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Abstract

In this paper we solve a long-standing open problem in numerical
analysis called Van Loan’s Curse. We derive a new numerical method
for computing the Hamiltonian Schur form of a Hamiltonian matrix
that has no purely imaginary eigenvalues. The proposed method is nu-
merically strongly backward stable, i.e., it computes the exact Hamilto-
nian Schur form of a nearby Hamiltonian matrix, and it is of complexity
O(n3) and thus Van Loan’s curse is lifted. We demonstrate the qual-
ity of the new method by showing its performance for the benchmark
collection of continuous-time algebraic Riccati equations.

Keywords. Hamiltonian matrix, skew-Hamiltonian matrix, real Hamil-
tonian Schur form, real skew-Hamiltonian Schur form, symplectic URV -de-
composition, stable invariant subspace.

AMS subject classification. 65F15, 93B36, 93B40, 93C60.

1 Introduction

It has been a long-standing problem, see [30], to compute the Hamiltonian
Schur form and the invariant subspace associated with the eigenvalues in the
left half plane for Hamiltonian matrices. Recall the following definitions.

Definition 1 Let

Jn =

[

0 In

−In 0

]

,

where In is the identity matrix in R
n×n.

(i) A matrix M ∈ R
2n×2n is called Hamiltonian if MJn = (MJn)T .

Every Hamiltonian matrix M ∈ R
2n×2n is of the form

M =

[

F G
H −F T

]

,

where F,G,H ∈ R
n×n, G = GT , and H = HT .

(ii) A matrix N ∈ R
2n×2n is called skew-Hamiltonian if NJn = −(NJn)T .

Every skew-Hamiltonian matrix N ∈ R
2n×2n is of the form

N =

[

F G
H F T

]

,

where F,G,H ∈ R
n×n, G = −GT , and H = −HT .
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(iii) A matrix S ∈ R
2n×2n is called symplectic if SJnST = Jn. A matrix

U ∈ R
2n×2n is called orthogonal-symplectic if U is symplectic and

orthogonal. Every orthogonal-symplectic matrix U ∈ R
2n×2n is of the

form

U =

[

U1 −U2

U2 U1

]

,

where U1, U2 ∈ R
n×n.

(iv) A subspace L of R
2n is called isotropic if xT Jny = 0 for all x, y ∈ L.

It is called Lagrangian if it is maximal isotropic, i.e. it has dimension
n.

Definition 2 (i) A real, block upper-triangular matrix of the form

T =







n1 · · · nl

T1,1 · · · T1l

. . .
...

Tll







n1
...
nl

,

with diagonal blocks Ti,i, i = 1, · · · , l that are either 1 × 1 or 2 × 2
with a pair of (non-real) complex conjugate eigenvalues is called a real
Schur form, see e.g. [18].

(ii) Let M ∈ R
2n×2n be Hamiltonian. If there exists an orthogonal-symplectic

matrix U ∈ R
2n×2n such that

UTMU =

[

M1,1 M1,2

0 −MT
1,1

]

, (1)

where M1,1 is in real Schur form, then (1) is called a real Hamiltonian
Schur form of M.

(iii) Let N ∈ R
2n×2n be skew-Hamiltonian. If there exists an orthogonal-

symplectic matrix U ∈ R
2n×2n such that

UTNU =

[

N1,1 N1,2

0 NT
1,1

]

, (2)

where N1,1 is in real Schur form, then (2) is called a real skew-
Hamiltonian Schur form of N .
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The Hamiltonian eigenvalue problem, i.e., to compute eigenvalues and
invariant subspaces of Hamiltonian matrices, is of great importance in many
applications in control theory and signal processing, see [20, 24, 29, 39], since
it is at the heart of almost any solution method for determining optimal
and robust controllers. Computational methods for this problem are well
established and have been constantly improved, since the landmark papers
of Laub [25] and Paige/Van Loan [30]. In the latter paper the authors posed
the open question to derive an O(n3) method that is numerically strongly
backwards stable in the sense of [13], i.e., the method computes the exact
eigenvalues and invariant subspaces of a nearby Hamiltonian matrix. This
problem is known as Van Loan’s curse. Many attempts have been made
to derive such a method, see [14, 26, 29] and the references therein, but it
has been shown in [1] that a modification of the standard QR-method to
solve this problem is in general hopeless, due to the missing reduction to a
Hessenberg-like form. Only in special cases such a method has been found
[15, 16].

A major step in the direction of deriving a structure preserving method
for the Hamiltonian eigenvalue problem was made in [6, 7, 8], where new
methods are described that improve the so-called square-reduced method of
Van Loan [35]. The basis for these methods is the observation that one
can compute the real skew-Hamiltonian Schur form of N = M2, without
forming the square, by exploiting the relationship between the invariant sub-

spaces of the Hamiltonian matrix M, the extended matrix

[

0 M
M 0

]

and

the symplectic URV -decomposition introduced in [7]. Our new approach is
strongly based on this symplectic URV -decomposition which we will sum-
marize and slightly modify in Section 2. In Section 3 we will then derive
our new strongly backward stable method of complexity O(n3) to determine
the Hamiltonian Schur form. Some algorithmic details are discussed in Sec-
tion 4. In Section 5 we will demonstrate the properties of the new method
by its performance on the benchmark collection [5]. Conclusions are given
in Section 6.

Although some of the results may be extended to the general case, in
this paper we only consider the Hamiltonian eigenvalue problem for matrices
that have no purely imaginary eigenvalues. For Hamiltonian matrices with
purely imaginary eigenvalues, the situation is much more complicated, since
in this case not always a Hamiltonian Schur form exists, see [27, 31, 32].
A complete parameterization of all possible Hamiltonian Schur forms and
corresponding Lagrange invariant subspaces has recently been given in [17].
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2 Previous results

The basis of our new method to compute the Hamiltonian Schur form for a
real Hamiltonian matrix M is the computation of the real skew-Hamiltonian
Schur form of N = M2. The real skew-Hamiltonian Schur form was origi-
nally suggested in [35], where also a numerical method was presented that
computes this form and that is backward stable for N . But there are several
drawbacks of this method. First, it has to compute N = M2, which in a
worst case situation creates an error of order

√
eps for the eigenvalues that

are small in modulus, where eps is the machine precision. A backward sta-
ble method to compute the real skew-Hamiltonian Schur form of N = M2

without forming M2 explicitly was developed in [7]. The method uses the
following decomposition.

Lemma 3 [7] (Symplectic URV -decomposition.) Let M ∈ R
2n×2n be a

Hamiltonian matrix. Then there exist orthogonal-symplectic matrices U ,V ∈
R

2n×2n and integers n1, · · · , nl such that

UTMV =

[

Ξ Γ
0 −ΘT

]

, VTMU =

[

Θ ΓT

0 −ΞT

]

, (3)

with block upper-triangular matrices

Ξ =







n1 · · · nl

Ξ1,1 · · · Ξ1,l

. . .
...

Ξl,l







n1
...
nl

, Θ =







n1 · · · nl

Θ1,1 · · · Θ1,l

. . .
...

Θl,l







n1
...
nl

, (4)

where the block-sizes satisfy 1 ≤ ni ≤ 2 and the diagonal blocks Ξi,i are
upper-triangular, i = 1, · · · , l.

The method of [7] to compute this symplectic URV -decomposition consists
of two parts. The first part is a Hessenberg-like reduction using orthogonal-
symplectic transformation matrices U0,V0 ∈ R

2n×2n such that

UT
0 MV0 =

[

M1,1 M1,2

0 −MT
2,2

]

, (5)

with M1,1 upper-triangular and M2,2 upper-Hessenberg. The second part is
the computation of the periodic Schur form of M1,1M2,2, which determines
(without forming the product) real orthogonal matrices U1 and U2 such that
UT

1 M1,1(U2U
T
2 )M2,2U1 = ΞΘ as well as UT

2 M2,2(U1U
T
1 )M1,1U2 = ΘΞ are in
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real Schur form. Different versions of periodic Schur forms and correspond-
ing computational methods were developed in [11, 19, 33, 36]. For new
computational approaches to compute periodic Schur decompositions and
its perturbation analysis, see [9, 23, 22].

The second drawback of the approach to solve the Hamiltonian eigen-
value problem via the skew-Hamiltonian eigenvalue problem for N = M2

is that squaring the matrix maps the eigenvalues λ and −λ both to λ2.
This makes it difficult to compute the invariant subspace associated with
the eigenvalues in the left half plane, which is one of the major tasks in
applications, see [29] and the references therein. A method to overcome the
second drawback was suggested in [37, 38], but the method is not backward
stable. An improvement here is the extension of [7] in [6] which also allows
the computation of the invariant subspace of the Hamiltonian matrix M
associated with the eigenvalues in the left half plane. The new method that
we present below is strongly based on all these ideas.

