Simple Smiles
For The Mixing Setup
Joint work with D. Sloth

Elisa Nicolato

Department of Economics and Business,
Aarhus University
Analytical approximations of implied volatility have been and continue to be proposed, even for solvable models, for the need of

- Transparency
- Robustness
- Speed

In this work, we propose an approximation of the implied volatility which can be used for a large variety of well-established models and is

- Transparent, as it decomposes the /smile into meaningful quantities associated with higher-order option risks.
- Simple, fast and easy to implement.
- Quite accurate where it matters.
The Mixing Setup
The Mixing Setup

- The mixing setup is a natural generalization of the Black-Scholes model

\[S_t = S_0 \exp \left(-\frac{1}{2} \sigma^2 t + \mathcal{W}_{\sigma^2 t} \right) \]

obtained by randomizing the spot \(S_0 \) and the total variance \(\sigma^2 t \) via their stochastic counterparts.

- The risk-neutral dynamics of the asset price are given by

\[S_t = S_{eff}^t \exp \left(-\frac{1}{2} V_{eff}^t + \mathcal{W}_{V_{eff}^t} \right), \quad V_{eff}^0 = 0, \quad S_{eff}^0 = S_0, \]

where \(S_{eff} \) is a positive martingale, \(V_{eff} \) is an increasing process and \(\mathcal{W} \) is a Brownian motion, independent of \((S_{eff}, V_{eff}) \).

- The price process \(S \) is a conditionally log-normal martingale.
The mixing setup contains stochastic volatility models of the following type

\[
\begin{align*}
 dS_t &= S_t \sqrt{v_t} \left(\sqrt{1 - \rho^2} dW + \rho dB \right) \\
 dv_t &= \mu(v_t, t) dt + \sigma(v_t, t) dB_t, \\
 v_0 &> 0,
\end{align*}
\]

where \(W \perp B \) are Brownian motions and \(\rho \) is the correlation parameter.

The Heston model, the 3/2 model, and the quadratic class specification are examples of solvable specifications.

The mixing representation follows by setting

\[
\begin{align*}
 V_{\text{eff}}^t &= (1 - \rho^2) \int_0^t v_s ds, \\
 S_{\text{eff}}^t &= S_0 \exp \left(-\frac{\rho^2}{2} \int_0^t v_s ds + \rho \int_0^t \sqrt{v_s} dB_s \right),
\end{align*}
\]
Purely jumping models

- Purely jumping models are obtained by setting V^{eff} as an increasing and purely jumping semimartingale.

- The price dynamics are then specified as

$$S_t = S_t^{\text{eff}} \exp \left(-\frac{1}{2} V_t^{\text{eff}} + W_{V_t^{\text{eff}}} \right),$$

$$S_t^{\text{eff}} = S_0 \exp \left(-K_t(c) + cV_t^{\text{eff}} \right),$$

where the real parameter c allows for correlation between S and V^{eff}, and $K(c)$ is the cumulant exponent process.

- **Exponential Lévy models** are obtained by modeling V^{eff} as a drift-less Lévy subordinator.

- Models of this class include, for instance, the VG model, the NIG model, and the CGMY model.
The Two Series Expansions
The $\langle S, V \rangle$-expansion

By conditional log-normality, the price $C(S_0, K, \tau)$ of a call with strike K and expiry $\tau > 0$ admits the mixing representation

$$C(S_0, K, \tau) = \mathbb{E}[(S_\tau - K)^+] = \mathbb{E}[C_{BS}(S_{\tau}^{\text{eff}}, V_{\tau}^{\text{eff}})],$$

where $C_{BS}(S, V)$ denotes the BS call-price in terms of total variance $V = \sigma \tau$.

