aus 3.h)“\(-\infty < +\infty”
folgt via **41-3**: \(-\infty \neq +\infty\).

\(\square\)
107-7. Keine Klasse ist echt größer als $+\infty$ oder echt kleiner als $-\infty$:

107-7(Satz)

a) Aus "$+\infty \leq x$" folgt "$x = +\infty$".

b) $\neg (+\infty < x)$.

c) Aus "$x \leq -\infty$" folgt "$x = -\infty$".

d) $\neg (x < -\infty)$.

\[\leq\text{-Notation.}\]

Beweis 107-7 a) VS gleich $+\infty \leq x$.

1.1: Aus AAVII "\leq antiSymmetrische Halbordnung in S" folgt via 34-13: \leq antiSymmetrisch.

1.2: Aus VS gleich "$+\infty \leq x$" folgt via 107-3: $x \in S$.

2: Aus 1.2 "$x \in S$" folgt via 107-5: $x \leq +\infty$.

3: Aus 1.1 "\leq antiSymmetrisch", aus 2 "$x \leq +\infty$" und aus VS gleich "$+\infty \leq x$" folgt via 30-47: $x = +\infty$.
Beweis 107-7 b)

1: Es gilt:
\[(+\infty < x) \lor (-(+\infty < x)). \]

<table>
<thead>
<tr>
<th>1.1.Fall</th>
<th>(+\infty < x.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.1.Fall (+\infty < x) folgt via 41-3: ((+\infty \leq x) \land (+\infty \neq x).)</td>
<td></td>
</tr>
<tr>
<td>3: Aus 2(^{"}+\infty \leq x)..." folgt via des bereits bewiesenen a): (x = +\infty.)</td>
<td></td>
</tr>
<tr>
<td>4: Es gilt 3(^{"}x = +\infty). Es gilt 2(^{"}+\infty \neq x). Ex falso quodlibet folgt: (\neg(+\infty < x).)</td>
<td></td>
</tr>
</tbody>
</table>

1.2.Fall \(\neg(+\infty < x).\)

Ende Fallunterscheidung

In beiden Fällen gilt: \(\neg(+\infty < x).\)

c) VS gleich

1.1: Aus AAVII\(^{"}\leq\) antiSymmetrische Halbordnung in \(S\) folgt via 34-13: \(\leq\) antiSymmetrisch.

1.2: Aus VS gleich \("x \leq -\infty\) folgt via 107-3: \(x \in S.\)

2: Aus 1.2\(^{"}x \in S\) folgt via 107-5: \(-\infty \leq x.\)

3: Aus 1.1\(^{"}\leq\) antiSymmetrisch", aus VS gleich \("x \leq -\infty\) und aus 2\(^{"}-\infty \leq x\) folgt via 30-47: \(x = -\infty.\)
Beweis 107-7 d)

1: Es gilt:

\[(x < -\infty) \lor (\neg(x < -\infty)).\]

\[\text{Fallunterscheidung}\]

\begin{tabular}{|l|}
\hline
1.1. Fall & \(x < -\infty\). \\
\hline
2: Aus 1.1. Fall "\(x < -\infty\)"
folgt via 41-3:
\(x \leq -\infty \land (x \neq -\infty).\) \\
3: Aus 2 "\(x \leq -\infty \ldots\)"
folgt via des bereits bewiesenen c):
\(x = -\infty.\) \\
4: Es gilt 3 "\(x = -\infty\)."
\(\text{Es gilt 2"\ldots x \neq -\infty."}\)
\(\text{Ex falso quodlibet folgt:}\)
\(\neg(x < -\infty).\) \\
\hline
1.2. Fall & \(\neg(x < -\infty).\) \\
\hline
\end{tabular}

\[\text{Ende Fallunterscheidung}\]

In beiden Fällen gilt: \(\neg(x < -\infty).\) \(\square\)
107-8. Für \leq gelten die “starken Versionen” der Transitivität:

<table>
<thead>
<tr>
<th>107-8(Satz)</th>
</tr>
</thead>
</table>
| a) Aus “$x \leq y$” und “$y \leq z$” folgt “$x \leq z$”.
| b) Aus “$x < y$” und “$y < z$” folgt “$x < z$”.
| c) Aus “$x < y$” und “$y \leq z$” folgt “$x < z$”.
| d) Aus “$x \leq y$” und “$y < z$” folgt “$x < z$”.

\leq-Notation.
Beweis 107-8 a) VS gleich
\((x \leq y) \land (y \leq z)\).

1: Aus AAVII \(\leq\) antiSymmetrische Halbordnung in \(\mathbb{S}\)
folgt via 34-13: \(\leq\) transitiv.

2: Aus 1 \(\leq\) transitiv",
 aus VS gleich “\(x \leq y\)” und
 aus VS gleich “\(\ldots y \leq z\)”
folgt via 30-38: \(x \leq z\).

b) VS gleich
\((x < y) \land (y < z)\).

1: Aus AAVII \(\leq\) antiSymmetrische Halbordnung in \(\mathbb{S}\)
folgt via 34-13: \((\leq\) transitiv) \(\land\) (\(\leq\) antiSymmetrisch).

2: Aus 1 \(\leq\) transitiv . . . ”,
 aus 1 “\(\ldots \leq\) antiSymmetrisch”,
 aus VS gleich “\(x < y\)” und
 aus VS gleich “\(\ldots y < z\)”
folgt via 46-16: \(x < z\).

c) VS gleich
\((x < y) \land (y \leq z)\).

1: Aus AAVII \(\leq\) antiSymmetrische Halbordnung in \(\mathbb{S}\)
folgt via 34-13: \((\leq\) transitiv) \(\land\) (\(\leq\) antiSymmetrisch).

2: Aus 1 “\(\leq\) transitiv . . . ”,
 aus 1 “\(\ldots \leq\) antiSymmetrisch”,
 aus VS gleich “\(x \leq y\)” und
 aus VS gleich “\(\ldots y \leq z\)”
folgt via 46-16: \(x < z\).

d) VS gleich
\((x \leq y) \land (y < z)\).

1: Aus AAVII \(\leq\) antiSymmetrische Halbordnung in \(\mathbb{S}\)
folgt via 34-13: \((\leq\) transitiv) \(\land\) (\(\leq\) antiSymmetrisch).

2: Aus 1 “\(\leq\) transitiv . . . ”,
 aus 1 “\(\ldots \leq\) antiSymmetrisch”,
 aus VS gleich “\(x \leq y\)” und
 aus VS gleich “\(\ldots y < z\)”
folgt via 46-16: \(x < z\).

\(\square\)
107-9. Zur Vereinfachung späterer Argumentationslinien wird hier eine erweiterte "<-Version" von 107-3 angegeben. Die Beweis-Reihenfolge ist a) - b) - c) - f) - g) - h) - k) - l) - d) - i) - m) - e) - j):

107-9(Satz)

Es gelte:

→ \(x < y \).

Dann folgt:

a) \(x \in S \).

b) \(x \leq x \).

c) \(x = \Re x \).

d) \(x < +\infty \).

e) "\(x \in \mathbb{R} \) oder "\(x = -\infty \)".

f) \(y \in S \).

g) \(y \leq y \).

h) \(y = \Re y \).

i) \(-\infty < y \).

j) "\(y \in \mathbb{R} \) oder "\(y = +\infty \)".

k) \(\Re x < y \).

l) \(x < \Re y \).

m) \(\Re x < \Re y \).

\[\leq\text{-}\text{Notation}\]
Beweis 107-9

1: Aus $\rightarrow "x < y"$ folgt via 41-3: $(x \leq y) \land (x \neq y)$.

2.a): Aus 1"$x \leq y..." folgt via 107-3: $x \in S$.

2.b): Aus 1"$x \leq y..." folgt via 107-3: $x \leq x$.

2.c): Aus 1"$x \leq y..." folgt via 107-3: $x = \Re x$.

2.f): Aus 1"$x \leq y..." folgt via 107-3: $y \in S$.

2.g): Aus 1"$x \leq y..." folgt via 107-3: $y \leq y$.

2.h): Aus 1"$x \leq y..." folgt via 107-3: $y = \Re y$.

3.1: Aus 2.a)"$x \in S$ folgt via 95-15: $(x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty)$.

3.2: Aus 2.a)"$x \in S$ folgt via 107-5: $-\infty \leq x$.

3.3: Aus 2.f)"$y \in S$ folgt via 107-5: $y \leq +\infty$.

3.4: Aus 2.f)"$y \in S$ folgt via 95-15: $(y \in \mathbb{R}) \lor (y = +\infty) \lor (y = -\infty)$.

3.k): Aus $\rightarrow "x < y"$ und aus 2.c)"$x = \Re x"$ folgt: $\Re x < y$.

3.1): Aus $\rightarrow "x < y"$ und aus 2.h)"$y = \Re y"$ folgt: $x < \Re y$.

...
Beweis 107-9

...

4.d): Aus $\rightarrow \quad x < y$ und
 aus 3.3 $y \leq +\infty$
 folgt via 107-8: $x < +\infty$.

4.i): Aus 3.2 $-\infty \leq x$ und
 aus $\rightarrow \quad x < y$
 folgt via 107-8: $-\infty < y$.

4.m): Aus 3.k) $\text{Re} x < y$ und
 aus 2.h) $y = \text{Re} y$
 folgt: $\text{Re} x < \text{Re} y$.

5.1: Aus 4.d) $x < +\infty$
 folgt via 41-3: $x \neq +\infty$.

5.2: Aus 4.i) $-\infty < y$
 folgt via 41-3: $-\infty \neq y$.

6.e): Aus 3.1 $(x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty)$ und
 aus 5.1 $x \neq +\infty$
 folgt: $(x \in \mathbb{R}) \lor (x = -\infty)$.

6.j): Aus 3.4 $(y \in \mathbb{R}) \lor (y = +\infty) \lor (y = -\infty)$ und
 aus 5.2 $-\infty \neq y$
 folgt: $(y \in \mathbb{R}) \lor (y = +\infty)$.

\square
107-10. Es gilt $-\infty < x$ genau dann, wenn $x \in \mathbb{R}$ oder $x = +\infty$ - und dies ist äquivalent zu $x \in S$ und $x \neq -\infty$:

\begin{center}
\textbf{107-10(Satz)}

\textit{Die Aussagen i), ii), iii) sind äquivalent:}

\begin{enumerate}
 \item i) $-\infty < x$.
 \item ii) “$x \in S$” und “$x \neq -\infty$”.
 \item iii) “$x \in \mathbb{R}$” oder “$x = +\infty$”.
\end{enumerate}

\end{center}
Beweis 107-10 \(i) \Rightarrow ii) \) VS gleich

1.1: Aus VS gleich “\(-\infty < x\)”
folgt via 107-9: \(x \in S \).

1.2: Aus VS gleich “\(-\infty < x\)”
folgt via 41-3: \(-\infty \neq x\).

2: Aus 1.2
folgt:
\(x \neq -\infty \).

3: Aus 1.1 “\(x \in S\)” und
aus 2 “\(x \neq -\infty\)”
folgt:
\((x \in S) \land (x \neq -\infty)\).

\(ii) \Rightarrow iii) \) VS gleich

1: Aus VS gleich “\(x \in S\)”
folgt via 95-15:
\((x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty)\).

2: Aus 1 “\((x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty)\)” und
aus VS gleich “\(\ldots x \neq -\infty\)”
folgt:
\((x \in \mathbb{R}) \lor (x = +\infty)\).

\(iii) \Rightarrow i) \) VS gleich

1: Nach VS gilt:
\((x \in \mathbb{R}) \lor (x = +\infty)\).

Fallunterscheidung

1.1.Fall \(x \in \mathbb{R} \).
Aus 1.1.Fall “\(x \in \mathbb{R}\)”
folgt via AAVII:
\(-\infty < x\).

1.2.Fall \(x = +\infty \).
2: Via 107-6 gilt:
\(-\infty < +\infty\).
3: Aus 2 “\(-\infty < +\infty\)” und
aus 1.2.Fall “\(x = +\infty\)”
folgt:
\(-\infty < x\).

Ende Fallunterscheidung In beiden Fällen gilt: \(-\infty < x\).
107-11. Es gilt $x < +\infty$ genau dann, wenn $x \in \mathbb{R}$ oder $x = -\infty$ und dies ist äquivalent zu $x \in S$ und $x \neq +\infty$:

Rede im übersetzten Text.
Beweis 107-11 \(i \Rightarrow ii \) VS gleich

1.1: Aus VS gleich “\(x < +\infty \)”
folgt via 107-9:
\(x \in \mathbb{S} \).

1.2: Aus VS gleich “\(x < +\infty \)”
folgt via 41-3:
\(x \neq +\infty \).

2: Aus 1.2 und
aus 1.3
folgt:
\((x \in \mathbb{S}) \land (x \neq +\infty) \).

\(ii \Rightarrow iii \) VS gleich

1: Aus VS gleich “\(x \in \mathbb{S} \)…”
folgt via 95-15:
\((x \in \mathbb{R}) \lor (x = +\infty) \lor (x = -\infty) \).

2: Aus 1“(\(x \in \mathbb{R} \) \lor (x = +\infty) \lor (x = -\infty))” und
aus VS gleich “\(\ldots x \neq +\infty \)”
folgt:
\((x \in \mathbb{R}) \lor (x = -\infty) \).