In the symplectic URV -decomposition (3)-(4) the square roots of eigen-
values of Ξi,iΘi,i (i = 1, · · · , l) are eigenvalues of M and, because we may
choose any order of diagonal blocks, we may order Ξi,i and Θi,i in (3)-(4)
such that the magnitude of the real parts of the square roots of the eigen-
values of Ξi,iΘi,i (i = 1, · · · , l) is decreasing.

Also, in the symplectic URV -decomposition (3)-(4) as it was derived in
[7] it is not required that a 2×2-block Ξi,iΘi,i has only non-real eigenvalues.
If 2 × 2 blocks with real eigenvalues occur, then we modify the URV -de-
composition slightly by carefully computing an orthogonal matrix Ui ∈ R

2×2

such that UT
i Ξi,iΘi,iUi is upper-triangular and then updating sub-blocks Ξi,j,

Θk,i (j = i, · · · , l, k = 1, · · · , i) and the orthogonal-symplectic matrix U in
(3)-(4).

In the following we assume that we have performed these two modifica-
tions, i.e., we assume that an orthogonal-symplectic matrix U as in (3)-(4)
has been determined without forming M2 explicitly such that UTM2U is
in real skew-Hamiltonian Schur form

UTM2U =

[

Φ Π
0 ΦT

]

, (6)

with

Φ =







n1 · · · nl

Φ1,1 · · · Φ1,l

. . .
...

Φl,l







n1
...
nl

, (7)
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where Φi,i = Ξi,iΘi,i is in real Schur form, i.e., either 2 × 2 with a pair of
non-real complex conjugate eigenvalues, or 1× 1 real, and the magnitude of
the real parts of the square roots of the eigenvalues of Φi,i (i = 1, · · · , l) is
decreasing.

Throughout the paper we will frequently make use of the following simple
but important observations.

Proposition 4 Suppose that D ∈ R
2×2 has a pair of non-real conjugate

eigenvalues. If DX − XD = 0 for some nonzero matrix X ∈ R
2×2, then X

is nonsingular.

Proof. By our assumption, we may assume w.l.o.g. that D =

[

a −b
b a

]

with b 6= 0. Then all solutions take the form X =

[

x y
−y x

]

and hence the

result follows trivially.

Proposition 5 Consider a Hamiltonian matrix M, let U be an orthogonal-
symplectic matrix such that UTM2U is in real skew-Hamiltonian Schur form

(6)–(7) and let H = UTMU . Then the columns of H
[

In1

0

]

form an

invariant subspace of H2 associated with the eigenvalues of Φ1,1.

Proof. We have that H2 = UTM2U = (UTMU)2 is in real skew-
Hamiltonian Schur form (6)–(7) and hence

H2(H
[

In1

0

]

) = H(H2

[

In1

0

]

) = H(

[

In1

0

]

Φ1,1) = (H
[

In1

0

]

)Φ1,1.

(8)

By recalling some previous results on the skew-Hamiltonian Schur form
we have now set the stage for the new method that we will describe in the
next section.

3 Computation of the Hamiltonian Schur form

In this section we describe our new method to compute the Hamiltonian
Schur form. Suppose that we have determined the symplectic URV -decom-
position (3)–(4) of the Hamiltonian matrix M, i.e., by construction U TM2U
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is in skew-Hamiltonian Schur form (6)-(7). We form the real Hamiltonian
matrix

H = UTMU =

[

F G

H −F T

]

=





















F1,1 . . . F1,l G1,1 . . . G1,l

... . . .
...

... . . .
...

Fl,1 . . . Fl,l Gl,1 . . . Gl,l

H1,1 . . . H1,l −F T
1,1 . . . −F T

l,1
... . . .

...
... . . .

...
Hl,1 . . . Hl,l −F T

1,l . . . −F T
l,l





















(9)

with
Fi,j , Gi,j ,Hi,j ∈ R

ni×nj , i, j = 1, · · · , l, (10)

partitioned conformably with (6)–(7).
Our new method determines an orthogonal-symplectic matrix Q such

that the Hamiltonian matrix QTHQ can be partitioned as

QTHQ =











F̂1 ∗ ∗ ∗
0 F̂ ∗ Ĝ

0 0 −F̂ T
1 0

0 Ĥ ∗ −F̂ T











, (11)

where F̂1 is an n1 × n1 or 2n1 × 2n1 matrix in real Hamiltonian Schur

form,

[

F̂ Ĝ

Ĥ −F̂ T

]

is Hamiltonian, and

[

F̂ Ĝ

Ĥ −F̂ T

]2

is again in real skew-

Hamiltonian Schur form. Once this form has been computed, we can apply

the same procedure inductively to the matrix

[

F̂ Ĝ

Ĥ −F̂ T

]

.

In this section we discuss only the theoretical basis for the new method,
for the algorithm see Section 4. We study two cases depending on blocks
of the first (block) column of (9) being zero or not. Observe that if all the
blocks F2,1, . . . , Fl,1 and H1,1, . . . ,Hl,1 in (9) are zero, then H is already

in the form (11), since H is Hamiltonian, with F̂1 ∈ R
n1×n1 and we have

Q = I2n.
In the first case we assume that the blocks H1,1, . . . ,Hl,1 in (9) are all

zero but at least one of the blocks F2,1, . . . , Fl,1 does not vanish. We then
have the following Lemma.
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Lemma 6 Consider a Hamiltonian matrix H of the form (9) such that
H2 is in real skew-Hamiltonian Schur form and suppose that the blocks
H1,1, . . . ,Hl,1 are all zero but at least one of the blocks F2,1, . . . , Fl,1 does
not vanish. If k is the largest index of a non-zero block in







F2,1
...

Fl,1






,

then nk = n1, the two matrices Φ1,1 and Φk,k in (6)–(7) have the same
eigenvalues, and Fk,1 ∈ R

n1×n1 is invertible.

Proof. Since H2 = UTM2U = (UTMU)2 is in real skew-Hamiltonian
Schur form (6)–(7), by Proposition 5 we obtain







Φ1,1 · · · Φ1,k

. . .
...

Φk,k













F1,1
...

Fk,1






=







F1,1
...

Fk,1






Φ1,1.

So, the Sylvester equation

Φk,kFk,1 − Fk,1Φ1,1 = 0 (12)

has to hold and we have the following possibilities.
If n1 = 2 and nk = 1 then, since the eigenvalues of Φ1,1 are non-real and

Φk,k is real, we have a contradiction to Fk,1 6= 0, since (12) would then only
have the solution Fk,1 = 0. The same argument holds if n1 = 1 and nk = 2.
So it follows that n1 = nk.

If n1 = 1 then clearly by (12), Φk,k = Φ1,1, since Fk,1 6= 0.
Analogously, if n1 = nk = 2 and the matrices Φ1,1 and Φk,k have no

common eigenvalue, then (12) leads to a contradiction to Fk,1 6= 0. But since
Φ1,1 and Φk,k have in this case only a pair of complex conjugate eigenvalues,
we have that Φ1,1 and Φk,k are similar.

The invertibility of Fk,1 is clear if n1 = 1 and follows from Proposition 4
if n1 = 2.
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In the situation of Lemma 6 we introduce the n × n matrix

Y1 =





























In1
F1,1

F2,1 In2

...
. . .

Fk−1,1 Ink−1

Fk,1 0 0
0 0 Ink+1

...
. . .

0 Inl





























, (13)

and determine the QR-factorization

Y1 = Q1R1, (14)

where Q1 ∈ R
n×n and R1 ∈ R

n×n is upper-triangular and nonsingular, since
Fk,1 is nonsingular.

Remark 1 The orthogonal matrix Q1 in (14) can be obtained by

[(

k
∑

i=2

ni − 1) + (n1 − 1)(

k
∑

i=2

ni − 2)] < 2n

Givens rotations, see Algorithm 2 in Appendix A.