First, we apply a 2-dimensional Taylor series expansion around the point $(\mathbb{E}S_{\tau}^{\text{eff}}, \mathbb{E}V_{\tau}^{\text{eff}}) = (S_0, \mathbb{E}V_{\tau}^{\text{eff}})$

$$\mathbb{E}[C_{BS}(S_{\tau}^{\text{eff}}, V_{\tau}^{\text{eff}})] = C_{BS}(S_0, \mathbb{E}V_{\tau}^{\text{eff}}) + \frac{1}{2!} \mathbb{E}[(S_{\tau}^{\text{eff}} - S_0)^2] \frac{\partial^2 C_{BS}}{\partial S^2}$$

$$+ \frac{1}{2!} \mathbb{E}[(V_{\tau}^{\text{eff}} - \mathbb{E}V_{\tau}^{\text{eff}})^2] \frac{\partial^2 C_{BS}}{\partial V^2}$$

$$+ \mathbb{E}[(S_{\tau}^{\text{eff}} - S_0)(V_{\tau}^{\text{eff}} - \mathbb{E}V_{\tau}^{\text{eff}})] \frac{\partial^2 C_{BS}}{\partial S \partial V} + \cdots$$
The $\langle \Sigma \rangle$-expansion

Next, recall that by definition

$$C(S_0, K, \tau) \equiv C_{BS}(S_0, \Sigma).$$

where $\Sigma = \tau I^2$ denotes the implied total variance.

Then expand this expression in the second variable Σ around $E V_{\tau}^{\text{eff}}$ using a one-dimensional Taylor series.

$$C(S_0, K, \tau) = C_{BS}(S_0, E V_{\tau}^{\text{eff}}) + (\Sigma - E V_{\tau}^{\text{eff}}) \frac{\partial C_{BS}}{\partial V}$$

$$+ \frac{1}{2!} (\Sigma - E V_{\tau}^{\text{eff}})^2 \frac{\partial^2 C_{BS}}{\partial V^2} + \ldots$$

Elisa Nicolato (Department of Economics and Business, Aarhus University)
Finally truncate the $\langle \Sigma \rangle$-expansion to the first order and the $\langle S, V \rangle$-expansion to the q-th order, to approximate I^2 as

$$ I^2 \approx \frac{\mathbb{E} V^\text{eff}_\tau}{\tau} + \frac{1}{\tau} \sum_{k=2}^{q} \sum_{l=0}^{k} \frac{\mathcal{D}_{s^l v^{k-l}}}{l!(k-l)!} \mathbb{E}[(S^\text{eff}_\tau - S_0)^l (V^\text{eff}_\tau - \mathbb{E} V^\text{eff}_\tau)^{k-l}], $$

where $\mathcal{D}_{s^m v^n} \equiv \left(\frac{\partial C_{BS}}{\partial V} \right)^{-1} \frac{\partial^{m+n} C_{BS}}{\partial S^m \partial V^n}$ denote the Vega-normalized Black-Scholes derivatives.

- Application demands that $\mathbb{E} \left[(V_t^\text{eff})^m (S_t^\text{eff})^n \right]$ are easy to compute.

- This is a simple task whenever $\mathcal{L}_t^\text{eff}(u, w) = \mathbb{E} \left[e^{u X_t^\text{eff} + w V_t^\text{eff}} \right]$ with $X^\text{eff} = \log S^\text{eff}$, is available in (semi) closed-form. In this case

$$ \mathbb{E} \left[(V_t^\text{eff})^m (S_t^\text{eff})^n \right] = \frac{\partial^m \mathcal{L}_t^\text{eff}(u, w)}{\partial w^m} \bigg|_{u=n, w=0}, $$
A Simple Quadratic Approximation

- The 2nd-order expansion yields a simple approximation $I_Q^2(x, \tau)$ of the implied variance which is quadratic in $x = \log K/S$.

Specifically

$$I^2 \approx I_Q^2(x, \tau) = \frac{E V_{T}^{\text{eff}}}{\tau} + \frac{\text{Var}[S_{T}^{\text{eff}}]}{2\tau} D_{ss} + \frac{\text{Cov}[S_{T}^{\text{eff}}, V_{T}^{\text{eff}}]}{\tau} D_{sv} + \frac{\text{Var}[V_{T}^{\text{eff}}]}{2\tau} D_{vv},$$

where the normalized Gamma D_{ss}, Vanna D_{sv} and Volga D_{vv} are

$$D_{ss} = \frac{2}{S^2}, \quad D_{sv} = \frac{x}{SV} + \frac{1}{2S}, \quad D_{vv} = \frac{x^2}{2V^2} - \frac{1}{8} - \frac{1}{2V}.$$