\(iii \Rightarrow i \) VS gleich

1: Nach VS gilt:
\((x \in \mathbb{R}) \lor (x = -\infty) \).

\textbf{Fallunterscheidung}

1.1.Fall

Aus 1.1.Fall “\(x \in \mathbb{R} \)”
folgt via AAVII:
\(x < +\infty \).

1.2.Fall

2: Via 107-6 gilt:
\(-\infty < +\infty \).

3: Aus 1.2.Fall “\(x = -\infty \)” und
aus 2“(\(-\infty < +\infty \))”
folgt:
\(x < +\infty \).

\textbf{Ende Fallunterscheidung} In beiden Fällen gilt:
\(x < +\infty \).
107-12. Nun wird eine bestechend einfache Aussage präsentiert:

\[\begin{align*}
107-12 \text{(Satz)} \\
\text{Aus } u &< x < o \text{ folgt } x \in \mathbb{R}.
\end{align*} \]

\[\leq \text{-Notation.} \]

Beweis 107-12 VS gleich \[u < x < o. \]

1: Aus VS gleich \[u < x \ldots \]
folgt via 107-9:
\[(x \in \mathbb{R}) \lor (x = +\infty). \]

\[\text{Fallunterscheidung} \]

\[\begin{align*}
1.1. \text{Fall} & \quad x \in \mathbb{R}.
1.2. \text{Fall} & \quad x = +\infty.
\end{align*} \]

2: Aus 1.2. Fall \[x = +\infty \] und
aus VS gleich \[\ldots x < o \]
folgt:
\[+\infty < o. \]

3: Es gilt 2\[+\infty < o \].
\[\text{Via 107-7 gilt } \neg(+\infty < o). \]
\[\text{Ex falso quodlibet folgt: } x \in \mathbb{R}. \]

\[\text{Ende Fallunterscheidung} \]

In beiden Fällen gilt:
\[x \in \mathbb{R}. \]

□
107-13. Die nunmehrige Liste von Aussagen über \(\leq \) und \(< \) folgt aus dem Umstand, dass \(\leq \) eine antiSymmetrische Halbordnung (in \(S \)) ist:

<table>
<thead>
<tr>
<th>107-13(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Aus "(x \leq y)“ und "(y \leq x)“ folgt "(x = y)“.</td>
</tr>
<tr>
<td>b) Aus "(x < y)“ folgt "(\neg(y < x))“.</td>
</tr>
<tr>
<td>c) Aus "(x \leq y)“ folgt "(\neg(y < x))“.</td>
</tr>
<tr>
<td>d) Aus "(x < y)“ folgt "(\neg(y \leq x))“.</td>
</tr>
</tbody>
</table>

\(\leq \)-Notation.
Beweis 107-13 a) VS gleich

1: Aus \aleph antiSymmetrische Halbordnung in \mathcal{S}
 folgt via $34\text{-}13$: $(x \leq y) \wedge (y \leq x)$.

2: Aus $1^\ell \leq$ antiSymmetrisch ,
 aus VS gleich “$x \leq y\ldots$” und
 aus VS gleich “$\ldots y \leq x$”
 folgt via $30\text{-}47$: $x = y$.

b) VS gleich

1: Aus \aleph antiSymmetrische Halbordnung in \mathcal{S}
 folgt via $34\text{-}13$: $(x \leq y) \wedge (y \leq x)$.

2: Aus $1^\ell \leq$ antiSymmetrisch ” und
 aus VS gleich “$x < y$”
 folgt via $46\text{-}1$: $\neg(y < x)$.

c) VS gleich

1: Aus \aleph antiSymmetrische Halbordnung in \mathcal{S}
 folgt via $34\text{-}13$: $(x \leq y) \wedge (y \leq x)$.

2: Aus $1^\ell \leq$ antiSymmetrisch ” und
 aus VS gleich “$x \leq y$”
 folgt via $46\text{-}1$: $\neg(y < x)$.

d) VS gleich

1: Aus \aleph antiSymmetrische Halbordnung in \mathcal{S}
 folgt via $34\text{-}13$: $(x \leq y) \wedge (y \leq x)$.

2: Aus $1^\ell \leq$ antiSymmetrisch ” und
 aus VS gleich “$x < y$”
 folgt via $46\text{-}1$: $\neg(y \leq x)$.

\[\square\]
107-14. Die vorliegende Liste von Aussagen über \leq und $<$ folgt aus dem Umstand, dass S eine \leq-Kette ist:

\begin{center}
\begin{tabular}{|l|}
\hline
107-14(Satz) \\
\hline
Es gelte:

$\rightarrow x \in S$. \\
$\rightarrow y \in S$. \\

Dann folgt:

a) “$x \leq y$” oder “$y \leq x$”. \\
b) “$x < y$” oder “$x = y$” oder “$y < x$”. \\
c) “$x \leq y$” oder “$y < x$”. \\
d) “$x < y$” oder “$y \leq x$”. \\
\hline
\end{tabular}
\end{center}

\leq-Notation.
Beweis 107-14

1: Via AAVII gilt: S ist \leq Kette.

2.a): Aus 1 "S ist \leq Kette", aus \rightarrow "$x \in S$" und aus \rightarrow "$y \in S$" folgt via 30-68 (Def): $(x \leq y) \lor (y \leq x)$.

2.b): Aus 1 "S ist \leq Kette", aus \rightarrow "$x \in S$" und aus \rightarrow "$y \in S$" folgt via 41-9: $(x < y) \lor (x = y) \lor (y < x)$.

2.c): Aus 1 "S ist \leq Kette", aus \rightarrow "$x \in S$" und aus \rightarrow "$y \in S$" folgt via 41-9: $(x \leq y) \lor (y < x)$.

2.1: Aus 1 "S ist \leq Kette", aus \rightarrow "$y \in S$" und aus \rightarrow "$x \in S$" folgt via 41-9: $(y \leq x) \lor (x < y)$.

3.d): Aus 2.1 folgt: $(x < y) \lor (y \leq x)$. □
107-15. Die nunmehrigen Aussagen sind gut bei einigen “Ex-falso-quodlibet”-Beweisen einsetzbar:

<table>
<thead>
<tr>
<th>107-15(Satz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\neg (+\infty \leq 0)$.</td>
</tr>
<tr>
<td>b) $\neg (+\infty < 0)$.</td>
</tr>
<tr>
<td>c) $\neg (0 \leq -\infty)$.</td>
</tr>
<tr>
<td>d) $\neg (0 < -\infty)$.</td>
</tr>
<tr>
<td>e) $\neg (+\infty \leq -\infty)$.</td>
</tr>
<tr>
<td>f) $\neg (+\infty < -\infty)$.</td>
</tr>
</tbody>
</table>

Beweis 107-15

1.1: Via 107-6 gilt: $0 < +\infty$.

1.2: Via 107-6 gilt: $-\infty < 0$.

1.3: Via 107-6 gilt: $-\infty < +\infty$.

2. a): Aus 1.1“$0 < +\infty$” folgt via 107-13: $\neg (+\infty \leq 0)$.

2. b): Aus 1.1“$0 < +\infty$” folgt via 107-13: $\neg (+\infty < 0)$.

2. c): Aus 1.2“$-\infty < 0$” folgt via 107-13: $\neg (0 \leq -\infty)$.

2. d): Aus 1.2“$-\infty < 0$” folgt via 107-13: $\neg (0 < -\infty)$.

2. e): Aus 1.3“$-\infty < +\infty$” folgt via 107-13: $\neg (+\infty \leq -\infty)$.

2. f): Aus 1.3“$-\infty < +\infty$” folgt via 107-13: $\neg (+\infty < -\infty)$.

□
107-16. Die nunmehrigen Aussagen sind Anwendungen von 107-9:

107-16(Satz)

a) Aus \(0 < x\) folgt \(−∞ ≠ x\).

b) Aus \(0 < x\) folgt \((x ∈ \mathbb{R}) ∨ (x = +∞)\).

c) Aus \(x < 0\) folgt \(x ≠ +∞\).

d) Aus \(x < 0\) folgt \((x ∈ \mathbb{R}) ∨ (x = −∞)\).

\[\leq\text{-Notation.}\]

Beweis 107-16 a) VS gleich 0 < x.

1: Aus VS gleich “0 < x” folgt via 107-9: \(−∞ < x\).

2: Aus 1“−∞ < x” folgt via 41-3: \(−∞ ≠ x\).

b) Aus VS gleich “0 < x” folgt via 107-9: \((x ∈ \mathbb{R}) ∨ (x = +∞)\).

c) VS gleich \(x < 0\).

1: Aus VS gleich “x < 0” folgt via 107-9: \(x < +∞\).

2: Aus 1“x < +∞” folgt via 41-3: \(x ≠ +∞\).

d) VS gleich \(x < 0\).

Aus VS gleich “x < 0” folgt via 107-9: \((x ∈ \mathbb{R}) ∨ (x = −∞)\). □
107-17. Unter Mitwirkung von 107-16 kann 107-16 zur vorliegenden Aussage verschärft werden:

107-17(Satz)

a) *Aus* “0 ≤ x” *folgt* “−∞ ≠ x”.

b) *Aus* “0 ≤ x” *folgt* “(x ∈ ℝ) ∨ (x = +∞)”.

c) *Aus* “x ≤ 0” *folgt* “x ≠ +∞”.

d) *Aus* “x ≤ 0” *folgt* “(x ∈ ℝ) ∨ (x = −∞)”.

≤-Notation.
Beweis 107-17 ab) VS gleich 0 ≤ x.

1.1: Aus VS gleich “0 ≤ x” folgt via 41-5: (0 < x) ∨ (0 = x).

Fallunterscheidung

1.1.1. Fall 0 < x.

Aus 1.1.1. Fall “0 < x” folgt via 107-16:

\[-\infty \neq x \land ((x \in \mathbb{R}) \lor (x = +\infty))\].

1.1.2. Fall 0 = x.

2.1: Aus 95-7 “0 ≠ −∞” und 1.1.2. Fall “0 = x” folgt: x ≠ −∞.

2.2: Aus AAI “0 ∈ \mathbb{R}” und 1.1.2. Fall “0 = x” folgt: x ∈ \mathbb{R}.

3.1: Aus 2.1 folgt: −∞ ≠ x.

3.2: Aus 2.2 folgt: (x ∈ \mathbb{R}) ∨ (x = +∞).

4: Aus 3.1 und aus 3.2 folgt: (−∞ ≠ x) ∧ ((x ∈ \mathbb{R}) ∨ (x = +∞)).

Ende Fallunterscheidung In beiden Fällen gilt:

A1 “(−∞ ≠ x) ∧ ((x ∈ \mathbb{R}) ∨ (x = +∞))”

1.a): Aus A1 folgt: −∞ ≠ x.

1.b): Aus A1 folgt: (x ∈ \mathbb{R}) ∨ (x = +∞).
Beweis 107-17 cd) VS gleich \(x \leq 0\).

1.1: Aus VS gleich \("x \leq 0\"
folgt via 41-5:
\[(x < 0) \vee (x = 0).\]

Fallunterscheidung

<table>
<thead>
<tr>
<th>1.1.1.Fall</th>
<th>(x < 0).</th>
</tr>
</thead>
</table>
| Aus 1.1.1.Fall \("x < 0\"
folgt via 107-16:
\[(x \neq +\infty) \land ((x \in \mathbb{R}) \lor (x = -\infty)).\]| |

<table>
<thead>
<tr>
<th>1.1.2.Fall</th>
<th>(x = 0).</th>
</tr>
</thead>
</table>
| 2.1: Aus 1.1.2.Fall \("x = 0\"
und
aus 95-7 \("0 \neq +\infty\"
folgt:
\(x \neq +\infty\). |
| 2.2: Aus 1.1.2.Fall \("x = 0\"
und
aus AA1 \("0 \in \mathbb{R}\"
folgt:
\(x \in \mathbb{R}\). |
| 3: Aus 2.2
folgt:
\((x \in \mathbb{R}) \lor (x = -\infty).\) |
| 4: Aus 2.1 und
aus 3
folgt:
\((x \neq +\infty) \land ((x \in \mathbb{R}) \lor (x = -\infty)).\) |

Ende Fallunterscheidung In beiden Fällen gilt:

| A1 | \("(x \neq +\infty) \land ((x \in \mathbb{R}) \lor (x = -\infty))\)" |

1.c): Aus A1
folgt:
\(x \neq +\infty\).

1.d): Aus A1
folgt:
\((x \in \mathbb{R}) \lor (x = -\infty).\)
107-18. Via $0 \in \mathbb{S}$ ergibt sich ohne viel Mühe auch unter Einbeziehung von 107-14 das vorliegende Kriterium für $x \in \mathbb{S}$:

\begin{center}
\begin{tabular}{|l|}
\hline
\textbf{107-18(Satz)}

\textit{Die Aussagen i), ii), iii), iv), v) sind äquivalent:}

i) $x \in \mathbb{S}$.

ii) “$x \leq 0$“ oder “$0 \leq x$“.

iii) “$x < 0$“ oder “$x = 0$“ oder “$0 < x$“.

iv) “$x \leq 0$“ oder “$0 < x$“.

v) “$x < 0$“ oder “$0 \leq x$“.

\hline
\end{tabular}
\end{center}

\textless;-Notation.