Since H2

[

In1

0

]

=

[

In1

0

]

Φ1,1, we have the identity

H
[ [

In1

0

]

, H
[

In1

0

] ]

=

[ [

In1

0

]

, H
[

In1

0

] ] [

0 Φ1,1

In1
0

]

,

(15)
and it follows that

H





Q1

[

I2n1

0

]

0



 =





Q1

[

I2n1

0

]

0



∆, (16)

where

∆ =





Q1

[

I2n1

0

]

0





T

M





Q1

[

I2n1

0

]

0



 . (17)

Finally we compute an orthogonal matrix Q2 ∈ R
2n1×2n1 such that QT

2 ∆Q2

is in real Schur form.
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Remark 2 Note that if n1 = 1, then ∆ ∈ R
2×2 has a double real eigenvalue,

since we have assumed that the problem has no purely imaginary eigenval-
ues. If n1 = 2, then ∆ ∈ R

4×4 has 2 double pairs of complex conjugate
eigenvalues. In general ∆ is not in real Schur form. So we may compute an
orthogonal matrix Q2 ∈ R

2n1×2n1 such that QT
2 ∆Q2 is in real Schur form,

but due to the double eigenvalues, in general this computation is sensitive to
perturbations. In those applications, where a block-Schur form is sufficient,
we may just skip the transformation to real Schur from for this block and
take Q2 to be the identity matrix.

Theorem 7 In the situation of Lemma 6, with the orthogonal-symplectic
matrix

Q =









Q1

[

Q2

I

]

0

0 Q1

[

Q2

I

]









, (18)

we have that QTHQ has the form (11) with F̂1 ∈ R
2n1×2n1.

Proof. Since (16) holds, H is Hamiltonian and Q is orthogonal-symplectic,
it follows that (11) holds with F̂1 = QT

2 ∆Q2 in real Schur form.
By Lemma 6 we have that Fk,1 is nonsingular and n1 = nk, and hence

with t = n1 + . . . + nk−1 there exists a matrix D ∈ R
t×n1 such that

Y1

[

It+nk

0

]

D =





nk

0
Ink

0





t
nk

n − t − nk

,

where Y1 is as in (13). Defining















nk+1 · · · nl

Φ̂1,k+1 · · · Φ̂1,l

Φ̃1,k+1 · · · Φ̃1,l

Φ̂2,k+1 · · · Φ̂2,l

... · · · ...
Φ̂k−1,k+1 · · · Φ̂k−1,l















n1

n1

n2
...
nk−1

:=















Φ1,k+1 · · · Φ1,l

0 · · · 0
Φ2,k+1 · · · Φ2,l

... · · · ...
Φk−1,k+1 · · · Φk−1,l















+D
[

Φk,k+1 · · · Φk,l

]

,
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then, using (6)–(7) and introducing the matrices

Y2 :=





























Φ1,1 0 Φ1,2 · · · Φ1,k−1 Φ1,k+1 · · · Φ1,l

Φ1,1 0 · · · 0 0 · · · 0
Φ2,2 · · · Φ2,k−1 Φ2,k+1 · · · Φ2,l

. . .
...

... · · · ...
Φk−1,k−1 Φk−1,k+1 · · · Φk−1,l

Φk+1,k+1 · · · Φk+1,l

. . .
...

Φl,l





























,

and

Y3 :=





























Φ1,1 0 Φ1,2 · · · Φ1,k−1 Φ̂1,k+1 · · · Φ̂1,l

Φ1,1 0 · · · 0 Φ̃1,k+1 · · · Φ̃1,l

Φ2,2 · · · Φ2,k−1 Φ̂2,k+1 · · · Φ̂2,l

. . .
...

... · · · ...

Φk−1,k−1 Φ̂k−1,k+1 · · · Φ̂k−1,l

Φk+1,k+1 · · · Φk+1,l

. . .
...

Φl,l





























,

a direct calculation yields that

H2

[

Y1

0

]

=

[

Y1

0

]

Y2 +





0
Ink

0





[

0 · · · 0 Φk,k+1 · · · Φk,l

]

=

[

Y1

0

]

Y2 +

[

Y1

0

] [

It+nk

0

]

D
[

0 · · · 0 Φk,k+1 · · · Φk,l

]

=

[

Y1

0

]

Y3.

Hence,

H2

[

Q1

0

]

=

[

Q1

0

]

R1Y3R
−1
1

Because R1 is upper triangular and QTH2Q is skew-Hamiltonian, we have
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that

QTH2Q =









2n1 n − 2n1 2n1 n − 2n1

Ψ1,1 Ψ1,2 Ψ13 Ψ14

0 Ψ2,2 Ψ23 Ψ24

0 0 ΨT
1,1 0

0 0 ΨT
1,2 ΨT

2,2









,

where
[

Ψ1,1 Ψ1,2

0 Ψ2,2

]

=

[

QT
2

I

]

R1Y3R
−1
1

[

Q2

I

]

.

So, Ψ2,2 is in real Schur form with diagonal blocks of sizes n2, · · · , nk−1,
nk+1, · · · , nl, and the proof is complete.

Our second case is that at least one of the blocks H1,1, . . . ,Hl,1 in (9)
does not vanish. In this case we have the following lemma.

Lemma 8 Consider a Hamiltonian matrix H of the form (9) such that H2

is in real skew-Hamiltonian Schur form and suppose that at least one of the
blocks H1,1, . . . ,Hl,1 in (9) does not vanish. Then

rank







H1,1
...

Hl,1






= n1. (19)

Proof. Since H2 = UTM2U = (UTMU)2 is in real skew-Hamiltonian
Schur form (6)–(7), by Proposition 5 we obtain







Φ1,1 · · · Φ1,l

. . .
...

Φl,l







T 





H1,1
...

Hl,1






=







H1,1
...

Hk,1






Φ1,1. (20)

Let k be the smallest index for which Hk,1 6= 0. Then (20) is reduced to







Φk,k · · · Φk,l

. . .
...

Φl,l







T 





Hk,1
...

Hl,1






=







Hk,1
...

Hk,1






Φ1,1.

Thus, the Sylvester equation

ΦT
k,kHk,1 − Hk,1Φ1,1 = 0
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holds. The proof follows then analogous to the proof of the invertibility of
Fk,1 in Lemma 6.

Next, we perform a skinny QR-factorization




















F2,1
...

Fl,1

H1,1
...

Hl,1





















= P1S1, (21)

where P1 is column-orthogonal and S1 is upper triangular and nonsingular
(because of (19)). Since (15) holds, an elementary calculation shows that

H
[

In1
0

0 P1

]

=

[

In1
0

0 P1

]

Σ, (22)

where

Σ =

[

In1
0

0 P1

]T

H
[

In1
0

0 P1

]

(23)

has the same spectrum as

[

0 Φ1,1

In1
0

]

.

Since (22) means that the columns of

[

In1
0

0 P1

]

form an invariant

subspace of H, and since H has no purely imaginary eigenvalues, it follows
that Σ has no purely imaginary eigenvalues. By computing the real Schur
decomposition of Σ we can determine an orthogonal matrix P2 ∈ R

2n1×2n1

such that

P T
2 ΣP2 =

[

Σ1,1 Σ1,2

0 Σ2,2

]

(24)

is in real Schur form with the spectrum of Σ1,1 being in the open left half
plane.

Lemma 9 Let

W :=

[

In1
0

0 P1

]

P2

[

In1

0

]

=:





















V1
...
Vl

W1
...

Wl





















(25)
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be partitioned as in (6)–(7). Then

HW = WΣ1,1, WT JnW = 0, and
[

0 In

]

W 6= 0. (26)

Furthermore, if k > 0 is the smallest index for which Wk 6= 0 in (25),
then nk = n1 and Wk ∈ R

n1×n1 is invertible.

Proof. The identity HW = WΣ1,1 follows directly from (22) and (24).
Because Σ1,1 has only eigenvalues in the open left half plane and H is

Hamiltonian, it follows that the columns of W span an isotropic subspace
of H, i.e., WT JnW = 0. In addition, since (19) holds, HW = WΣ1,1,

H
[

In1

0

]

6=
[

In1

0

]

Z for any Z ∈ R
n1×n1 by assumption, and

W =

























In1
0

0 F2,1
...

...
0 Fl,1

0 H1,1
...

...
0 Hl,1

























[

In1
0

0 S−1
1

]

P2

[

In1

0

]

,

we must have that
[

0 In

]

W 6= 0.
Finally, we know that HW = WΣ1,1 and H2 = UTM2U is of the form

(6)–(7), thus H2W = WΣ2
1,1 which gives that







Φk,k · · · Φk,l

. . .
...

Φl,l







T 





Wk

...
Wl






=







Wk

...
Wl






Σ2

1,1,

hence the second part follows analogous to the proof of Lemma 6.

Lemma 10 In the situation of Lemma 9, with k being the smallest index
of a non-zero block Wi, let

t = n1 + · · · + nk−1

and

V̂ :=







Vk+1
...
Vl






, Ŵ :=







Wk+1
...