- We see that
 - the Gamma risk D_{ss} only contributes to the level of smile,
 - the Vanna term D_{sv} determines the slope
 - the Volga term D_{vv} introduces convexity.
A first look at ATM term-structure

Re-arranging the terms we obtain

\[I_Q^2(x, \tau) = I_0(\tau) + I_1(\tau) x + I_2(\tau) x^2, \]

where \(I_\cdot(\tau) \) describe the term structure of the approximate smile:

- **ATM Variance**:
 \[
 I_0(\tau) = \frac{\mathbb{E} V_{\tau}^{\text{eff}}}{\tau} + \frac{\text{Var}[S_{\tau}^{\text{eff}}]}{S_0^2 \tau} + \frac{\text{Cov}[S_{\tau}^{\text{eff}}, V_{\tau}^{\text{eff}}]}{2 S_0 \tau} - \frac{\text{Var}[V_{\tau}^{\text{eff}}]}{4 \tau \mathbb{E} V_{\tau}^{\text{eff}}} \left(1 + \frac{1}{4} \mathbb{E} V_{\tau}^{\text{eff}} \right)
 \]

- **ATM Skew**:
 \[
 I_1(\tau) = \frac{1}{\tau} \frac{\text{Cov}[S_{\tau}^{\text{eff}}, V_{\tau}^{\text{eff}}]}{S_0 \mathbb{E} V_{\tau}^{\text{eff}}}
 \]

- **ATM Curvature**:
 \[
 I_2(\tau) = \frac{1}{\tau} \frac{\text{Var}[V_{\tau}^{\text{eff}}]}{4 (\mathbb{E} V_{\tau}^{\text{eff}})^2}
 \]
Does it work?
Illustration for SV Models

Naturally, we consider the Heston (1993) model

\[dv_t = \kappa(\theta - v_t)dt + \varepsilon v_t^{1/2} dB_t. \]

We also consider the 3/2 model with the instantaneous variance

\[dv_t = v_t\kappa(\theta - v_t)dt + \varepsilon v_t^{3/2} dB_t. \]

- Both models are solvable, as the joint Laplace transform \(\mathcal{L}_t^{XV} \) of \(X = \log S \) and \(V = \int_0^t v_s ds \) has closed-form.
- Also the relevant moments are computable, since it holds that

\[\mathcal{L}_t^{\text{eff}}(u, w) = \mathcal{L}_t^{XV} \left(u, (1 - \rho^2)(w + \frac{1}{2} u - \frac{1}{2} u^2) \right), \]

between the "standard" and the "effective" transforms.
- However, Fourier inversion is numerically not trivial in the 3/2 model, due to complex evaluations of the confluent hypergeometric function.
ATM vols (left) and skews (right) for the Heston (top) and the 3/2 (bottom). The maturity ranges from $\tau = 0.05$ up to $\tau = 18$ years. Parameters are as in Forde et al. (2012).
Does it work?

SV Models: The Smile at Short Maturities

The ATM accuracy of $I^2_Q(x, \tau)$ at short maturities is not coincidental.

- For models with time-independent coefficients

$$dv_t = a(v_t)dt + b(v_t)dB_t.$$

it holds that

$$\lim_{\tau \to 0} I^2(0, \tau) = v_0 \quad \text{and} \quad \lim_{\tau \to 0} \frac{\partial I^2}{\partial x^2} \bigg|_{x=0} = \frac{1}{2} \frac{\rho b(v_0)}{\sqrt{v_0}}$$

see e.g., Lewis (2000), Lee (2001) and Medvedev and Scaillet (2007).

- The quadratic approximation is consistent with these results

$$\lim_{\tau \to 0} \mathcal{I}_0(\tau) = v_0 \quad \text{and} \quad \lim_{\tau \to 0} \mathcal{I}_1(\tau) = \frac{1}{2} \frac{\rho b(v_0)}{\sqrt{v_0}}$$

- It is therefore tempting to compare $I^2_Q(x, \tau)$ with well-established asymptotic results.
Heston model at short maturities

- I^2_Q vs Forde et al. (2012), for Heston model at short maturities.
- Maturities: $\tau = 0.05$ to $\tau = 0.5$. Moneyness: $\pm 15\%$.
Does it work?