\textbf{Beweis 107-18 [i] \Rightarrow ii]} VS gleich $x \in \mathbb{S}$.

Aus VS gleich “$x \in \mathbb{S}$“ und aus 95-11 “$0 \in \mathbb{S}$“ folgt via 107-14: $(x \leq 0) \lor (0 \leq x)$.
Beweis 107-18 \([\text{ii} \Rightarrow \text{iii}]\) VS gleich \((x \leq 0) \lor (0 \leq x)\).

1: Nach VS gilt: \((x \leq 0) \lor (0 \leq x)\).

Fallunterscheidung

<table>
<thead>
<tr>
<th>1.1. Fall</th>
<th>(x \leq 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.1. Fall “(x \leq 0)” folgt via 41-5:</td>
<td>((x < 0) \lor (x = 0))</td>
</tr>
<tr>
<td>3: Aus 2 folgt:</td>
<td>((x < 0) \lor (x = 0) \lor (0 < x))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2. Fall</th>
<th>(0 \leq x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Aus 1.2. Fall “(0 \leq x)” folgt via 41-5:</td>
<td>((0 < x) \lor (0 = x))</td>
</tr>
<tr>
<td>3: Aus 2 folgt:</td>
<td>((x = 0) \lor (0 < x))</td>
</tr>
<tr>
<td>4: Aus 3 folgt:</td>
<td>((x < 0) \lor (x = 0) \lor (0 < x))</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In beiden Fällen gilt: \((x < 0) \lor (x = 0) \lor (0 < x)\).
Der Beweis von $107-18$ zeigt, dass gilt: $(x < 0) \lor (x = 0) \lor (0 < x)$.

1. Nach VS gilt:

 \[
 (x < 0) \lor (x = 0) \lor (0 < x).
 \]

Fallunterscheidung

<table>
<thead>
<tr>
<th>1.1. Fall</th>
<th>$x < 0$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Aus 1.1. Fall $x < 0$ folgt via 41-3:</td>
<td>$x \leq 0$.</td>
</tr>
<tr>
<td>3. Aus 2 folgt:</td>
<td>$(x \leq 0) \lor (0 < x)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2. Fall</th>
<th>$x = 0$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Aus 1.2. Fall $x = 0$ und aus 107-6 $0 \leq 0$ folgt:</td>
<td>$x \leq 0$.</td>
</tr>
<tr>
<td>3. Aus 2 folgt:</td>
<td>$(x \leq 0) \lor (0 < x)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3. Fall</th>
<th>$0 < x$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus 1.3. Fall folgt:</td>
<td>$(x \leq 0) \lor (0 < x)$.</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung

In allen Fällen gilt: $(x \leq 0) \lor (0 < x)$.

Beweis 107-18 (iv) \Rightarrow v) VS gleich ($x \leq 0) \vee (0 < x$).

1: Nach VS gilt:

\[
(x \leq 0) \vee (0 < x).
\]

Fallunterscheidung

1.1.Fall \(x \leq 0\).

2: Aus 1.1.Fall “\(x \leq 0\)” folgt via 41-5:

\[
(x < 0) \vee (x = 0).
\]

Fallunterscheidung

2.1.Fall \(x < 0\).

Aus 2.1.Fall folgt:

\[
(x < 0) \vee (0 \leq x).
\]

2.2.Fall \(x = 0\).

3: Aus 107-6 “\(0 \leq 0\)” und aus 2.2.Fall “\(x = 0\)” folgt:

\[
0 \leq x.
\]

4: Aus 3 folgt:

\[
(x < 0) \vee (0 \leq x).
\]

Ende Fallunterscheidung In beiden Fällen gilt:

\[
(x < 0) \vee (0 \leq x).
\]

1.2.Fall \(0 < x\).

2: Aus 1.2.Fall “\(0 < x\)” folgt via 41-3:

\[
0 \leq x.
\]

3: Aus 2 folgt:

\[
(x < 0) \vee (0 \leq x).
\]

Ende Fallunterscheidung In beiden Fällen gilt:

\[
(x < 0) \vee (0 \leq x).
\]
Beweis \textbf{107-18} \((v) \Rightarrow i)\) VS gleich

\((x < 0) \lor (0 \leq x)\).

1: Nach VS gilt:

\((x < 0) \lor (0 \leq x)\).

\textbf{Fallunterscheidung}

\begin{center}

\begin{tabular}{|c|c|}
\hline
\textbf{1.1.Fall} & \(x < 0\). \\
\hline
\textbf{1.2.Fall} & \(0 \leq x\). \\
\hline
\end{tabular}

\end{center}

Aus 1.1.Fall "\(x < 0\)"
folgt via \textbf{107-9}:
\(x \in S\).

Aus 1.2.Fall "\(0 \leq x\)"
folgt via \textbf{107-3}:
\(x \in S\).

\textbf{Ende Fallunterscheidung} In beiden Fällen gilt:
\(x \in S\).

\(\square\)
107-19. Via 107-18 folgt aus 95-16 die folgende, auch an sich interessante Charakterisierung der Elemente von \(T \):

107-19(Satz)

Die Aussagen i), ii) sind äquivalent:

i) \(x \in T \).

ii) “\(x < 0 \) oder “\(x = 0 \) oder “\(0 < x \) oder “\(x = \text{nan} \)”.

\[\leq \text{-Notation.} \]

Beweis 107-19 \([\text{[i] } \Rightarrow \text{[ii]}] \) VS gleich \(x \in T \).

1: Aus VS gleich “\(x \in T \)” folgt via 95-16:

\((x \in S) \lor (x = \text{nan}). \)

Fallunterscheidung

2.1.Fall \(x \in S \).

3: Aus 2.1.Fall “\(x \in S \)” folgt via 107-18:

\((x < 0) \lor (x = 0) \lor (0 < x). \)

4: Aus 3 folgt:

\((x < 0) \lor (x = 0) \lor (0 < x) \lor (x = \text{nan}). \)

2.2.Fall \(x = \text{nan} \).

Aus 2.2.Fall folgt:

\((x < 0) \lor (x = 0) \lor (0 < x) \lor (x = \text{nan}). \)

Ende Fallunterscheidung In beiden Fällen gilt:

\((x < 0) \lor (x = 0) \lor (0 < x) \lor (x = \text{nan}). \)
Beweis 107-19 \(\Rightarrow \) \(\Rightarrow \) VS gleich \((x < 0) \lor (x = 0) \lor (0 < x) \lor (x = \text{nan}) \).

1: Nach VS gilt: \((x < 0) \lor (x = 0) \lor (0 < x) \lor (x = \text{nan}) \).

<table>
<thead>
<tr>
<th>Fallunterscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Fall ((x < 0) \lor (x = 0) \lor (0 < x)).</td>
</tr>
<tr>
<td>2: Aus 1.1. Fall ((x < 0) \lor (x = 0) \lor (0 < x)) folgt via 107-18: (x \in S).</td>
</tr>
<tr>
<td>3: Aus 2 (x \in S) folgt via (\in S): (x \in T).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2. Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus 1.2. Fall (x = \text{nan}) folgt via 95-16: (x \in T).</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In beiden Fällen gilt: \(x \in T \).
107-20. Nun wird fest gestellt, dass keine reelle Zahl kleiner gleich $-\infty$ oder größergleich $+\infty$ ist:

\begin{center}
\begin{tabular}{|c|}
\hline
\textbf{107-20(Satz)}
\hline
Es gelte:

\rightarrow $x \in \mathbb{R}$.

\textit{Dann folgt:}

a) $\neg(x \leq -\infty)$.

b) $\neg(+\infty \leq x)$.

\hline
\end{tabular}
\end{center}

\hline
\textit{\leq-Notation.}
\hline

\textbf{Beweis 107-20 a)}

1: Aus \rightarrow “$x \in \mathbb{R}$”
folgt via \textbf{AAVII}:

$-\infty < x$.

2: Aus 1 “$-\infty < x$”
folgt via \textbf{107-13}:

$\neg(x \leq -\infty)$.

\textbf{b)}

1: Aus \rightarrow “$x \in \mathbb{R}$”
folgt via \textbf{AAVII}:

$x < +\infty$.

2: Aus 1 “$x < +\infty$”
folgt via \textbf{107-13}:

$\neg(+\infty \leq x)$.

\square
107-21. Da ≤ eine Relation in S ist, kann für \(x \notin S \) natürlich weder \(x \leq y \) noch \(x < y \) noch \(y \leq x \) noch \(y < x \) gelten. Die Beweis-Reihenfolge ist a) - c) - b) - d):

107-21(Satz)

Es gelte:

\[\rightarrow x \notin S. \]

Dann folgt:

a) \(\neg (x \leq y) \).

b) \(\neg (x < y) \).

c) \(\neg (y \leq x) \).

d) \(\neg (y < x) \).

≤-Notation.

Beweis 107-21

1.: Aus AA VI\(^{7}\)\(\leq\) antiSymmetrische Halbordnung in S\(\) folgt via 34-13: \(\leq\) Relation in S.

2. a): Aus 1\(\leq\) Relation in S\(\) und aus \(\rightarrow\) ”\(x \notin S\)” folgt via 34-1: \(\neg (x \leq y)\).

2. c): Aus 1\(\leq\) Relation in S\(\) und aus \(\rightarrow\) ”\(x \notin S\)” folgt via 34-1: \(\neg (y \leq x)\).

3. b): Aus 2. a) ”\(\neg (x \leq y)\)” folgt via 41-5: \(\neg (x < y)\).

3. d): Aus 2. c) ”\(\neg (y \leq x)\)” folgt via 41-5: \(\neg (y < x)\).

\(\square\)
107-22. Falls $0 < x$, dann ist x multipliziert mit $\pm \infty$ gleich $\pm \infty$. Falls $x < 0$, dann ist x multipliziert mit $\pm \infty$ gleich $\mp \infty$:

107-22 (Satz)

a) Aus "$x < 0$" folgt "$x \cdot (+\infty) = (+\infty) \cdot x = -\infty$".

b) Aus "$0 < x$" folgt "$x \cdot (+\infty) = (+\infty) \cdot x = +\infty$".

c) Aus "$x < 0$" folgt "$x \cdot (-\infty) = (-\infty) \cdot x = +\infty$".

d) Aus "$0 < x$" folgt "$x \cdot (-\infty) = (-\infty) \cdot x = -\infty$".

RECH. \leq-Notation.

Beweis 107-22 a) VS gleich $x < 0$.

1: Aus VS gleich "$x < 0$" folgt via 107-9: $(x \in \mathbb{R}) \lor (x = -\infty)$.

Fallunterscheidung

1.1. Fall

Aus 1.1. Fall "$x \in \mathbb{R}$" und aus VS gleich "$x < 0$" folgt via AA VII: $x \cdot (+\infty) = (+\infty) \cdot x = -\infty$.

1.2. Fall

2.1: $x \cdot (+\infty) \overset{1.2 \text{ Fall}}{=} (-\infty) \cdot (+\infty) \overset{\text{AAVI}}{=} -\infty$.

2.2: $(+\infty) \cdot x \overset{1.2 \text{ Fall}}{=} (+\infty) \cdot (-\infty) \overset{\text{AAVI}}{=} -\infty$.

3: Aus 2.1"$x \cdot (+\infty) = \ldots = -\infty$" und aus 2.2"$(+\infty) \cdot x = \ldots = -\infty$" folgt: $x \cdot (+\infty) = (+\infty) \cdot x = -\infty$.

Ende Fallunterscheidung In beiden Fällen gilt: $x \cdot (+\infty) = (+\infty) \cdot x = -\infty$.
Beweis 107-22 b) VS gleich

1: Aus VS gleich “0 < x”
folgt via 107-9:

\[(x \in \mathbb{R}) \lor (x = +\infty). \]

\[
\begin{array}{|c|}
\hline
\text{Fallunterscheidung} \\
\hline
\textbf{1.1. Fall} & x \in \mathbb{R} . \\
\hline
\text{Aus 1.1. Fall} “x \in \mathbb{R}” \text{ und} \\
aus VS gleich “0 < x” \\
folgt via AAVII: \\
x \cdot (+\infty) = (+\infty) \cdot x = +\infty . \\
\hline
\textbf{1.2. Fall} & x = +\infty . \\
\hline
2.1: & x \cdot (+\infty) \overset{1.2. \text{Fall1} }{=} (+\infty) \cdot (+\infty) \overset{\text{AAVI} }{=} +\infty . \\
2.2: & (+\infty) \cdot x \overset{1.2. \text{Fall1} }{=} (+\infty) \cdot (+\infty) \overset{\text{AAVI} }{=} +\infty . \\
3: & \text{Aus 2.1 “} x \cdot (+\infty) = \ldots = +\infty \text{” und} \\
aus 2.2 “(+\infty) \cdot x = \ldots = +\infty” \\
folgt: & x \cdot (+\infty) = (+\infty) \cdot x = +\infty . \\
\hline
\end{array}
\]

\[
\text{Ende Fallunterscheidung} \quad \text{In beiden Fällen gilt:} \\
x \cdot (+\infty) = (+\infty) \cdot x = +\infty .
\]
Beweis 107-22 c) VS gleich $x < 0$.

1: Aus VS gleich “$x < 0$” folgt via 107-9: $(x \in \mathbb{R}) \lor (x = -\infty)$.