Wl






.
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Then there exists an orthogonal matrix U1 with partitioning

U1 =:

[

nk n − t − nk

U1,1 U1,2

U2,1 U2,2

]

nk

n − t − nk
, (27)

such that U1,1 and U2,2 are nonsingular, U2,2 is upper triangular, and fur-
thermore,

UT
1

[

Wk

Ŵ

]

=

[

Ŵk

0

]

, (28)

where Ŵk ∈ R
nk×nk is nonsingular.

Proof. The proof is given constructively by Algorithm 3 in Appendix B.

With V̂ , Ŵ , t, U1,2 and U2,2 as in Lemma 10, introduce

Y =



























V1 In1

...
. . .

Vk−1 Ink−1

Vk 0 · · · 0 U1,2

V̂ 0 · · · 0 U2,2

0 0 · · · 0 0
Wk 0 · · · 0 0

Ŵ 0 · · · 0 0



























=









W,

[

It

0

]

,









0t×nk

U1,2

U2,2

0

















.

(29)
It is obvious that Y has full column rank.

We perform the skinny QR-factorization

Y = Q1R1, (30)

where Q1 ∈ R
2n×n is column orthogonal and R1 is upper triangular and

nonsingular and then introduce

Q =
[

Q1 −JnQ1

]

. (31)

Remark 3 With t and U1 as in Lemma 10 we have









It 0 0 0
0 UT

1 0 0
0 0 It 0
0 0 0 UT

1









Y =

















Z1 I 0
Z2 0 0
Z3 0 I
0 0 0

Ŵk 0 0
0 0 0

















t
nk

n − nk − t
t
nk

n − nk − t

,
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where




Z1

Z2

Z3



 =

[

It 0 0
0 UT

1 0

]

W =

[

It 0
0 UT

1

]







V1
...
Vl






.

Thus, it follows that the column orthogonal matrix Q1 in (30) can be ob-
tained by applying [n1(n + 1 + nk+1 + · · · + nl) − 1] < 4n Givens rotations
to W without computing the factorization (28), i.e., U1 or the left hand side
of (30) explicitly, see Algorithm 4 in Appendix C.

Theorem 11 In the situation of Lemma 9, the matrix Q defined by (31) is
orthogonal-symplectic and satisfies (11) with F̂1 ∈ R

n1×n1 .

Proof. A simple calculation yields that the matrix Y defined in (29)
satisfies Y T JnY = 0 and thus QT

1 JnQ1 = 0 and Q =
[

Q1 −JnQ1

]

is

orthogonal-symplectic. The form (11) with F̂1 ∈ R
n1×n1 follows directly

from (26) and the fact that Σ1,1 in (24) is in real Schur form.
Since U2,2 is invertible, we may form the matrix

K := Φk,kU1,2 +
[

Φk,k+1 · · · Φk,l

]

U2,2

− U1,2U
−1
2,2







Φk+1,k+1 · · · Φk+1,l

. . .
...

Φl,l






U2,2.

We have that Wk is invertible and (26) holds with Σ1,1 having only eigen-
values in the open left half plane. Furthermore, H2W = WΣ2

1,1 and H2 is
of the form (6)–(7). All these properties, together with

[

UT
1,2 UT

2,2

]

[

Wk

Ŵ

]

= 0,

imply that K = 0. Note that

H2









0t×nk

U1,2

U2,2

0









=

[

It

0

]













Φ1,k

...
Φk−1,k






U1,2 +







Φ1,k+1 · · · Φ1,l

... · · · ...
Φk−1,k+1 · · · Φk−1,l






U2,2






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+









0t×nk

U1,2

U2,2

0









U−1
2,2







Φk+1,k+1 · · · Φk+1,l

. . .
...

Φl,l






U2,2 +





0t×nk

Ink

0



K

=

[

It

0

]













Φ1,k

...
Φk−1,k






U1,2 +







Φ1,k+1 · · · Φ1,l

... · · · ...
Φk−1,k+1) · · · Φk−1,l






U2,2







+









0t×nk

U1,2

U2,2

0









U−1
2,2







Φk+1,k+1 · · · Φk+1,l

. . .
...

Φl,l






U2,2

=









It 0
0 U1,2

0 U2,2

0 0





























Φ̂1,k+1 · · · Φ̂1,l

... · · · ...

Φ̂k−1,k+1 · · · Φ̂k−1,l

Φ̂k+1,k+1 · · · Φ̂k+1,l

. . .
...

Φ̂l,l





















,

where






Φ̂1,k+1 · · · Φ̂1,l

... · · · ...

Φ̂k−1,k+1 · · · Φ̂k−1,l






=







Φ1,k

...
Φk−1,k






U1,2+







Φ1,k+1 · · · Φ1,l

... · · · ...
Φk−1,k+1 · · · Φk−1,l






U2,2,

and






Φ̂k+1,k+1 · · · Φ̂k+1,l

. . .
...

Φ̂l,l






= U−1

2,2







Φk+1,k+1 · · · Φk+1,l

. . .
...

Φl,l






U2,2,

which is in real Schur form with diagonal blocks of sizes ni×ni, i = k+1, · · · , l
(because U2,2 is upper triangular). Hence,

H2Y = Y

























Σ1,1 0 · · · 0 0 · · · 0

Φ1,1 · · · Φ1,k−1 Φ̂1,k+1 · · · Φ̂1,l

. . .
...

... · · · ...

Φk−1,k−1 Φ̂k−1,k+1 · · · Φ̂k−1,l

Φ̂k+1,k+1 · · · Φ̂k+1,l

. . .
...

Φ̂l,l

























.
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Thus, we have

H2Q1 = Q1

[

Ψ1,1 Ψ1,2

0 Ψ2,2

]

,

and

QTH2Q =









Ψ1,1 Ψ1,2 Ψ1,3 Ψ1,4

0 Ψ2,2 Ψ2,3 Ψ2,4

0 0 ΨT
1,1 0

0 0 ΨT
1,2 ΨT

2,2









,

where

[

n1 n − n1

Ψ1,1 Ψ1,2

0 Ψ2,2

]

n1

n − n1

= R1

























Σ1,1 0 · · · 0 0 · · · 0

Φ1,1 · · · Φ1,k−1 Φ̂1,k+1 · · · Φ̂1,l

. . .
...

... · · · ...

Φk−1,k−1 Φ̂k−1,k+1 · · · Φ̂k−1,l

Φ̂k+1,k+1 · · · Φ̂k+1,l

. . .
...

Φ̂l,l

























R−1
1 ,

and Ψ2,2 is in real Schur form with diagonal blocks of sizes ni × ni, i =
1, · · · , k − 1, k + 1, · · · , l (because R1 is upper triangular). This finishes the
proof.

After having deflated the first block column and having shown that the

remaining matrix

[

F̂ Ĝ

Ĥ −F̂ T

]

is again of the form that its square is in real

skew-Hamiltonian Schur form, we can apply this approach inductively and
obtain an algorithm for computing the Hamiltonian Schur form of a real
Hamiltonian matrix H that has no purely imaginary eigenvalues.

The construction in this section was of a theoretical nature, and many
details have to be considered when turning this into a numerical algorithm.
Some of these are discussed in the following section.

4 Algorithms

In this section we describe some algorithmic details that are needed to im-
plement the new algorithm for computing the Hamiltonian Schur form of a
real Hamiltonian matrix H that has no purely imaginary eigenvalues.
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For the following algorithm describing the inductive procedure of deflat-
ing blocks in the Hamiltonian Schur as in (11), at every step of the loop we
have to decide whether the block column given by the blocks H1,1, . . . ,Hl,1 in
(9) are all zero and if this is case then we have to decide which is the largest
index of a non-zero block among F2,1, . . . , Fl,1. To do this we first compute
the norms of the blocks separately, i.e. we form hi = ‖Hi,1‖2 (i = 1, . . . , l)
and fi = ‖Fi,1‖2 (i = 2, . . . , l) and then for a given tolerance Tol identify all
blocks for which hi < Tol or fi < Tol as zero blocks.

With this decision procedure the framework of our new algorithm is the
following.