3/2 Model at Short Maturities

I^2_Q vs Medvedev and Scaillet (2007), for general SV (plus jumps), short-maturities/small strikes. Maturities: $\tau = 0.07$ to $\tau = 0.5$. Moneyness: $\pm 15\%$.
Mid-Long Maturities

- Top: Heston model. Bottom: 3/2 model
- Maturities $\tau = 1, 3, 5$. Moneyness: from $\pm 30\%$ to $\pm 40\%$.

Does it work?
SV models: The smile at long maturities

At large maturities, the asymptotic behavior is

\[\lim_{\tau \to \infty} I_2(x, \tau) = 8\lambda(k_0) \quad \text{and} \quad \frac{\partial I_2}{\partial x} \bigg|_{x=0} \approx -\frac{8ik_0 + 4}{\tau} + O(1/\tau^2) \quad \text{as} \quad \tau \to \infty \]

where \(\lambda \) is the first eigenvalue of a differential operator and \(k_0 \) is a complex number. See Lewis (2000), Jaquier (2007) and Tehranchi (2009).

For \(I_Q^2 \), if \(\rho \neq 0 \), it holds that

\[\lim_{\tau \to \infty} I_Q^0(\tau) = \infty \quad \lim_{\tau \to \infty} I_Q^1(\tau) = 0 \quad \lim_{\tau \to \infty} I_Q^2(\tau) = 0 \]

So the accuracy of the quadratic approximation is bound to deteriorate as the maturity increases.

Luckily, this happens at a very slow rate, and the mismatch becomes observable only at extremely long expiries.
ATM Vols (left) and Skews (right), for Heston (top) and 3/2 (bottom), but with added ATM asymptotic behaviors. Maturity from $\tau = 0.05$ to $\tau = 18$ years.
Exponential Lévy models
Exponential Lévy Models

- **True short-maturity behavior**
 \[
 \lim_{\tau \to 0} \mathcal{I}^2(0, \tau) = 0 \quad \text{and} \quad \lim_{\tau \to 0} \mathcal{I}^2(x, \tau) = +\infty, \quad \text{for } x \neq 0
 \]

- **True long-maturity behavior**
 \[
 \lim_{\tau \to \infty} \mathcal{I}^2(x, \tau) = A \quad \text{and} \quad \mathcal{I}^2(x, \tau) \approx A + \frac{B}{\tau} + \frac{C}{\tau} x \quad \text{for large } \tau
 \]

- **In case of exponential Lévy models,** \(\mathcal{I}^2_Q(x, \tau) \) takes the form
 \[
 \mathcal{I}^2_Q(x, \tau) = \mathcal{A}(\tau) + \frac{B}{\tau} + \frac{C}{\tau} x + \frac{D}{\tau^2} x^2,
 \]
 with \(B < 0, \lim_{\tau \to 0} \mathcal{A}(\tau) = \tilde{A} \) and \(\lim_{\tau \to \infty} \mathcal{A}(\tau) = \infty \) (unless \(c = 0 \)).

 - In spite of this ”anti-asymptotic” behavior, \(\mathcal{I}^2_Q(x, \tau) \) is nevertheless quite useful.
VG Model smiles

\(I_2^Q(x, \tau) \) vs Jäckel (2009) singular approximation. Maturity: \(\tau = 0.25 \) up to \(\tau = 5 \). Moneyness: \(\pm 30\% \) up to \(\pm 50\% \). Jäckel (2009) parameters.
While both approximations are singular around the expiry-date, they both capture the overall behavior of the surface for a large relevant region of the smile.
Concluding Remarks

- The approximation is simple, easy to implement, and quite accurate where it matters (i.e. liquid moneyness).
- The approximation decomposes the volatility smile into meaningful quantities associated with higher-order option risks.
- The approximation is largely generic in the sense that it may be used for a large variety of option pricing models.
- Finally, in the paper we explore two domains of application of the approximation.
 1. We suggest to use the approximation as a control variate in Fourier option pricing.
 2. We propose a ‘speedy’, approximation-based approach for model calibration to at-the-money volatilities and skews.