Fallunterscheidung

1.1. Fall

$x \in \mathbb{R}$.

Aus 1.1. Fall “$x \in \mathbb{R}$” und aus VS gleich “$x < 0$” folgt via AAVII:

\[x \cdot (-\infty) = (-\infty) \cdot x = +\infty. \]

1.2. Fall

$x = -\infty$.

2.1: \[x \cdot (-\infty)^{1,2,\text{FaII}} (-\infty) \cdot (-\infty) \overset{\text{AAVI}}{=} +\infty. \]

2.2: \[(-\infty) \cdot x^{1,2,\text{FaII}} (-\infty) \cdot (-\infty) \overset{\text{AAVI}}{=} +\infty. \]

3: Aus 2.1 “$x \cdot (-\infty) = \ldots = +\infty$” und aus 2.2 “$(-\infty) \cdot x = \ldots = +\infty$” folgt:

\[x \cdot (-\infty) = (-\infty) \cdot x = +\infty. \]

Ende Fallunterscheidung

In beiden Fällen gilt:

\[x \cdot (-\infty) = (-\infty) \cdot x = +\infty. \]
Beweis 107-22 d) VS gleich

1: Aus VS gleich “0 < x” folgt via 107-9:

\((x \in \mathbb{R}) \vee (x = +\infty) \).

\[x \cdot (-\infty) = (-\infty) \cdot x = -\infty. \]

Fallunterscheidung

1.1.Fall

Aus 1.1.Fall “\(x \in \mathbb{R} \)” und aus VS gleich “0 < x” folgt via AAVII:

\[x \cdot (-\infty) = (-\infty) \cdot x = -\infty. \]

1.2.Fall

\(x = +\infty \).

2.1:

\[x \cdot (-\infty) \overset{1.2.\text{Fall}}{=} (+\infty) \cdot (-\infty) \overset{\text{AAVI}}{=} -\infty. \]

2.2:

\[(-\infty) \cdot x \overset{1.2.\text{Fall}}{=} (-\infty) \cdot (+\infty) \overset{\text{AAVI}}{=} -\infty. \]

3: Aus 2.1 “\(x \cdot (-\infty) = \ldots = -\infty \)” und aus 2.2 “\((-\infty) \cdot x = \ldots = -\infty \)” folgt:

\[x \cdot (-\infty) = (-\infty) \cdot x = -\infty. \]

Ende Fallunterscheidung

In beiden Fällen gilt:

\[x \cdot (-\infty) = (-\infty) \cdot x = -\infty. \]

\(\square \)
107-23. Im FundamentalSatz $\leq \cdot$ wird die in AAVII g) für reelle Zahlen formulierte Rechenregel via 107-22, teilweise unter unter schwächeren, teilweise unter anderen Voraussetzungen re-formuliert. Die Beweis-Reihenfolge ist a) - d) - b) - c):

$\begin{array}{l}
\textbf{107-23(Satz) (FS}$ $\leq \cdot$: FundamentalSatz $\leq \cdot$) \\
a) \text{Aus } "0 < x" \text{ und } "0 < y" \text{ folgt } "0 < x \cdot y". \\
b) \text{Aus } "0 < x" \text{ und } "0 \leq y" \text{ folgt } "0 \leq x \cdot y". \\
c) \text{Aus } "0 \leq x" \text{ und } "0 < y" \text{ folgt } "0 \leq x \cdot y". \\
d) \text{Aus } "0 \leq x" \text{ und } "0 \leq y" \text{ folgt } "0 \leq x \cdot y".
\end{array}$

RECH.\leq-Notation.

Beweis 107-23 a) VS gleich

$\begin{align*}
(0 < x) & \land (0 < y). \\
1.1: \text{Aus VS gleich "0 < x" } & \text{ folgt via 107-16: } (x \in \mathbb{R}) \lor (x = +\infty). \\
1.2: \text{Aus VS gleich "...0 < y" } & \text{ folgt via 107-16: } (y \in \mathbb{R}) \lor (y = +\infty). \\
2: \text{Aus 1.1 und } & \text{ aus 1.2 folgt: }\\n& (x \in \mathbb{R}) \land (y \in \mathbb{R}) \\
& \lor (x \in \mathbb{R}) \land (y = +\infty) \\
& \lor (x = +\infty) \land (y = +\infty) \\
& \lor (x = +\infty) \land (y = +\infty).
\end{align*}$

Fallunterscheidung

$\begin{align*}
2.1.\text{Fall } (x \in \mathbb{R}) & \land (y \in \mathbb{R}). \\
\text{Aus 2.1. Fall } \text{"x } \in \mathbb{R} \ldots", & \text{ aus 2.1. Fall } \text{"...y } \in \mathbb{R} \ldots", \\
\text{aus VS gleich } \text{"0 < x" } & \text{ und } \\
\text{aus VS gleich } \text{"...0 < y" } & \text{ folgt via AAVII: } 0 < x \cdot y.
\end{align*}$
Beweis 107-23 a) VS gleich

(0 < x) ∧ (0 < y).

...

Fallunterscheidung

...

2.2. Fall

(x ∈ R) ∧ (y = +∞).

3: Aus VS gleich "0 < x..."

folgt via 107-22:

x · (+∞) = +∞.

4: Aus 3”x · (+∞) = +∞” und

aus 2.2. Fall...y = +∞

folgt:

x · y = +∞.

5: Aus 107-6“0 < +∞” und

aus 4”x · y = +∞”

folgt:

0 < x · y.

2.3. Fall

(x = +∞) ∧ (y ∈ R).

3: Aus →“0 < y”

folgt via 107-22:

(+∞) · y = +∞.

4: Aus 2.3. Fall“x = +∞...” und

aus 3”(+∞) · y = +∞”

folgt:

x · y = +∞.

5: Aus 107-6“0 < +∞” und

aus 4”x · y = +∞”

folgt:

0 < x · y.

2.4. Fall

(x = +∞) ∧ (y = +∞).

3.1: Aus 2.4. Fall

folgt:

x = +∞.

3.2: Aus 2.4. Fall

folgt:

y = +∞.

4:

x · y ³ 1 = (+∞) · y ³ 2 = (+∞) · (+∞) ³ AAVI = +∞.

5: Aus 107-6 “0 < +∞” und

aus 4”x · y = ... = +∞”

folgt:

0 < x · y.

Ende Fallunterscheidung

In allen Fällen gilt:

0 < x · y.
Beweis 107-23 d) VS gleich

1.1: Aus VS gleich “0 ≤ x...”
folgt via 41-5:
(0 ≤ x) ∧ (0 ≤ y).

1.2: Aus VS gleich “...0 ≤ y”
folgt via 41-5:
(0 < x) ∨ (0 = x).

2: Aus 1.1 und
aus 1.2
folgt:
(0 < x) ∧ (0 < y)

\[\begin{align*}
\text{Fallunterscheidung} \\
\text{2.1.Fall} & \quad (0 < x) \land (0 < y). \\
3: & \quad \text{Aus 2.1.Fall “0 < x...” und} \\
& \quad \text{aus 2.1. Fall “...0 < y”} \\
& \quad \text{folgt via des bereits bewiesenen a):} \\
4: & \quad 0 < x \cdot y.
\end{align*}\]

\[\begin{align*}
\text{2.2.Fall} & \quad (0 < x) \land (0 = y). \\
3: & \quad \text{Aus 2.2. Fall “0 < x...”} \\
& \quad \text{folgt via 107-9:} \\
4: & \quad x \in S. \\
5: & \quad 0 \in \mathbb{Z}. \\
6: & \quad \text{Aus 5 “x \cdot 0 = 0” und} \\
& \quad \text{aus 2.2. Fall “...0 = y”} \\
& \quad \text{folgt:} \\
7: & \quad x \cdot y = 0.
\end{align*}\]
Beweis 107-23 d) VS gleich \((0 \leq x) \land (0 \leq y)\).

...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>2.3. Fall</th>
<th>((0 = x) \land (0 < y)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>3: Aus 2.3. Fall “...0 < y” folgt via 107-9:</td>
<td>(y \in S).</td>
</tr>
<tr>
<td>4: Aus 3 “(y \in S)” folgt via (\in SZ):</td>
<td>(y) Zahl.</td>
</tr>
<tr>
<td>5: Aus 4 “(y) Zahl” folgt via FSM0:</td>
<td>(0 \cdot y = 0).</td>
</tr>
<tr>
<td>6: Aus 2.3. Fall “(0 = x)” und aus 5 “(0 \cdot y = 0)” folgt:</td>
<td>(x \cdot y = 0).</td>
</tr>
<tr>
<td>7: Aus 107-6 “(0 \leq 0)” und aus 5 “(x \cdot y = 0)” folgt:</td>
<td>(0 \leq x \cdot y).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.4. Fall</th>
<th>((0 = x) \land (0 = y)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Aus 2.4. Fall folgt:</td>
<td>(x = 0).</td>
</tr>
<tr>
<td>3.2: Aus 2.4. Fall folgt:</td>
<td>(y = 0).</td>
</tr>
<tr>
<td>4:</td>
<td>(x \cdot y \overset{1}{=} 0 \cdot y \overset{2}{=} 0 \cdot 0^{98-16} = 0).</td>
</tr>
<tr>
<td>5: Aus 107-6 “(0 \leq 0)” und aus 4 “(x \cdot y = \ldots = 0)” folgt:</td>
<td>(0 \leq x \cdot y).</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In allen Fällen gilt: \(0 \leq x \cdot y\).
Beweis 107-23 b) VS gleich

1: Aus VS gleich “0 < x…”
 folgt via 41-3: 0 ≤ x.

2: Aus 1 “0 ≤ x” und
 aus VS gleich “…0 ≤ y”
 folgt via des bereits bewiesenen d): 0 ≤ x · y.

c) VS gleich

1: Aus VS gleich “…0 < y”
 folgt via 41-3: 0 ≤ y.

2: Aus VS gleich “0 ≤ x…” und
 aus 1 “0 ≤ y”
 folgt via des bereits bewiesenen d): 0 ≤ x · y.

☐
107-24. Nun wird der erste von fünf Hilfs-Sätzen auf dem Weg zum Kommutativgesetz Multiplikation bewiesen:

\textbf{107-24(Satz)}

\textit{Es gelte:}

\[
\rightarrow x \in S.
\]

\textit{Dann folgt:}

\begin{enumerate}
 \item \(x \cdot \text{nan} = \text{nan} \cdot x.\)
 \item \(x \cdot (+\infty) = (+\infty) \cdot x.\)
 \item \(x \cdot (-\infty) = (-\infty) \cdot x.\)
\end{enumerate}

\textbf{RECH-Notation.}

\textbf{Beweis 107-24}

\textbf{<-Notation.}
Beweis 107-24 a)

1: Es gilt: \((x = 0) \lor (0 \neq x)\).

\[
\begin{array}{|c|}
\hline
\text{Fallunterscheidung} \\
\hline
\text{1.1.Fall} & x = 0. \\
1: & x \cdot \text{nan} \overset{1.1.\text{Fall}}{=} 0 \cdot \text{nan} \overset{\text{AAVI}}{=} 0 \overset{\text{AAVI}}{=} \text{nan} \cdot 0 \overset{1.1.\text{Fall}}{=} \text{nan} \cdot x. \\
2: & \text{Aus } 2 \\
& \text{folgt: } x \cdot \text{nan} = \text{nan} \cdot x.
\hline
\text{1.2.Fall} & 0 \neq x. \\
1: & \text{Aus } \rightarrow \text{“} x \in S \text{”} \\
& \text{folgt via } \in \text{SZ: } x \in T. \\
2: & \text{Aus 1.2.\text{Fall} “} 0 \neq x \text{” und} \\
& \text{aus 1 “} x \in T \text{”} \\
& \text{folgt via } \text{AAVI: } x \cdot \text{nan} = \text{nan} \cdot x.
\hline
\end{array}
\]

\text{Ende Fallunterscheidung} In beiden Fällen gilt: \(x \cdot \text{nan} = \text{nan} \cdot x\).
Beweis 107-24 b)

1: Aus $\rightarrow \text{“} x \in S \text{”}$
folgt via 107-18:
$(x < 0) \lor (x = 0) \lor (0 < x)$.

\begin{center}
\begin{tabular}{|c|}
\hline
\textbf{Fallunterscheidung} \hline
\begin{tabular}{|l|}
\hline
\textbf{1.1.Fall} \hspace{2cm} $x < 0$. \\
Aus 1.1.Fall “$x < 0$” \hspace{1cm} folgt via 107-22: \\
$x \cdot (\cdot \infty) = (\cdot \infty) \cdot x$. \hline
\end{tabular} \\
\begin{tabular}{|l|}
\hline
\textbf{2.2.Fall} \hspace{2cm} $x = 0$. \\
$0 \cdot (\cdot \infty) = (\cdot \infty) \cdot 0 $ \hline
\end{tabular} \\
\begin{tabular}{|l|}
\hline
\textbf{2.2.Fall} \hspace{2cm} $0 \cdot (\cdot \infty) = (\cdot \infty) \cdot 0 $ \hline
\end{tabular} \\
\begin{tabular}{|l|}
\hline
\textbf{1.3.Fall} \hspace{2cm} $0 < x$. \\
Aus 1.3.Fall “$0 < x$” \hspace{1cm} folgt via 107-22: \\
$x \cdot (\cdot \infty) = (\cdot \infty) \cdot x$. \hline
\end{tabular} \\
\begin{tabular}{|l|}
\hline
\textbf{Ende Fallunterscheidung} \hspace{2cm} In allen Fällen gilt: $x \cdot (\cdot \infty) = (\cdot \infty) \cdot x$. \hline
\end{tabular}
\end{tabular}
\end{center}
Beweis 107-24 c)