Algorithm 1
Input: Real Hamiltonian matrix M ∈ R

2n×2n without purely imaginary
eigenvalues and a deflation tolerance Tol.
Output: Orthogonal symplectic matrix U such that U TMU is in real Hamil-
tonian Schur form.
Step 1: Use a slight modification of Algorithm 4.3 in [7] to determine
orthogonal-symplectic matrices U ,V ∈ R

2n×2n, integers ni with 1 ≤ ni ≤ 2
(i = 1, · · · , l) and a symplectic URV -decomposition (3)–(4) with the property
that UTM2U is in real skew-Hamiltonian Schur form (6)–(7) with diagonal
blocks that are 1×1 real or 2×2 with non-real complex-conjugate eigenvalues
(and that the magnitude of the real parts of the square roots of the eigenvalues
of Φi,i (i = 1, · · · , l) is decreasing if necessary).

Set m := n, S :=
[

n1 · · · nl

]

, and compute (by directly updating H
during the URV -decomposition) the Hamiltonian matrix H := U TMU .
Step 2:
WHILE (m > 0) DO . form of U

Partition H as (9)–(10) and compute hi = ‖Hi,1‖2 (i = 1, . . . , l) and
fi = ‖Fi,1‖2 (i = 2, . . . , l);

IF (i) max{maxi=1,...,l hi,maxi=2,...,l fi} < Tol THEN

Set

H :=





















F2,2 · · · F2,l G2,2 · · · G2,l

... · · · ...
... · · · ...

Fl,2 · · · Fl,l Gl,2 · · · Gl,l

H2,2 · · · H2,l −F T
2,2 · · · −F T

l,2
... · · · ...

... · · · ...
Hl,2 · · · Hl,l −F T

2,l · · · −F T
l,l





















,
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m := m − S(1), S :=
[

S(2) · · · S(l)
]

, l := l − 1.

ELSE IF (ii)(maxi=1,...,l hi < Tol AND maxi=2,...,l fi ≥ Tol) THEN

Determine the largest index k for fk ≥ Tol;

Perform Algorithm 2 in Appendix A with ni = S(i), i = 1, · · · , l
and n being replaced by m to determine an orthogonal matrix Q1

that generates the QR-factorization (14) and update

U := U
[

Q1

Q1

]

, H :=

[

Q1

Q1

]T

H
[

Q1

Q1

]

;

If a block-Hamiltonian Schur form is satisfactory then set Q2 to
be the identity of size 2S(1) otherwise compute an orthogonal Q2

such that QT
2 H(1 : 2S(1), 1 : 2S(1))Q2 is in real Schur form, and

form

U := U









Q2

I
Q2

I









,

H =









Q2

I
Q2

I









T

H









Q2

I
Q2

I









.

To deflate the first block we then set ν = 2S(1) and redefine

H :=

[

H(ν + 1 : m, ν + 1 : m) H(ν + 1 : m, m + ν + 1 : 2m)
H(m + ν + 1 : 2m, ν + 1 : m) H(m + ν + 1 : 2m, m + ν + 1 : 2m)

]

,

m := m−ν, S :=
[

S(2) · · · S(k − 1) S(k + 1) · · · S(l)
]

, l := l−2.

ELSE IF (iii) (maxi=1,...,l hi ≥ Tol) THEN

Compute the skinny QR-factorization (21);

Compute Σ by (23), compute an orthogonal matrix P2 as in (24),
and then compute W as in (25);

Determine the smallest index k > 0 for ‖Wk‖2 ≥ Tol and then
perform Algorithm 4 in Appendix C with ni = S(i), i = 1, · · · , l,
and n being replaced by m to determine a column orthogonal ma-
trix Q1;
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Set ν = S(1), U := U
[

Q1 −JmQ1

]

, and

H :=
[

Q1 −JmQ1

]T H
[

Q1 −JmQ1

]

, and redefine

H :=

[

H(ν + 1 : m, ν + 1 : m) H(ν + 1 : m, m + ν + 1 : 2m)
H(m + ν + 1 : 2m, ν + 1 : m) H(m + ν + 1 : 2m, m + ν + 1 : 2m)

]

,

m := m−ν, S =
[

S(1) · · · S(k − 1) S(k + 1) · · · S(l)
]

, l := l−1.

END

END

To compute the stable invariant subspace of M, i.e., the invariant sub-
space of M associated with the eigenvalues in the open left half plane, we
only need to reorder the real Hamiltonian Schur form of M determined in
Algorithm 1 using the algorithm of Byers [15, 16].

In order to identify this variation of Algorithm 1 we denote it in Tables
4, 5 and 6 of Section 5 by Algorithm 1r.

Remark 4 The complexity analysis of Algorithm 1 yields the following
results.

• The computation of the symplectic URV -decomposition including the
reordering and the computation of H := UTMU in Step 1 need O(n3)
flops [7];

• In the inductive procedure of Step 2:

– The computations in Case (i) need O(1) flops;

– In Case (ii), since m ≤ n, the orthogonal matrix Q1 is computed
by at most 2n Givens rotations (see Algorithm 2 in Appendix A),
thus, all computations in Case (ii) can be carried out in O(n2)
flops;

– In Case (iii), the skinny QR-factorization (21) can be computed
with O(n) flops, and the matrices Σ in (23), P2 in (24) and W in
(25) can be computed with O(m2) flops. The column orthogonal
matrix Q1 is computed by at most 4n Givens rotations (see Al-
gorithm 4 in Appendix C). Thus , all computations in Case (iii)
can be carried out with O(n2) flops.

Note that m ≤ n and Step 2 consists of at most n inductive steps
(because l in the symplectic URV -decomposition (3)–(4)) is at most
n), hence the overall Step 2 needs O(n3) flops.
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Thus we conclude that the whole algorithm needs O(n3) flops.

Remark 5 Since the positive and negative square roots of the eigenvalues
of Ξi,iΘi,i (i = 1, · · · , l) in (3)–(4) are the eigenvalues of M, so if the moduli
of the real parts of the square roots of the eigenvalues of Ξi,iΘi,i (i = 1, · · · , l)
are ordered decreasingly, in Algorithm 1, then the eigenvalues of M with
larger moduli of the real parts are deflated first and those nearer to or
on the imaginary axis are deflated in later steps. Then after deflating all
eigenvalues of M with the modulus of the real parts larger than a given
value, a reduced Hamiltonian matrix which usually is of small dimension is
obtained. All eigenvalues of this reduced Hamiltonian matrix are near or on
the imaginary axis. Hence, if it is necessary, we can apply some expensive
method to this reduced Hamiltonian matrix to compute its Hamiltonian
Schur form with desired accuracy.

Remark 6 The perturbation and error analysis of the new method is a
combination of the analysis for the URV -decomposition, see [7], and the
analysis for the deflation procedure in Step 2 of Algorithm 1. Since we
only update the Hamiltonian matrix H with orthogonal-symplectic similar-
ity transformations and since we can force the Hamiltonian structure easily,
we obtain that the resulting matrix is the exact Hamiltonian Schur form of
a nearby Hamiltonian matrix H + ∆H and hence the method is a strongly
backward stable for computing the Hamiltonian Schur form.

A difficulty in the analysis, however, lies in the fact that a complete struc-
tured perturbation analysis for the Hamiltonian Schur form is not known if
eigenvalues are on or very close to the imaginary axis, see [21] for the non-
critical case and [12] for an extension to matrix pencils. The consequence
of this difficulty is that is very hard to decide what the stable invariant
subspace is. Thus despite the fact that we may have computed a very good
and structured approximation to the Hamiltonian Schur form, the stable in-
variant subspace that we compute based on this Schur form may be highly
corrupted or even wrong, see [17, 31, 32].

Due to this missing analysis, it is not clear, how much effect the small
perturbations ∆H that we have committed in the computation of the Schur
form will have. But this is not a feature of our method but of the mathe-
matical problem of computing the stable invariant subspace is.

A second difficulty lies in the decision process which leads to two dif-
ferent QR-factorizations in Step 2 of Algorithm 1. A detailed perturbation
analysis of this decision process and what the best choice for the tolerance
Tol is, has not been carried out so far. In our implementation we have tried
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different tolerance criteria and have used an absolute tolerance Tol = 10−14

in Examples 1 − 17, 19. We had to decrease this tolerance to Tol = 10−11,
however, in Example 18. The numerical results of Section 5 indicate that
these tolerances form a good choice, but more analysis is needed here.

5 Numerical Results

In order to demonstrate the numerical properties of the new method we have
implemented the new method in MATLAB version 6.5 [28] and compared
this implementation with the MATLAB codes haeig.m and hastab.m which
are implementations of the algorithms in [7] and [6], respectively and which
are freely available from the HAPACK package [10, 3]. For a comparison
of haeig.m and hastab.m with other Hamiltonian eigenvalue methods such
as the Schur method in [25] and the deflating subspace method in [2, 34],
see [6, 7]. In our implementation the reordering of the diagonal blocks
in the symplectic URV -decomposition (3)–(4) was not considered and the
eigenvalue reordering in the Hamiltonian Schur form was carried out using
the MATLAB code haschord.m [10].