1: Aus \(x \in S \) folgt via 107-18:
\[(x < 0) \lor (x = 0) \lor (0 < x).\]

Fallunterscheidung

<table>
<thead>
<tr>
<th>Fall</th>
<th>Bedingung</th>
<th>Regelvertretung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Fall</td>
<td>(x < 0)</td>
<td>via 107-22: (x \cdot (-\infty) = (-\infty) \cdot x).</td>
</tr>
<tr>
<td>1.2. Fall</td>
<td>(x = 0)</td>
<td>via 107-22: (x \cdot (-\infty) = (-\infty) \cdot x).</td>
</tr>
<tr>
<td>1.3. Fall</td>
<td>(0 < x)</td>
<td>via 107-22: (x \cdot (-\infty) = (-\infty) \cdot x).</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung

In allen Fällen gilt:
\[x \cdot (-\infty) = (-\infty) \cdot x. \]
107-25. Nun wird als zweiter von fünf Hilfs-Sätzen auf dem Weg zum Kommutativgesetz Multiplikation bewiesen, dass für \(x \in S \) und \(y \in \mathbb{R} \) stets \(x \cdot y = y \cdot x \) gilt:

\[
\begin{align*}
\textbf{107-25(Satz)} \quad \\
Es \ gelte: \quad \\
\rightarrow) x \in S. \\
\rightarrow) y \in \mathbb{R}. \\
Dann \ folgt \ "x \cdot y = y \cdot x". \\
\end{align*}
\]

RECH-Notation.
Beweis 107-25

1: Aus $→ "x ∈ S"$ folgt via 95-15: $(x ∈ R) ∨ (x = +∞) ∨ (x = −∞)$.

<table>
<thead>
<tr>
<th>Fallunterscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.Fall $x ∈ R$.</td>
</tr>
<tr>
<td>Aus 1.1.Fall $"x ∈ R"$ und aus $→ "y ∈ R"$ folgt via AAV: $x · y = y · x$.</td>
</tr>
<tr>
<td>1.2.Fall $x = +∞$.</td>
</tr>
<tr>
<td>2: Aus $→ "y ∈ R"$ folgt via $∈ SZ$: $y ∈ S$.</td>
</tr>
<tr>
<td>3: Aus 2$"y ∈ S"$ folgt via 107-24: $(+∞) · y = y · (+∞)$.</td>
</tr>
<tr>
<td>4: Aus 3$"(+∞) · y = y · (+∞)"$ und aus 1.2.Fall $"x = +∞"$ folgt: $x · y = y · x$.</td>
</tr>
<tr>
<td>1.3.Fall $x = −∞$.</td>
</tr>
<tr>
<td>2: Aus $→ "y ∈ R"$ folgt via $∈ SZ$: $y ∈ S$.</td>
</tr>
<tr>
<td>3: Aus 2$"y ∈ S"$ folgt via 107-24: $(-∞) · y = y · (-∞)$.</td>
</tr>
<tr>
<td>4: Aus 3$"(-∞) · y = y · (-∞)"$ und aus 1.3.Fall $"x = −∞"$ folgt: $x · y = y · x$.</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In allen Fällen gilt: $x · y = y · x$.
107-26. Im dritten von fünf Hilfs-Sätzen auf dem Weg zum Kommutativgesetz Multiplikation wird nun bewiesen, dass in \(S\) ein Kommutativgesetz Multiplikation gilt:

\[
\begin{align*}
\text{107-26(Satz)} \\
\text{Es gelte:} \\
&\quad \rightarrow x \in S. \\
&\quad \rightarrow y \in S. \\
\text{Dann folgt } "x \cdot y = y \cdot x". \\
\end{align*}
\]
Beweis 107-26

1: Aus \(\rightarrow\) \(\ldots y \in S\)“ folgt via 95-15:
\((y \in \mathbb{R}) \lor (y = +\infty) \lor (y = -\infty)\).

Fallunterscheidung

1.1. Fall

\(y \in \mathbb{R}\).

Aus \(\rightarrow\) \(x \in S\)“ und

aus 1.1. Fall \(y \in \mathbb{R}\)

folgt via 107-25:

\(x \cdot y = y \cdot x\).

1.2. Fall

\(y = +\infty\).

2: Aus \(\rightarrow\) \(x \in S\)“

folgt via 107-24:

\(x \cdot (+\infty) = (+\infty) \cdot x\).

3: Aus 2 \(x \cdot (+\infty) = (+\infty) \cdot x\)“ und

aus 1.2. Fall \(y = +\infty\)

folgt:

\(x \cdot y = y \cdot x\).

1.3. Fall

\(y = -\infty\).

2: Aus \(\rightarrow\) \(x \in S\)“

folgt via 107-24:

\(x \cdot (-\infty) = (-\infty) \cdot x\).

3: Aus 2 \(x \cdot (-\infty) = (-\infty) \cdot x\)“ und

aus 1.3. Fall \(y = -\infty\)

folgt:

\(x \cdot y = y \cdot x\).

Ende Fallunterscheidung

In allen Fällen gilt:

\(x \cdot y = y \cdot x\).
107-27. Im nun vorliegenden vierten von fünf Hilfs-Sätzen auf dem Weg zum KommutativGesetz Multiplikation wird nachgewiesen, dass \(x \cdot y = y \cdot x \) für alle \(x, y \in T \) gilt:

107-27(Satz)

Es gelte:

\[
\begin{align*}
\to) & \ x \in T. \\
\to) & \ y \in T.
\end{align*}
\]

Dann folgt “\(x \cdot y = y \cdot x \)”.

RECH-Notation.

Beweis 107-27

1.1: Aus \(\to) \ “x\ldots \in T” \) folgt via 95-16:

\[
(x \in S) \lor (x = \text{nan}).
\]

1.2: Aus \(\to) \ “\ldots y \in T” \) folgt via 95-16:

\[
(y \in S) \lor (y = \text{nan}).
\]

2: Aus 1.1 und aus 1.2 folgt:

\[
\begin{align*}
(x \in S) \land (y \in S) \\
\lor (x \in S) \land (y = \text{nan}) \\
\lor (x = \text{nan}) \land (y \in S) \\
\lor (x = \text{nan}) \land (y = \text{nan}).
\end{align*}
\]

Fallunterscheidung

...
Beweis 107-27

Fallunterscheidung

2.1. Fall

$x \in S$ und $y \in S$

Aus 2.1. Fall "x \in S..." und aus 2.1. Fall "...y \in S"

folgt via 107-26:

$x \cdot y = y \cdot x.$

2.2. Fall

$x \in S$ und $y = \text{nan}$

Aus 2.2. Fall "x \in S..." folgt via 107-24:

$x \cdot \text{nan} = \text{nan} \cdot x.$

4: Aus 3"$x \cdot \text{nan} = \text{nan} \cdot x$" und aus 2.2. Fall "...y = nan"

folgt:

$x \cdot y = y \cdot x.$

2.3. Fall

$x = \text{nan}$ und $y \in S$

Aus 2.3. Fall "...y \in S"

folgt via 107-24:

$\text{nan} \cdot y = y \cdot \text{nan}.$

4: Aus 3"$\text{nan} \cdot y = y \cdot \text{nan}$" und aus 2.3. Fall "x = nan"

folgt:

$x \cdot y = y \cdot x.$

2.4. Fall

$x = \text{nan}$ und $y = \text{nan}$

Aus "$\text{nan} \cdot \text{nan} = \text{nan} \cdot \text{nan}$" und aus 2.4. Fall "x = nan"

folgt:

$x \cdot \text{nan} = \text{nan} \cdot x.$

4: Aus 3"$x \cdot \text{nan} = \text{nan} \cdot x$" und aus 2.4. Fall "...y = nan"

folgt:

$x \cdot y = y \cdot x.$

Ende Fallunterscheidung

In allen Fällen gilt:

$x \cdot y = y \cdot x.$
107-28. Interessanter Weise ist der fünfte von fünf Hilfs-Sätzen auf dem Weg zum KommutativGesetz Multiplikation nicht gleich dem KommutativGesetz Multiplikation:

107-28(Satz)

Es gelte:

$\rightarrow x$ Zahl.

$\rightarrow y$ Zahl.

Dann folgt “$x \cdot y = y \cdot x”$.
Beweis 107-28

1.1: Aus \(\rightarrow \) “\(x \) Zahl”
folgt via \(\text{96-9} \):
\[
(\operatorname{Re} x \in \mathbb{T}) \land (\operatorname{Im} x \in \mathbb{T}).
\]

1.2: Aus \(\rightarrow \) “\(y \) Zahl”
folgt via \(\text{96-9} \):
\[
(\operatorname{Re} y \in \mathbb{T}) \land (\operatorname{Im} y \in \mathbb{T}).
\]

2.1: Aus 1.1 “\(\operatorname{Re} x \in \mathbb{T} \ldots \)” und
aus 1.2 “\(\operatorname{Re} y \in \mathbb{T} \ldots \)”
folgt via \(\text{107-27} \):
\[
(\operatorname{Re} x) \cdot (\operatorname{Re} y) = (\operatorname{Re} y) \cdot (\operatorname{Re} x).
\]

2.2: Aus 1.1 “\(\operatorname{Re} x \in \mathbb{T} \ldots \)” und
aus 1.2 “\(\operatorname{Im} y \in \mathbb{T} \ldots \)”
folgt via \(\text{107-27} \):
\[
(\operatorname{Re} x) \cdot (\operatorname{Im} y) = (\operatorname{Im} y) \cdot (\operatorname{Re} x).
\]

2.3: Aus 1.1 “\(\operatorname{Im} x \in \mathbb{T} \ldots \)” und
aus 1.2 “\(\operatorname{Re} y \in \mathbb{T} \ldots \)”
folgt via \(\text{107-27} \):
\[
(\operatorname{Im} x) \cdot (\operatorname{Re} y) = (\operatorname{Re} y) \cdot (\operatorname{Im} x).
\]

2.4: Aus 1.1 “\(\operatorname{Im} x \in \mathbb{T} \ldots \)” und
aus 1.2 “\(\operatorname{Im} y \in \mathbb{T} \ldots \)”
folgt via \(\text{107-27} \):
\[
(\operatorname{Im} x) \cdot (\operatorname{Im} y) = (\operatorname{Im} y) \cdot (\operator{Im} x).
\]

3:
\[
0 \cdot 0 = ((\operator{Re} x) \cdot (\operator{Re} y) - (\operator{Im} x) \cdot (\operator{Im} y)) + i \cdot ((\operator{Re} x) \cdot (\operator{Im} y) + (\operator{Im} x) \cdot (\operator{Re} y)).
\]

4: Aus 3
folgt:
\[
x \cdot y = y \cdot x.
\]

\[\square\]
107-29. Gemäß Kommutativ Gesetz Multiplikation ist die Reihenfolge, in der Klassen multipliziert werden, irrelevant:

\[
x \cdot y = y \cdot x.
\]

Beweis 107-29

1: Via 95-6 gilt: \((x \cdot y \text{ Zahl}) \lor (x \cdot y \notin \mathbb{A})\).

\textbf{Fallunterscheidung}

1.1. Fall \(x \cdot y \text{ Zahl}\)

\begin{itemize}
 \item 2: Aus 1.1. Fall \(x \cdot y \text{ Zahl}\) folgt via 96-15: \((x \text{ Zahl}) \land (y \text{ Zahl})\).
 \item 3: Aus 2.“\(x \text{ Zahl} \ldots \)” und aus 2.“\(\ldots y \text{ Zahl} \)” folgt via 107-28: \(x \cdot y = y \cdot x\).
\end{itemize}

1.2. Fall \(x \cdot y \notin \mathbb{A}\)

\begin{itemize}
 \item 2.1: Aus 1.2. Fall \(x \cdot y \notin \mathbb{A}\) folgt via 96-16: \(x \cdot y = U\).
 \item 2.2: Aus 1.2. Fall \(x \cdot y \notin \mathbb{A}\) folgt via 96-16: \(y \cdot x = U\).
 \item 3: Aus 2.1.“\(x \cdot y = U \ldots \)” und aus 2.2.“\(\ldots y \cdot x = U \)” folgt: \(x \cdot y = y \cdot x\).
\end{itemize}

\textbf{Ende Fallunterscheidung} In beiden Fällen gilt: \(x \cdot y = y \cdot x\).
SZ: Satz Zahlen.