For comparison we have applied the new method to the problems 1-19
of the benchmark collection for continuous-time algebraic Riccati equations
[4, 5]. Example 20 from the benchmark collection is missing, since it required
more memory than available. All computations were performed on an IBM
PC-Pentium-4 with IEEE standard double precision arithmetic and machine
precision ε ≈ 2.22 × 10−16.

• Table 1 shows the (relative) residuals of the Hamiltonian Schur form
M = UTMU computed by Algorithm 1. As measure we use

ResidualSchur :=
‖UTMU − M̃‖2

‖M‖2
,

where M̃ is the Hamiltonian Schur form of M computed by Algorithm
1 in finite precision arithmetic.

• Table 2 shows the maximal errors of the eigenvalues read from the
Hamiltonian Schur form computed by Algorithm 1 compared with
those computed by the MATLAB code haeig.m [10] with the exact
eigenvalues of M, respectively.

The related measure that we use is defined by

Residualeigenvalue :=
max |λ − λexact|

‖M‖2
,
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where λexact is a corresponding exact eigenvalue of M. We list only
those examples for which exact eigenvalues of M are available.

• Because the method in [7] computes the eigenvalues of M to full pos-
sible accuracy when no eigenvalues of M are close to the imaginary
axis, Table 3 shows the maximal errors of the eigenvalues read from the
Hamiltonian Schur form computed by Algorithm 1 with those given
by haeig.m. As measure for the error we use

Residualeigenvalue :=
max |λ − λhaeig|

‖M‖2
,

where λhaeig denotes the eigenvalues of M computed by haeig.m. We
list only those examples for which exact eigenvalues of M are not
available.

• Table 4 shows the relative errors of the computed stabilizing solution
of the algebraic Riccati equations associated with the Hamiltonian
matrices. For

M =

[

F −G
−H −F T

]

this is the algebraic Riccati equation 0 = H + F T X + XF − XGX.

The solution of the algebraic Riccati equation is computed from the
computed transformation matrix Ũ1 ∈ R

2n×n via X̃ = Ũ1(n + 1 :
2n, 1 : n)Ũ1(1 : n, 1 : n)−1, where Ũ1 was computed by Algorithm 1
with reordering [15, 16] and the columns of the computed Ũ1 span the
stable invariant subspace of the Hamiltonian matrix M. We depict
the relative error

Rel − errorsolution :=
‖X̃ − Xexact‖2

‖Xexact‖2
,

where Xexact is the exact stabilizing solution of the corresponding al-
gebraic Riccati equation. Note that we list only those examples for
which the exact stabilizing solution is available.

• Table 5 shows the residuals for the algebraic Riccati equations, i.e.,

ResidualARE := ‖Q + AT X̃ + X̃A−̃XGX̃‖2,

• Since Ũ1 is column orthogonal and its columns span an invariant sub-
space of M, so in exact arithmetic we have

MŨ1 = Ũ1(ŨT
1 MŨ1).



A strongly stable method for computing the Hamiltonian Schur form. 25

In Table 6 we give the errors of the computed stable invariant sub-
spaces, measured as

ResidualSubspace :=
‖MŨ1 − Ũ1(ŨT

1 MŨ1)‖2

‖M‖2
.
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Table 1: Errors for the computed Hamiltonian Schur forms
Examples in [4] Algorithm 1

1 7.4408 × 10−17

2 5.6290 × 10−16

3 5.1027 × 10−16

4 8.3861 × 10−16

5 1.3177 × 10−15

6 1.5907 × 10−13

7(ε = 1) 1.6558 × 10−16

7(ε = 10−6) 4.1850 × 10−16

8(ε = 1) 1.9667 × 10−17

8(ε = 10−8) 1.1839 × 10−16

9(ε = 1) 3.3978 × 10−16

9(ε = 106) 2.1403 × 10−16

9(ε = 10−6) 1.1102 × 10−16

10(ε = 1) 3.7063 × 10−16

10(ε = 10−5) 1.7520 × 10−16

10(ε = 10−7) 2.2993 × 10−16

11(ε = 1) 1.5535 × 10−16

11(ε = 0) 3.7743 × 10−9

12(ε = 1) 5.7923 × 10−16

12(ε = 106) 3.5352 × 10−16

13(ε = 1) 6.4849 × 10−16

13(ε = 10−6) 1.2583 × 10−16

14(ε = 1) 4.8108 × 10−16

14(ε = 10−6) 1.1955 × 10−4

15(n = 39) 2.3978 × 10−15

15(n = 119) 7.2804 × 10−15

15(n = 199) 8.4665 × 10−15

16(n = 8) 1.2084 × 10−15

16(n = 64) 4.2936 × 10−15

17(q = 1, r = 1, n = 21) 4.1814 × 10−15

17(q = 100, r = 100, n = 21) 6.7294 × 10−16

18(n = 100) 5.1086 × 10−15

19 4.6501 × 10−15
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Table 2: Maximal errors for the computed eigenvalues
Examples in [4] Algorithm 1 haeig(M)

1 1.9511 × 10−16 0
2 1.6620 × 10−16 1.4166 × 10−16

7(ε = 1) 4.3928 × 10−16 1.5067 × 10−16

7(ε = 10−6) 7.4910 × 10−16 1.6750 × 10−16

9(ε = 1) 1.3723 × 10−16 9.7037 × 10−17

9(ε = 106) 7.5443 × 10−14 1.6078 × 10−19

9(ε = 10−6) 5.6125 × 10−16 8.2767 × 10−17

10(ε = 1) 4.4961 × 10−16 5.0634 × 10−16

10(ε = 10−5) 1.7418 × 10−16 2.8188 × 10−17

10(ε = 10−7) 1.8202 × 10−17 1.7578 × 10−16

11(ε = 1) 1.2568 × 10−16 5.3404 × 10−17

11(ε = 0) 3.0590 × 10−9 2.6246 × 10−9

12(ε = 1) 9.4206 × 10−16 2.8067 × 10−16

12(ε = 106) 8.8696 × 10−16 3.8336 × 10−16

16(n = 8) 3.4323 × 10−15 1.0376 × 10−15

16(n = 64) 8.8078 × 10−15 6.2549 × 10−15

Table 3: Maximal errors for the computed eigenvalues
Examples in [4] Algorithm 1

3 5.6325 × 10−16

4 1.7224 × 10−15

5 3.0522 × 10−15

6 4.2463 × 10−15

8(ε = 1) 2.3678 × 10−19

8(ε = 10−8) 6.5125 × 10−15

13(ε = 1) 6.3992 × 10−16

13(ε = 10−6) 4.2133 × 10−17

14(ε = 1) 3.8169 × 10−16

14(ε = 10−6) 1.0813 × 10−15

15(n = 39) 1.1462 × 10−15

15(n = 119) 4.0021 × 10−15

15(n = 199) 4.0995 × 10−15

17(q = 1, r = 1, n = 21) 5.9603 × 10−15

17(q = 100, r = 100, n = 21) 2.7613 × 10−15

18(n = 100) 1.3842 × 10−14

19 9.9952 × 10−15
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Table 4: Relative errors for the computed solutions of the algebraic Riccati equations,
for Example 17: |X(1, n) −√

qr|/√qr

Examples in [4] Algorithm 1r hastab(M)

1 0 3.3165 × 10−16

2 1.9252 × 10−15 1.6434 × 10−15

7(ε = 1) 4.9151 × 10−16 *
7(ε = 10−6) 7.2106 × 10−5 *
9(ε = 1) 4.6602 × 10−16 1.9585 × 10−15

9(ε = 106) 8.4608 × 10−11 7.3535 × 10−11

9(ε = 10−6) 8.2399 × 10−16 7.2842 × 10−11

10(ε = 1) 5.9204 × 10−16 2.6715 × 10−15

10(ε = 10−5) 5.2781 × 10−16 3.2400 × 10−6

10(ε = 10−7) 1.9771 × 10−16 1.3392 × 10−1

11(ε = 1) 3.8688 × 10−16 3.6493 × 10−16

11(ε = 0) 1.2757 × 10−8 2.8584 × 10−9

12(ε = 1) 4.4747 × 10−16 1.1958 × 10−14

12(ε = 106) 5.7378 × 10−4 4.0628 × 100

16(n = 8) 5.6889 × 10−16 8.4747 × 10−16

16(n = 64) 3.1619 × 10−15 3.8677 × 10−14

17(q = 1, r = 1, n = 21) 3.3776 × 10−7 1.1969 × 10−7

17(q = 100, r = 100, n = 21) 1.6418 × 10−4 1.4917 × 10−5
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Table 5: Residuals for the compared algebraic Riccati equations
Examples in [4] Algorithm 1r hastab(M)