Ersterstellung: 20/07/05 Letzte Änderung: 08/02/12
108-1. Das vorliegende Resultat ist beim Beweis von -SZ hilfreich:

\[108-1\text{(Satz)}\]

Es gelte:

\[-\) \ x \in \mathbb{S}. \]

\[-\) \ “y = 0” oder “y = +\infty” oder “y = -\infty”.\]

Dann folgt:

a) “x \cdot y = 0” oder “x \cdot y = +\infty” oder “x \cdot y = -\infty”.

b) x \cdot y \in \mathbb{S}.

\[\text{RECH-Notation.}\]

Beweis 108-1 a)

1: Aus \(-\) ”x \in \mathbb{S}”

folgt via 107-18:

\[(x < 0) \lor (x = 0) \lor (0 < x).\]

2: Aus 1 “(x < 0) \lor (x = 0) \lor (0 < x)” und

aus \(-\) ”(y = 0) \lor (y = +\infty) \lor (y = -\infty)”

folgt: \((x < 0) \lor (x = 0) \lor (0 < x)) \land ((y = 0) \lor (y = +\infty) \lor (y = -\infty)).\]

3: Aus 2

folgt:

\[(x < 0) \land (y = 0) \lor (x < 0) \land (y = +\infty) \lor (x < 0) \land (y = -\infty) \lor (x = 0) \land (y = 0) \lor (x = 0) \land (y = +\infty) \lor (x = 0) \land (y = -\infty) \lor (0 < x) \land (y = 0) \lor (0 < x) \land (y = +\infty) \lor (0 < x) \land (y = -\infty).\]

\[\text{Fallunterscheidung}\]

...
108-1 a)

Fallunterscheidung

2.1. Fall

\[(x < 0) \land (y = 0).\]

3: Aus \(\rightarrow "x \in S"\) folgt via \(cSZ\):

\[x \text{ Zahl}.\]

4: Aus 3 "x Zahl" folgt via \(FSM0\):

\[x \cdot 0 = 0.\]

5: Aus 4 "\(x \cdot 0 = 0"\) und aus 2.1. Fall "\(y = 0"\) folgt:

\[x \cdot y = 0.\]

6: Aus 5 folgt:

\[(x \cdot y = 0) \lor (x \cdot y = +\infty) \lor (x \cdot y = -\infty).\]

2.2. Fall

\[(x < 0) \land (y = +\infty).\]

3: Aus 2.2. Fall "\(x < 0..."\) folgt via **107-22**:

\[x \cdot (+\infty) = -\infty.\]

4: Aus 3 "\(x \cdot (+\infty) = -\infty"\) und aus 2.2. Fall "\(y = +\infty"\) folgt:

\[x \cdot y = -\infty.\]

5: Aus 4 folgt:

\[(x \cdot y = 0) \lor (x \cdot y = +\infty) \lor (x \cdot y = -\infty).\]

2.3. Fall

\[(x < 0) \land (y = -\infty).\]

3: Aus 2.3. Fall "\(x < 0..."\) folgt via **107-22**:

\[x \cdot (-\infty) = +\infty.\]

4: Aus 3 "\(x \cdot (-\infty) = +\infty"\) und aus 2.3. Fall "\(y = -\infty"\) folgt:

\[x \cdot y = +\infty.\]

5: Aus 4 folgt:

\[(x \cdot y = 0) \lor (x \cdot y = +\infty) \lor (x \cdot y = -\infty).\]
Beweis 108-1 a)

...
Beweis 108-1 a)

...

Fallunterscheidung

...

2.7. Fall \((0 < x) \wedge (y = 0) \)

3: Aus \(\rightarrow \) “\(x \in \mathbb{S} \)”
 folgt via \(\in \mathbb{SZ} \): \(x \) Zahl.

4: Aus 3 “\(x \) Zahl”
 folgt via \(\text{FSM0} \): \(x \cdot 0 = 0 \).

5: Aus 4 “\(x \cdot 0 = 0 \)” und
 aus 2.7. Fall “\(y = 0 \)”
 folgt: \(x \cdot y = 0 \).

6: Aus 5
 folgt: \((x \cdot y = 0) \lor (x \cdot y = +\infty) \lor (x \cdot y = -\infty) \).

2.8. Fall \((0 < x) \wedge (y = +\infty) \)

3: Aus 2.8. Fall “\(0 < x \)”
 folgt via \textbf{107-22} : \(x \cdot (+\infty) = +\infty \).

4: Aus 3 “\(x \cdot (+\infty) = +\infty \)” und
 aus 2.8. Fall “\(y = +\infty \)”
 folgt: \(x \cdot y = +\infty \).

5: Aus 4
 folgt: \((x \cdot y = 0) \lor (x \cdot y = +\infty) \lor (x \cdot y = -\infty) \).

2.9. Fall \((0 < x) \wedge (y = -\infty) \)

3: Aus 2.9. Fall “\(0 < x \)”
 folgt via \textbf{107-22} : \(x \cdot (-\infty) = -\infty \).

4: Aus 3 “\(x \cdot (-\infty) = -\infty \)” und
 aus 2.9. Fall “\(y = -\infty \)”
 folgt: \(x \cdot y = -\infty \).

5: Aus 4
 folgt: \((x \cdot y = 0) \lor (x \cdot y = +\infty) \lor (x \cdot y = -\infty) \).

Ende Fallunterscheidung

In allen Fällen gilt:
\[
(x \cdot y = 0) \lor (x \cdot y = +\infty) \lor (x \cdot y = -\infty).
\]
Beweis 108-1 b)

1: Aus \rightarrow “$x \in \mathbb{S}$” und
aus \rightarrow “$(y = 0) \lor (y = +\infty) \lor (y = -\infty)$”
folgt via des bereits bewiesenen a):

$$(x \cdot y = 0) \lor (x \cdot y = +\infty) \lor (x \cdot y = -\infty).$$

Fallunterscheidung

<table>
<thead>
<tr>
<th>1.1. Fall</th>
<th>$x \cdot y = 0$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus 1.1. Fall “$x \cdot y = 0$” und</td>
<td>$x \cdot y \in \mathbb{S}$.</td>
</tr>
<tr>
<td>aus 95-11 “$0 \in \mathbb{S}$”</td>
<td>folgt:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2. Fall</th>
<th>$x \cdot y = +\infty$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus $\forall y \in \mathbb{S}$ gleich “$x \cdot y = +\infty$”</td>
<td>$x \cdot y \in \mathbb{S}$.</td>
</tr>
<tr>
<td>folgt via 95-15:</td>
<td>$x \cdot y \in \mathbb{S}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3. Fall</th>
<th>$x \cdot y = -\infty$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus $\forall y \in \mathbb{S}$ gleich “$x \cdot y = -\infty$”</td>
<td>$x \cdot y \in \mathbb{S}$.</td>
</tr>
<tr>
<td>folgt via 95-15:</td>
<td>$x \cdot y \in \mathbb{S}$.</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung In allen Fällen gilt: $x \cdot y \in \mathbb{S}$.

\square
108-2. Je nachdem, ob \(x\) in \(\mathbb{R}, \mathbb{S}, \mathbb{T}, \mathbb{C}, \mathbb{B}, \mathbb{A}\) und ob \(y\) in \(\mathbb{R}, \mathbb{S}, \mathbb{T}, \mathbb{C}, \mathbb{B}, \mathbb{A}\) liegt, liegt das Produkt \(x \cdot y\) in \(\mathbb{R}, \mathbb{S}, \mathbb{T}, \mathbb{C}, \mathbb{B}, \mathbb{A}\). Die Beweis-Reihenfolge ist a) - b) - c) - p) - d) - e) - f) - g) - h) - j) - i) - k) - l) - m) - n) - o) - q) - r) - s) - t) - u):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Aus "(x \in \mathbb{R}) und "(y \in \mathbb{R})" folgt "(x \cdot y \in \mathbb{R})."</td>
</tr>
<tr>
<td>b)</td>
<td>Aus "(x \in \mathbb{R}) und "(y \in \mathbb{S})" folgt "(x \cdot y \in \mathbb{S})."</td>
</tr>
<tr>
<td>c)</td>
<td>Aus "(x \in \mathbb{R}) und "(y \in \mathbb{T})" folgt "(x \cdot y \in \mathbb{T})."</td>
</tr>
<tr>
<td>d)</td>
<td>Aus "(x \in \mathbb{R}) und "(y \in \mathbb{C})" folgt "(x \cdot y \in \mathbb{C})."</td>
</tr>
<tr>
<td>e)</td>
<td>Aus "(x \in \mathbb{R}) und "(y \in \mathbb{B})" folgt "(x \cdot y \in \mathbb{B})."</td>
</tr>
<tr>
<td>f)</td>
<td>Aus "(x \in \mathbb{R}) und "(y) Zahl" folgt "(x \cdot y) Zahl".</td>
</tr>
<tr>
<td>g)</td>
<td>Aus "(x \in \mathbb{S}) und "(y \in \mathbb{S})" folgt "(x \cdot y \in \mathbb{S})."</td>
</tr>
<tr>
<td>h)</td>
<td>Aus "(x \in \mathbb{S}) und "(y \in \mathbb{T})" folgt "(x \cdot y \in \mathbb{T})."</td>
</tr>
<tr>
<td>i)</td>
<td>Aus "(x \in \mathbb{S}) und "(y \in \mathbb{C})" folgt "(x \cdot y \in \mathbb{B})."</td>
</tr>
<tr>
<td>j)</td>
<td>Aus "(x \in \mathbb{S}) und "(y \in \mathbb{B})" folgt "(x \cdot y \in \mathbb{B})."</td>
</tr>
<tr>
<td>k)</td>
<td>Aus "(x \in \mathbb{S}) und "(y) Zahl" folgt "(x \cdot y) Zahl".</td>
</tr>
<tr>
<td>l)</td>
<td>Aus "(x \in \mathbb{T}) und "(y \in \mathbb{T})" folgt "(x \cdot y \in \mathbb{T})."</td>
</tr>
<tr>
<td>m)</td>
<td>Aus "(x \in \mathbb{T}) und "(y \in \mathbb{C})" folgt "(x \cdot y) Zahl".</td>
</tr>
<tr>
<td>n)</td>
<td>Aus "(x \in \mathbb{T}) und "(y \in \mathbb{B})" folgt "(x \cdot y) Zahl".</td>
</tr>
<tr>
<td>o)</td>
<td>Aus "(x \in \mathbb{T}) und "(y) Zahl" folgt "(x \cdot y) Zahl".</td>
</tr>
</tbody>
</table>

RECH-Notation.
108-2(Satz) ...

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| p) | Aus $x \in \mathbb{C}$ und $y \in \mathbb{C}$ folgt $x \cdot y \in \mathbb{C}$.
| q) | Aus $x \in \mathbb{C}$ und $y \in \mathbb{B}$ folgt $x \cdot y$ Zahl.
| r) | Aus $x \in \mathbb{C}$ und y Zahl folgt $x \cdot y$ Zahl.
| s) | Aus $x \in \mathbb{B}$ und $y \in \mathbb{B}$ folgt $x \cdot y$ Zahl.
| t) | Aus $x \in \mathbb{B}$ und y Zahl folgt $x \cdot y$ Zahl.
| u) | Aus x Zahl und y Zahl folgt $x \cdot y$ Zahl.

RECH-Notation.

Beweis 108-2

REIM-Notation.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| a) | VS gleich $(x \in \mathbb{R}) \land (y \in \mathbb{R})$.

Aus VS gleich $x \in \mathbb{R}$ … und
aus VS gleich … $y \in \mathbb{R}$
folgt via AAV: $x \cdot y \in \mathbb{R}$.
Beweis 108-2 b) VS gleich

1: Aus VS gleich “... y ∈ S”
folgt via 95-15:

\[(x \in \mathbb{R}) \land (y \in S).\]

\[(y \in \mathbb{R}) \lor (y = +\infty) \lor (y = -\infty).\]

Fallunterscheidung

1.1.Fall

2: Aus VS gleich “... x ∈ R...” und
aus 1.1.Fall “y ∈ R”
folgt via \(\text{AAV}^\text{V}\):

\[x \cdot y \in \mathbb{R}.\]

3: Aus 2 “x \cdot y ∈ \mathbb{R}”
folgt via \(\in \mathbb{SZ}\):

\[x \cdot y \in S.\]

1.2.Fall

2: Aus VS gleich “... x ∈ R...”
folgt via \(\in \mathbb{SZ}\):

\[x \in S.\]

3: Aus 2 “x ∈ S” und
aus 1.2.Fall “y = +\infty”
folgt via 108-1:

\[x \cdot y \in S.\]

1.3.Fall

2: Aus VS gleich “... x ∈ R...”
folgt via \(\in \mathbb{SZ}\):

\[x \in S.\]

3: Aus 2 “x ∈ S” und
aus 1.3.Fall “y = -\infty”
folgt via 108-1:

\[x \cdot y \in S.\]

Ende Fallunterscheidung

In allen Fällen gilt:

\[x \cdot y \in S.\]
Beweis 108-2 c) VS gleich

1: Aus VS gleich “...y ∈ T”
folgt via 95-16:

\[(x \in \mathbb{R}) \land (y \in T). \]

\[(y \in S) \lor (y = \text{nan}). \]

\[(y \in S). \]

\[x \cdot y \in S. \]

\[x \cdot y \in T. \]
Beweis 108-2 c) VS gleich $(x \in \mathbb{R}) \land (y \in \mathbb{T})$.

...

Fallunterscheidung

...

<table>
<thead>
<tr>
<th>1.2. Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = \text{nan}$</td>
</tr>
</tbody>
</table>

2: Es gilt: $(x = 0) \lor (0 \neq x)$.

Fallunterscheidung

<table>
<thead>
<tr>
<th>2.1. Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 0$</td>
</tr>
</tbody>
</table>

3: Aus $\text{AAVI}\cdot 0 \cdot \text{nan} = 0$ und
aus 2.1. Fall "$x = 0$"
folgt: $x \cdot \text{nan} = 0$.

4: Aus 3"$x \cdot \text{nan} = 0$" und
aus 1.2. Fall "$y = \text{nan}$"
folgt: $x \cdot y = 0$.

5: Aus 4"$x \cdot y = 0$" und
aus 95-12"$0 \in \mathbb{T}$"
folgt: $x \cdot y \in \mathbb{T}$.

<table>
<thead>
<tr>
<th>2.2. Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \neq x$</td>
</tr>
</tbody>
</table>

3: Aus VS gleich "$x \in \mathbb{R}$..."
folgt via $\in \text{SZ}$:
$x \in \mathbb{T}$.

4: Aus 2.2. Fall "$0 \neq x$" und
aus 3"$x \in \mathbb{T}$"
folgt via AAVI:
$x \cdot \text{nan} = \text{nan}$.

5: Aus 1.2. Fall "$y = \text{nan}$" und
aus 4"$x \cdot \text{nan} = \text{nan}$"
folgt: $x \cdot y = \text{nan}$.

6: Aus 5"$x \cdot y = \text{nan}$"
folgt via 95-16:
$x \cdot y \in \mathbb{T}$.

Ende Fallunterscheidung In beiden Fällen gilt: $x \cdot y \in \mathbb{T}$.

Ende Fallunterscheidung In beiden Fällen gilt: $x \cdot y \in \mathbb{T}$.
Beweis 108-2 p) VS gleich

1.1: Aus VS gleich “x ∈ C...” folgt via 101-1:
(Rx ∈ ℝ) ∧ (Imx ∈ ℝ).

1.2: Aus VS gleich “...y ∈ C” folgt via 101-1:
(Rey ∈ ℝ) ∧ (Imy ∈ ℝ).

2.1: Aus 1.1 “Re x ∈ ℝ...” und
aus 1.2 “Re y ∈ ℝ...” folgt via AAV:
(Re x) · (Re y) ∈ ℝ.

2.2: Aus 1.1 “Re x ∈ ℝ...” und
aus 1.2 “...Im y ∈ ℝ” folgt via AAV:
(Re x) · (Im y) ∈ ℝ.

2.3: Aus 1.1 “...Im x ∈ ℝ” und
aus 1.2 “Im y ∈ ℝ...” folgt via AAV:
(Im x) · (Re y) ∈ ℝ.

2.4: Aus 1.1 “...Im x ∈ ℝ” und
aus 1.2 “...Im y ∈ ℝ” folgt via AAV:
(Im x) · (Im y) ∈ ℝ.

3: Aus 2.4 “(Im x) · (Im y) ∈ ℝ” folgt via 100-6:
−(Im x) · (Im y) ∈ ℝ.

4.1: Aus 2.1 “(Re x) · (Re y) ∈ ℝ” und
aus 3 “−(Im x) · (Im y) ∈ ℝ” folgt via AAV:
(Re x) · (Re y) + (−(Im x) · (Im y)) ∈ ℝ.

4.2: Aus 2.2 “(Re x) · (Im y) ∈ ℝ” und
aus 2.3 “(Im x) · (Re y) ∈ ℝ” folgt via AAV:
(Re x) · (Im y) + (Im x) · (Re y) ∈ ℝ.

5: Aus 4.1 folgt:
(Re x) · (Re y) − (Im x) · (Im y) ∈ ℝ.

6.1: Via 96-26 gilt:
Re(x · y) = (Re x) · (Re y) − (Im x) · (Im y).

6.2: Via 96-26 gilt:
Im(x · y) = (Re x) · (Im y) + (Im x) · (Re y).
Beweis 108-2 p) VS gleich

\[(x \in \mathbb{C}) \land (y \in \mathbb{C})\].

\[\ldots\]

7.1: Aus 6.1 \(\text{Re}(x \cdot y) = (\text{Re}x) \cdot (\text{Re}y) - (\text{Im}x) \cdot (\text{Im}y)\) und

aus 5 \((\text{Re}x) \cdot (\text{Re}y) - (\text{Im}x) \cdot (\text{Im}y) \in \mathbb{R}\)

folgt:

\[\text{Re}(x \cdot y) \in \mathbb{R}\].

7.2: Aus 6.2 \(\text{Im}(x \cdot y) = (\text{Re}x) \cdot (\text{Im}y) + (\text{Im}x) \cdot (\text{Re}y)\) und

aus 4.2 \((\text{Re}x) \cdot (\text{Im}y) + (\text{Im}x) \cdot (\text{Re}y) \in \mathbb{R}\)

folgt:

\[\text{Im}(x \cdot y) \in \mathbb{R}\].

8: Aus 7.1 \(\text{Re}(x \cdot y) \in \mathbb{R}\) und

aus 7.2 \(\text{Im}(x \cdot y) \in \mathbb{R}\)

folgt via 101-1:

\[x \cdot y \in \mathbb{C}\].

d) VS gleich

\[(x \in \mathbb{R}) \land (y \in \mathbb{C})\].

1: Aus VS gleich \(\ldots x \in \mathbb{R}\ldots\)

folgt via \(\in \text{SZ}\):

\[x \in \mathbb{C}\].

2: Aus 1 \(x \in \mathbb{C}\) und

aus VS gleich \(\ldots y \in \mathbb{C}\)

folgt via des bereits bewiesenen p):

\[x \cdot y \in \mathbb{C}\].

e) VS gleich

\[(x \in \mathbb{R}) \land (y \in \mathbb{B})\].

1.1: Aus VS gleich \(\ldots x \in \mathbb{R}\ldots\)

folgt via \(\in \text{SZ}\):

\[x \in \mathbb{T}\].

1.2: Aus VS gleich \(\ldots y \in \mathbb{B}\)

folgt via 101-3:

\[(\text{Re}y \in \mathbb{S}) \land (\text{Im}y \in \mathbb{S})\].

2.1: Aus 1.1 \(x \in \mathbb{T}\)

folgt via \(\text{FST}\):

\[(x = \text{Re}x) \land (\text{Im}x = 0)\].

2.2: Aus 1.2 \(\text{Re}y \in \mathbb{S}\ldots\)

folgt via \(\in \text{SZ}\):

\[\text{Re}y\ \text{Zahl}\].

2.3: Aus 1.2 \(\ldots \text{Im}y \in \mathbb{S}\)

folgt via \(\in \text{SZ}\):

\[\text{Im}y\ \text{Zahl}\].

\[\ldots\]
Beweis 108-2 e) VS gleich

\[(x \in \mathbb{R}) \land (y \in \mathbb{B}).\]

\[\ldots\]

3.1: Aus 2.1 “\(x = \text{Re} x\ldots\)” und aus VS gleich “\(x \in \mathbb{R}\ldots\)” folgt:
\[\text{Re} x \in \mathbb{R}.\]

3.2: Aus 2.2 “\(\text{Re} y\) Zahl” folgt via FSM0:
\[0 \cdot \text{Re} y = 0.\]

3.3: Aus 2.3 “\(\text{Im} y\) Zahl” folgt via FSM0:
\[0 \cdot \text{Im} y = 0.\]

4.1: Aus 3.1 “\(\text{Re} \in \mathbb{R}\)” und aus 1.2 “\(\text{Re} y \in \mathbb{S}\ldots\)” folgt via des bereits bewiesenen b):
\[(\text{Re} x) \cdot (\text{Re} y) \in \mathbb{S}.\]

4.2: Aus 3.1 “\(\text{Re} \in \mathbb{R}\)” und aus 1.2 “\(\ldots\) \(\text{Im} y \in \mathbb{S}\)” folgt via des bereits bewiesenen b):
\[(\text{Re} x) \cdot (\text{Im} y) \in \mathbb{S}.\]

4.3: Aus 2.1 “\(\ldots\) \(\text{Im} x = 0\)” und aus 3.3 “\(0 \cdot \text{Im} y = 0\)” folgt:
\[(\text{Im} x) \cdot (\text{Im} y) = 0.\]

4.4: Aus 2.1 “\(\ldots\) \(\text{Im} x = 0\)” und aus 3.2 “\(0 \cdot \text{Re} y = 0\)” folgt:
\[(\text{Im} x) \cdot (\text{Re} y) = 0.\]

5.1:
\[\text{Re}(x \cdot y)\]
\[\overset{96-26}{=} (\text{Re} x) \cdot (\text{Re} y) - (\text{Im} x) \cdot (\text{Im} y)\]
\[\overset{4.3}{=} (\text{Re} x) \cdot (\text{Re} y) - 0\]
\[\overset{98-15}{=} (\text{Re} x) \cdot (\text{Re} y) + 0\]
\[\overset{98-12}{=} (\text{Re} x) \cdot (\text{Re} y).\]

5.2:
\[\text{Im}(x \cdot y)\]
\[\overset{96-26}{=} (\text{Re} x) \cdot (\text{Im} y) + (\text{Im} x) \cdot (\text{Re} y)\]
\[\overset{4.4}{=} (\text{Re} x) \cdot (\text{Im} y) + 0\]
\[\overset{98-12}{=} (\text{Re} x) \cdot (\text{Im} y).\]

\[\ldots\]
Beweis 108-2 e) VS gleich

\((x \in \mathbb{R}) \land (y \in \mathbb{B}).\)

\[\ldots\]

6.1: Aus 5.1 “\(\Re(x \cdot y) = \ldots = (\Re x) \cdot (\Re y)\)” und aus 4.1 “\((\Re x) \cdot (\Re y) \in \mathbb{S}\)” folgt:

\[\Re(x \cdot y) \in \mathbb{S}.\]

6.2: Aus 5.2 “\(\Im(x \cdot y) = \ldots = (\Re x) \cdot (\Im y)\)” und aus 4.2 “\((\Re x) \cdot (\Im y) \in \mathbb{S}\)” folgt:

\[\Im(x \cdot y) \in \mathbb{S}.\]

7: Aus 6.1 “\(\Re(x \cdot y) \in \mathbb{S}\)” und aus 6.2 “\(\Im(x \cdot y) \in \mathbb{S}\)” folgt via 101-3:

\[x \cdot y \in \mathbb{B}.\]

f) VS gleich

\((x \in \mathbb{R}) \land (y \text{ Zahl}).\)

1: Aus VS gleich “\(x \in \mathbb{R}\ldots\)” folgt via \(\in\text{SZ}:\)

\[x \text{ Zahl}.\]

2: Aus 1 “\(x \text{ Zahl}\)” und aus VS gleich “\(\ldots y \text{ Zahl}\)” folgt via 96-15:

\[x \cdot y \text{ Zahl}.\]
Beweis 108-2 g) VS gleich

1: Aus VS gleich “... y ∈ S” folgt via 95-15:

\((x \in S) \land (y \in S)\) \lor (y \in R) \lor (y = +\infty) \lor (y = -\infty).

Fallunterscheidung

1: 1.1.Fall

2: Aus 1.1.Fall “y ∈ R” und aus VS gleich “x ∈ S...” folgt via des bereits bewiesenen b):

\(y \cdot x \in S\).

3: Via KGM gilt:

\(x \cdot y = y \cdot x\).

4: Aus 3 “x \cdot y = y \cdot x” und aus 2 “y \cdot x \in S” folgt:

\(x \cdot y \in S\).

1.2.Fall

Aus VS gleich “x ∈ S...” und aus 1.2.Fall “y = +\infty” folgt via 108-1:

\(x \cdot y \in S\).

1.3.Fall

Aus VS gleich “x ∈ S...” und aus 1.3.Fall “y = -\infty” folgt via 108-1:

\(x \cdot y \in S\).