1 0 4.3179 × 10−15

2 1.3496 × 10−13 2.3185 × 10−13

3 4.8014 × 10−14 1.3303 × 10−13

4 9.0788 × 10−15 2.8576 × 10−14

5 1.0291 × 10−12 9.2309 × 10−14

6 4.2666 × 10−4 2.0973 × 10−5

7(ε = 1) 3.8500 × 10−15 *
7(ε = 10−6) 2.8840 × 108 ∗
8(ε = 1) 2.5793 × 10−11 9.3096 × 10−10

8(ε = 10−8) 4.6067 × 10−6 5.2482 × 10−4

9(ε = 1) 2.8335 × 10−15 4.2428 × 10−15

9(ε = 106) 5.9306 × 10−5 1.5117 × 10−4

9(ε = 10−6) 1.7258 × 10−10 3.5607 × 10−10

10(ε = 1) 2.1893 × 10−14 1.0742 × 10−13

10(ε = 10−5) 8.1029 × 10−15 5.1841 × 10−5

10(ε = 10−7) 1.7764 × 10−15 1.8558 × 100

11(ε = 1) 3.3845 × 10−15 2.0324 × 10−15

11(ε = 0) 1.7764 × 10−15 2.5121 × 10−15

12(ε = 1) 1.4572 × 10−14 4.4648 × 10−13

12(ε = 106) 1.8770 × 1016 2.4218 × 1019

13(ε = 1) 1.7186 × 10−14 3.3088 × 10−14

13(ε = 10−6) 5.7851 × 10−9 1.5912 × 10−4

14(ε = 1) 3.2692 × 10−14 2.2859 × 10−14

14(ε = 10−6) 9.8739 × 10−15 4.2958 × 10−15

15(n = 39) 2.0548 × 10−13 1.7791 × 10−13

15(n = 119) 1.1381 × 10−12 5.5183 × 10−13

15(n = 199) 4.3443 × 10−12 1.0243 × 10−12

16(n = 8) 2.0003 × 10−15 2.2298 × 10−15

16(n = 64) 1.5552 × 10−14 1.0248 × 10−13

17(q = 1, r = 1, n = 21) 9.4512 × 102 2.5232 × 102

17(q = 100, r = 100, n = 21) 3.3820 × 107 5.6661 × 106

18(n = 100) 6.2213 × 10−12 2.8868 × 10−15

19 2.6634 × 10−12 1.0219 × 10−12
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Table 6: Errors for the computed stable invariant subspaces
Examples in [4] Algorithm 1r hastab(M)

1 3.5381 × 10−16 1.8680 × 10−16

2 2.0848 × 10−16 7.8597 × 10−17

3 1.5629 × 10−15 5.5160 × 10−15

4 1.7530 × 10−15 3.6437 × 10−15

5 1.8743 × 10−15 3.6329 × 10−16

6 1.4660 × 10−14 2.4606 × 10−16

7(ε = 1) 9.0249 × 10−16 1.6846 × 10−16

7(ε = 10−6) 1.3748 × 10−15 1.7981 × 10−16

8(ε = 1) 5.3455 × 10−18 1.0213 × 10−17

8(ε = 10−8) 6.4915 × 10−17 1.0937 × 10−16

9(ε = 1) 2.2295 × 10−16 8.8174 × 10−16

9(ε = 106) 1.8807 × 10−16 8.5549 × 10−17

9(ε = 10−6) 2.4825 × 10−16 2.6388 × 10−16

10(ε = 1) 1.8744 × 10−16 1.0298 × 10−15

10(ε = 10−5) 2.6096 × 10−16 1.1905 × 10−6

10(ε = 10−7) 1.5632 × 10−16 5.5723 × 10−2

11(ε = 1) 1.2556 × 10−16 1.2079 × 10−16

11(ε = 0) 9.8072 × 10−17 5.2525 × 10−17

12(ε = 1) 8.4036 × 10−16 4.3272 × 10−15

12(ε = 106) 8.7429 × 10−16 2.4336 × 10−4

13(ε = 1) 9.6134 × 10−16 3.1353 × 10−15

13(ε = 10−6) 1.3206 × 10−21 1.8338 × 10−17

14(ε = 1) 7.3677 × 10−16 4.0682 × 10−16

14(ε = 10−6) 1.5438 × 10−15 5.8296 × 10−16

15(n = 39) 1.6189 × 10−15 9.4700 × 10−16

15(n = 119) 4.6274 × 10−15 1.2624 × 10−15

15(n = 199) 3.3113 × 10−15 1.5971 × 10−15

16(n = 8) 2.3503 × 10−15 6.5223 × 10−16

16(n = 64) 5.4938 × 10−15 1.8782 × 10−14

17(q = 1, r = 1, n = 21) 5.3092 × 10−15 4.8028 × 10−15

17(q = 100, r = 100, n = 21) 6.1542 × 10−16 2.5168 × 10−16

18(n = 100) 7.5253 × 10−15 1.6386 × 10−15

19 3.7382 × 10−15 1.9190 × 10−14



A strongly stable method for computing the Hamiltonian Schur form. 31

Since the benchmark collection [5] contains some really ill-conditioned
and difficult examples we comment on some of the results in these tables:

• Example 7 with ε = 1 or ε = 10−6: In Tables 4 and 5, Ũ1(1 : n, 1 : n)
computed by hastab.m is singular and so the solution X cannot be
obtained. However, one sees from Tables 6 and 2 that the computed
subspace by hastab.m is still a good approximation to the stable in-
variant subspace of M.

• Example 11 with ε = 0: In this example, the eigenvalues of M are ±i,
i.e., the theoretical basis for our method is not given. However, Table
6 indicates that the columns of Ũ1 computed by Algorithm 1r, span a
very good approximation to the stable invariant subspace of M. We
see from

‖ŨT
1 JnŨ1‖2 = 2.2260 × 10−8,

‖ŨT
1 JnMŨ1‖2

‖M‖2
= 3.7743 × 10−9,

that the symplecticity of the matrix
[

Ũ1 −JnŨ1

]

is perturbed.

Perturbations of the same order arise when using the method in [6].
The code hastab.m yields errors

‖ŨT
1 JnŨ1‖2 = 4.9889 × 10−9,

‖ŨT
1 JnMŨ1‖2

‖M‖2
= 8.4591 × 10−10.

In this example, with

[

Ũ1 −JnŨ1

]−1 M
[

Ũ1 −JnŨ1

]

=:

[

n n

Ψ1,1 Ψ1,2

Ψ21 Ψ2,2

]

n
n

, (32)

we obtain

‖Ψ21‖2

‖M‖2
=

{

7.9385 × 10−17, if U is computed by Algorithm 1r,
4.2683 × 10−17, if U is computed by hastab.m.

• Example 14 with ε = 10−6:

In this example, M has 4 eigenvalues very close to the imaginary axis,
i.e., the problem is very ill-conditioned. The transformation matrix
looses its symplecticity, we get

‖ŨT
1 JnŨ1‖2 = 5.0642 × 10−4,

‖ŨT
1 JnMŨ1‖2

‖M‖2
= 1.1955 × 10−4.
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Nevertheless, Table 6 indicates that the columns of Ũ1 computed by
Algorithm 1r span a very good approximation to the stable invariant
subspace of M. The same problem arises with the method in [6],
where we get

‖ŨT
1 JnŨ1‖2 = 1.9486 × 10−4,

‖ŨT
1 JnMŨ1‖2

‖M‖2
= 4.5999 × 10−5.

If we again use (32), then we have

‖Ψ21‖2

‖M‖2
=

{

1.1600 × 10−15, if U is computed by Algorithm 1r,
4.9252 × 10−16, if U is computed by hastab.m.

We also applied the MATLAB code are.m to these two examples,
which is a MATLAB implementation of the Schur vector method in
[25]. Denote by X̃ the computed stabilizing solution of the related
algebraic Riccati equation, and determine Ũ1 as an orthogonal basis of

the subspace spanned by

[

I

X̃

]

, which is supposed to be associated

with the eigenvalues of M in the left half plane, then in Example 11
with ε = 0 are.m yields

|X̃(2, 1) − X̃(1, 2)|
‖X̃‖2

= 1.0924 × 10−8,

‖ŨT
1 JnŨ1‖2 = 2.4958 × 10−8,

‖ŨT
1 JnMŨ1‖2

‖M‖2
= 4.2318 × 10−9.

For the computed solution of the algebraic Riccati equation in Example
14 with ε = 10−6 are.m yields

‖X̃(1 : 2, 3 : 4) − X̃(3 : 4, 1 : 2)‖2

‖X̃‖2

= 1.9992 × 10−6,

‖ŨT
1 JnŨ1‖2 = 7.9163 × 10−4,

‖ŨT
1 JnMŨ1‖2

‖M‖2
= 1.8688 × 10−4.

So, the computed solutions X̃ are not symmetric and the associated
orthogonal basis for the stable invariant subspaces in Example 11 with
ε = 0 and Example 14 with ε = 10−6 is not any longer isotropic.
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6 Conclusions

In this paper we have developed a new method for computing the Hamil-
tonian Schur form and the stable invariant subspace of real Hamiltonian
matrices without purely imaginary eigenvalues. The new method is numer-
ically strongly backward stable, it preserves the Hamiltonian structure, and
has complexity O(n3). The numerical performance of the new method has
been demonstrated using the problems of the benchmark collection for the
continuous-time algebraic Riccati equations [5].

Even though much numerical detail has to be taken care of until a pro-
duction code implementation of this method is available we may say at this
stage: Van Loan’s curse is lifted!
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Appendix A
The orthogonal matrix Q1 in (14) can be computed by the following

Algorithm 2, which consists of [(
∑k

i=2 ni − 1) + (n1 − 1)(
∑k

i=2 ni − 2)] < 2n
Givens rotations:
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Algorithm 2

Input: X :=







F2,1
...

Fk,1






.

Output: Orthogonal matrix Q1 in (14).
Step 1: Set µ := n2 + · · · + nk and Q1 = Iµ.
Step 2:

FOR j = 1 : n1,
FOR i = 1 + j : µ,

Compute a Givens rotation such that

GT X(µ + j − i : µ + 1 + j − i, j) =

[

γ
0

]

.

IF (j = 1 & n1 = 2) THEN set

X(µ + j − i : µ + 1 + j − i, 2)

:= GT X(µ + j − i : µ + 1 + j − i, 2).

END

X(µ + j − i : µ + 1 + j − i, j) :=

[

γ
0

]

,

Q1(:, µ + j − i : µ + 1 + j − i)

:= Q1(:, µ + j − i : µ + 1 + j − i)G.

END
END

Step 3: Set

Q1 :=





In1

Q1

I



 ∈ R
n×n.

Appendix B
We prove Lemma 10 constructively by the following algorithm:

Algorithm 3

Input: X :=







Wk,1
...

Wl,1






.
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Output: Orthogonal matrix U1 as in Lemma 10.
Step 1: Set µ := nk + · · · + nl and U1 = Iµ.
Step 2:

FOR j = 1 : n1,
FOR i = j + 1 : µ,

Compute a Givens rotation such that

GT

[

X(j, j)
X(i, j)

]

=

[

γ
0

]

.

IF (j = 1 & n1 = 2) THEN set

X(j, 2) :=
[

1 0
]

GT

[

X(j, 2)
X(i, 2)

]

,

X(i, 2) :=
[

0 1
]

GT

[

X(j, 2)
X(i, 2)

]

,

END
Set

X(j, j) := γ, X(i, j) := 0,

U1(:, j) :=
[

U1(:, j) U1(:, i)
]

G

[

1
0

]

,

U1(:, i) :=
[

U1(:, j) U1(:, i)
]

G

[

0
1

]

.

END
END

If U1 computed by Algorithm 3 is partitioned as in (27), then a simple
calculation gives that U1 yields the QR-factorization (28) and U2,2 is upper
triangular. Furthermore, since Wk and Ŵk are nonsingular, and

Wk = U1,1Ŵk,

so U1,1 is nonsingular. Consequently, we have by the generalized CS-
decomposition [18] of the orthogonal matrix U1 that U2,2 is also nonsingular.

Appendix C

The column orthogonal matrix Q1 in (30) can be computed by the fol-
lowing algorithm which consists of [n1(n+1+nk+1+ · · ·nl)−1] < 4n Givens
rotations:
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Algorithm 4

Input: X := W =

























V1
...
Vl

0
Wk

...
Wl

























.

Output: Column orthogonal matrix Q1 in the QR-factorization (30).
Step 1: Set µ := nk + · · · + nl and Q1 = I2n.
Step 2:

FOR j = 1 : n1,
FOR i = j + 1 : µ,

Compute a Givens rotation such that

GT

[

X(2n + j − µ, j)
X(2n + i − µ, j)

]

=

[

γ
0

]

.

IF (j = 1 & n1 = 2) THEN set

X(2n + j − µ, 2) :=
[

1 0
]

GT

[

X(2n + j − µ, 2)
X(2n + i − µ, 2)

]

,

X(2n + i − µ, 2) :=
[

0 1
]

GT

[

X(2n + j − µ, 2)
X(2n + i − µ, 2)

]

.

END

X(2n + j − µ, j) := γ, X(2n + i − µ, j) := 0,

X(n + j − µ, :) :=
[

1 0
]

GT

[

X(n + j − µ, :)
X(n + i − µ, :)

]

,

X(n + i − µ, :) :=
[

0 1
]

GT

[

X(n + j − µ, :)
X(n + i − µ, :)

]

,

Q1(:, n + j − µ) :=
[

Q1(: .n + j − µ) Q1(: n + i − µ)
]

G

[

1
0

]

,

Q1(:, n + i − µ) :=
[

Q1(: .n + j − µ) Q1(: n + i − µ)
]

G

[

0
1

]

,

Q1(:, 2n + j − µ) :=
[

Q1(: .2n + j − µ) Q1(: 2n + i − µ)
]

G

[

1
0

]

,

Q1(:, 2n + i − µ) :=
[

Q1(: .2n + j − µ) Q1(: 2n + i − µ)
]

G

[

0
1

]

.
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END
END

Step 3: Compute an orthogonal matrix G using [(n1 + (n1 − 1)2] Givens
rotations such that

GT

[

X(n − µ + 1 : n − µ + n1, 1 : n1)
X(2n − µ + 1 : 2n − µ + n1, 1 : n1)

]

=

[

Γ
0

]

,

where Γ ∈ R
n1×n1 is upper-triangular. Set

X(n− µ + 1 : n − µ + n1, 1 : n1) := Γ,

X(2n− µ + 1 : 2n − µ + n1, 1 : n1) := 0,

Q1(:, n − µ + 1 : n − µ + n1) :=

[

Q1(:, n − µ + 1 : n − µ + n1) Q1(:, 2n − µ + 1 : 2n− µ + n1)
]

G

[

In1

0

]

.

Step 4:
FOR j = 1 : n1,

FOR i = 1 : µ − nk,
Compute a Givens rotation such that

GT

[

X(n − µ + j, j)
X(n + 1 − i, j)

]

=

[

γ
0

]

.

IF (j = 1 & n1 = 2) THEN set

X(n − µ + j, 2) :=
[

1 0
]

GT

[

X(n − µ + j, 2)
X(n + 1 − i, 2)

]

,

X(n + 1 − i, 2) :=
[

0 1
]

GT

[

X(n − µ + j, 2)
X(n + 1 − i, 2)

]

,

X(n − µ + j, j) := γ, X(n + 1 − i, j) := 0,

Q1(:, n − µ + j) :=
[

Q1(:, n − µ + j) Q1(:, n + 1 − i)
]

G

[

1
0

]

,

Q1(:, n + 1 − i) :=
[

Q1(:, n − µ + j) Q1(:, n + 1 − i)
]

G

[

0
1

]

.

END
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END
END

Step 5:
FOR j = 1 : n1,

FOR i = 1 : n − µ,
Compute a Givens rotation such that

GT X(n − µ + j − i : n − µ + j + 1 − i, j) =

[

γ
0

]

.

IF (j = 1 & n1 = 2) THEN set

X(n − µ + j − i : n − µ + j + 1− i, 2) := GT X(n − µ + j − i : n − µ + j + 1− i, 2)

END

X(n − µ + j − i : n − µ + j + 1 − i, j) :=

[

γ
0

]

,

Q1(:, n − µ + j − i : n − µ + j + 1 − i) = Q1(:, n − µ + j − i : n − µ + j + 1 − i)G.

END
END

Step 6: Set Q1 := Q1

[

In

0

]

.