Ende Fallunterscheidung

In allen Fällen gilt:

\(x \cdot y \in S\).
Beweis 108-2 h) VS gleich

\((x \in S) \land (y \in T). \)

1: Aus VS gleich “... y ∈ T” folgt via 95-16:
\((y \in S) \lor (y = \text{nan}). \)

Fallunterscheidung

1.1. Fall

2: Aus VS gleich “x ∈ S...” und aus 1.1. Fall “y ∈ S” folgt via des bereits bewiesenen g):
\(x \cdot y \in S. \)

3: Aus 2 “x \cdot y ∈ S” folgt via \(\in \mathbb{S}\mathbb{Z}. \)
\(x \cdot y \in T. \)

...
Beweis 108-2 h) VS gleich

\[(x \in S) \land (y \in T).\]

\[\ldots\]

Fallunterscheidung

\[\ldots\]

<table>
<thead>
<tr>
<th>1.2. Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = \text{nan}.)</td>
</tr>
<tr>
<td>2: Es gilt:</td>
</tr>
<tr>
<td>((x = 0) \lor (0 \neq x).)</td>
</tr>
</tbody>
</table>

Fallunterscheidung

<table>
<thead>
<tr>
<th>2.1. Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0.)</td>
</tr>
<tr>
<td>3: Aus AAVI "0 \cdot \text{nan} = 0" und</td>
</tr>
<tr>
<td>aus 2.1. Fall "x = 0"</td>
</tr>
<tr>
<td>folgt:</td>
</tr>
<tr>
<td>(x \cdot \text{nan} = 0.)</td>
</tr>
<tr>
<td>4: Aus 3 "x \cdot \text{nan} = 0" und</td>
</tr>
<tr>
<td>aus 1.2. Fall "y = \text{nan}"</td>
</tr>
<tr>
<td>folgt:</td>
</tr>
<tr>
<td>(x \cdot y = 0.)</td>
</tr>
<tr>
<td>5: Aus 4 "x \cdot y = 0" und</td>
</tr>
<tr>
<td>aus 95-12 "0 \in T"</td>
</tr>
<tr>
<td>folgt:</td>
</tr>
<tr>
<td>(x \cdot y \in T.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2. Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 \neq x.)</td>
</tr>
<tr>
<td>3: Aus VS gleich "x \in S..."</td>
</tr>
<tr>
<td>folgt via (\in \text{SZ}:)</td>
</tr>
<tr>
<td>(x \in T.)</td>
</tr>
<tr>
<td>4: Aus 2.2. Fall "0 \neq x" und</td>
</tr>
<tr>
<td>aus 3 "x \in T"</td>
</tr>
<tr>
<td>folgt via AAVI:</td>
</tr>
<tr>
<td>(x \cdot \text{nan} = \text{nan}.)</td>
</tr>
<tr>
<td>5: Aus 4 "x \cdot \text{nan} = \text{nan}" und</td>
</tr>
<tr>
<td>aus 1.2. Fall "y = \text{nan}"</td>
</tr>
<tr>
<td>folgt:</td>
</tr>
<tr>
<td>(x \cdot y = \text{nan}.)</td>
</tr>
<tr>
<td>6: Aus 5 "x \cdot y = \text{nan}"</td>
</tr>
<tr>
<td>folgt via 95-16:</td>
</tr>
<tr>
<td>(x \cdot y \in \mathbb{T}.)</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung

In beiden Fällen gilt: \(x \cdot y \in T.\)

Ende Fallunterscheidung

In beiden Fällen gilt: \(x \cdot y \in T.\)
Beweis 108-2 j) VS gleich

1.1: Aus VS gleich \(x \in S \ldots \)
folgt via \(\in \text{SZ} \):
\(x \in T \).

1.2: Aus VS gleich \(\ldots y \in B \)
folgt via 101-3:
\((\Re y \in S) \land (\Im y \in S) \).

2.1: Aus 1.1\(x \in T \)
folgt via \(\text{FST} \):
\((x = \Re x) \land (\Im x = 0) \).

2.2: Aus 1.2\(\Re y \in S \ldots \)
folgt via \(\in \text{SZ} \):
\(\Re y \text{ Zahl} \).

2.3: Aus 1.2\(\ldots \Im y \in S \)
folgt via \(\in \text{SZ} \):
\(\Im y \text{ Zahl} \).

3.1: Aus 2.1\(x = \Re x \ldots \)
und aus VS gleich \(x \in S \ldots \)
folgt:
\(\Re x \in S \).

3.2: Aus 2.2\(\Re y \text{ Zahl} \)
folgt via \(\text{FSM}0 \):
\((\Re y) \cdot 0 = 0 \).

3.3: Aus 2.3\(\Im y \text{ Zahl} \)
folgt via \(\text{FSM}0 \):
\((\Im y) \cdot 0 = 0 \).

4.1: Aus 1.2\(\Re y \in S \ldots \) und
aus 3.1\(\Re x \in S \) und
folgt via des bereits bewiesenen g):
\((\Re y) \cdot (\Re x) \in S \).

4.2: Aus 3.2\((\Re y) \cdot 0 = 0 \) und
aus 2.1\(\ldots \Im x = 0 \)
folgt:
\((\Re y) \cdot (\Im x) = 0 \).

4.3: Aus 1.2\(\ldots \Im y \in S \) und
aus 3.1\(\Re x \in S \)
folgt via des bereits bewiesenen g):
\((\Im y) \cdot (\Re x) \in S \).

4.4: Aus 3.3\((\Im y) \cdot 0 = 0 \) und
aus 2.1\(\ldots \Im x = 0 \)
folgt:
\((\Im y) \cdot (\Im x) = 0 \).

...
Beweis 108-2 j) VS gleich

\((x \in \mathbb{S}) \land (y \in \mathbb{B}). \)

\[5.1: \]

\[\text{Re}(y \cdot x) \]

\[96-26 \ (\text{Re}y) \cdot (\text{Re}x) - (\text{Im}y) \cdot (\text{Im}x) \]

\[4.4 \ (\text{Re}y) \cdot (\text{Re}x) - 0 \]

\[98-15 \ (\text{Re}y) \cdot (\text{Re}x) + 0 \]

\[98-12 \ (\text{Re}y) \cdot (\text{Re}x). \]

\[5.2: \]

\[\text{Im}(y \cdot x) \]

\[96-26 \ (\text{Re}y) \cdot (\text{Im}x) + (\text{Im}y) \cdot (\text{Re}x) \]

\[4.2 \ 0 + (\text{Im}y) \cdot (\text{Re}x) \]

\[98-12 \ (\text{Im}y) \cdot (\text{Re}x). \]

\[6.1: \text{Aus 5.1} \] "\(\text{Re}(y \cdot x) = \ldots = (\text{Re}y) \cdot (\text{Re}x) \)" und
\[\text{aus 4.1} "(\text{Re}y) \cdot (\text{Re}x) \in \mathbb{S}" \]

folgt:

\[\text{Re}(y \cdot x) \in \mathbb{S}. \]

\[6.2: \text{Aus 5.2} \] "\(\text{Im}(y \cdot x) = \ldots = (\text{Im}y) \cdot (\text{Re}x) \)" und
\[\text{aus 4.3} "(\text{Im}y) \cdot (\text{Re}x) \in \mathbb{S}" \]

folgt:

\[\text{Im}(y \cdot x) \in \mathbb{S}. \]

\[7: \text{Aus 6.1} \] "\(\text{Re}(y \cdot x) \in \mathbb{S} \)" und
\[\text{aus 6.2} "\text{Im}(y \cdot x) \in \mathbb{S}" \]

folgt via 101-3:

\[y \cdot x \in \mathbb{B}. \]

\[8: \text{Via KGM gilt:} \]

\[x \cdot y = y \cdot x. \]

\[9: \text{Aus 8} \] "\(x \cdot y = y \cdot x \)" und
\[\text{aus 7} "y \cdot x \in \mathbb{B}" \]

folgt:

\[x \cdot y \in \mathbb{B}. \]

i) VS gleich

\[(x \in \mathbb{S}) \land (y \in \mathbb{C}). \]

\[1: \text{Aus VS gleich } \ldots y \in \mathbb{C} \]

folgt via \(\in \mathbb{SZ} \):

\[y \in \mathbb{B}. \]

\[2: \text{Aus VS gleich } x \in \mathbb{S} \ldots \]

aus 1 "\(y \in \mathbb{B}" \]

folgt via des bereits bewiesenen j):

\[x \cdot y \in \mathbb{B}. \]
Beweis 108-2 k) VS gleich

(x ∈ S) ∧ (y Zahl).

1: Aus VS gleich “x ∈ S...”
folgt via ∈SZ:

(x ∈ S) ∧ (y Zahl).

2: Aus 1 “x Zahl” und
aus VS gleich “…y Zahl”
folgt via 96-15:

(x • y Zahl).

1) VS gleich

(x ∈ T) ∧ (y ∈ T).

1.1: Aus VS gleich “x ∈ T...”
folgt via 95-16:

(x ∈ S) ∨ (x = nan).

1.2: Aus VS gleich “…y ∈ T”
folgt via 95-16:

(y ∈ S) ∨ (y = nan).

2: Aus 1.1 und
aus 1.2
folgt:

(x ∈ S) ∧ (y ∈ S)
∨ (x ∈ S) ∧ (y = nan)
∨ (x = nan) ∧ (y = S)
∨ (x = nan) ∧ (y = nan).

Fallunterscheidung

2.1. Fall

(x ∈ S) ∧ (y ∈ S).

3: Aus 2.1. Fall “x ∈ S...” und
aus 2.1. Fall “...y ∈ S”
folgt via des bereits bewiesenen g):

(x • y ∈ S).

4: Aus 3 “x • y ∈ S”
folgt via ∈SZ:

(x • y ∈ T).

2.2. Fall

(x ∈ S) ∧ (y = nan).

Aus 2.2. Fall “x ∈ S...” und
aus VS gleich “...y ∈ T”
folgt via des bereits bewiesenen h):

(x • y ∈ T).

...
Beweis 108-2 1) VS gleich $(x \in T) \land (y \in T)$.

...

Fallunterscheidung

...

2.3. Fall

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Aus 2.3. Fall“... $y \in S$” und aus VS gleich “$x \in T$...” folgt via des bereits bewiesenen h): $y \cdot x \in T$.</td>
</tr>
<tr>
<td>4</td>
<td>Via KGM gilt: $x \cdot y = y \cdot x$.</td>
</tr>
<tr>
<td>5</td>
<td>Aus 4“$x \cdot y = y \cdot x$” und aus 3“$y \cdot x \in T$” folgt: $x \cdot y \in T$.</td>
</tr>
</tbody>
</table>

2.4. Fall

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Aus 2.4. Fall“$x = \text{nan}$...” und aus 97-5“$\text{nan} \cdot \text{nan} = \text{nan}$” folgt: $x \cdot \text{nan} = \text{nan}$.</td>
</tr>
<tr>
<td>4</td>
<td>Aus 3“$x \cdot \text{nan} = \text{nan}$” und aus 2.4. Fall“... $y = \text{nan}$” folgt: $x \cdot y = \text{nan}$.</td>
</tr>
<tr>
<td>5</td>
<td>Aus 4“$x \cdot y = \text{nan}$” folgt via 95-16: $x \cdot y \in T$.</td>
</tr>
</tbody>
</table>

Ende Fallunterscheidung

In allen Fällen gilt: $x \cdot y \in T$.

m) VS gleich $(x \in T) \land (y \in \mathbb{C})$.

1.1: Aus VS gleich “$x \in T$...” folgt via $\in SZ$: x Zahl.

1.2: Aus VS gleich “... $y \in \mathbb{C}$” folgt via $\in SZ$: y Zahl.

2: Aus 1.1“x Zahl” und aus 1.2“y Zahl” folgt via 96-15: $x \cdot y$ Zahl.
Beweis 108-2 n) VS gleich $(x \in \mathbb{T}) \land (y \in \mathbb{B})$.

1.1: Aus VS gleich “$x \in \mathbb{T}$...”
folgt via $\in \mathbb{SZ}$:
x Zahl.

1.2: Aus VS gleich “... $y \in \mathbb{B}$”
folgt via $\in \mathbb{SZ}$:
y Zahl.

2: Aus 1.1“x Zahl” und
aus 1.2“y Zahl”
folgt via 96-15:
$x \cdot y$ Zahl.

o) VS gleich $(x \in \mathbb{T}) \land (y \text{ Zahl})$.

1: Aus VS gleich “$x \in \mathbb{T}$...”
folgt via $\in \mathbb{SZ}$:
x Zahl.

2: Aus 1“x Zahl” und
aus VS gleich “... y Zahl”
folgt via 96-15:
$x \cdot y$ Zahl.

q) VS gleich $(x \in \mathbb{C}) \land (y \in \mathbb{B})$.

1.1: Aus VS gleich “$x \in \mathbb{C}$...”
folgt via $\in \mathbb{SZ}$:
x Zahl.

1.2: Aus VS gleich “... $y \in \mathbb{B}$”
folgt via $\in \mathbb{SZ}$:
y Zahl.

2: Aus 1.1“x Zahl” und
aus 1.2“y Zahl”
folgt via 96-15:
$x \cdot y$ Zahl.

r) VS gleich $(x \in \mathbb{C}) \land (y \text{ Zahl})$.

1: Aus VS gleich “$x \in \mathbb{C}$...”
folgt via $\in \mathbb{SZ}$:
x Zahl.

2: Aus 1“x Zahl” und
aus VS gleich “... y Zahl”
folgt via 96-15:
$x \cdot y$ Zahl.
Beweis 108-2 s) VS gleich

1.1: Aus VS gleich “\(x \in \mathbb{B} \ldots \)”
folgt via \(\in \mathbb{SZ} \):
\[x \text{ Zahl.} \]

1.2: Aus VS gleich “\(\ldots y \in \mathbb{B} \)”
folgt via \(\in \mathbb{SZ} \):
\[y \text{ Zahl.} \]

2: Aus 1.1 “\(x \text{ Zahl} \)” und
aus 1.2 “\(y \text{ Zahl} \)”
folgt via 96-15:
\[x \cdot y \text{ Zahl.} \]

t) VS gleich

1: Aus VS gleich “\(x \in \mathbb{B} \ldots \)”
folgt via \(\in \mathbb{SZ} \):
\[x \text{ Zahl.} \]

2: Aus 1 “\(x \text{ Zahl} \)” und
aus VS gleich “\(\ldots y \text{ Zahl} \)”
folgt via 96-15:
\[x \cdot y \text{ Zahl.} \]

u) VS gleich

Aus VS gleich “\(x \text{ Zahl} \ldots \)” und
aus VS gleich “\(\ldots y \text{ Zahl} \)”
folgt via 96-15:
\[x \cdot y \text{ Zahl.} \]
\[\square \]

