Front progression in the East model

Oriane Blondel

LPMA – Paris 7; ENS Paris

October 10th 2013

The East model

Continuous time Markov process on $\{0, 1\}^\mathbb{Z}$.
The East model

Continuous time Markov process on \(\{0, 1\}^\mathbb{Z} \).

Density parameter \(p \in (0, 1) \).
The East model

Continuous time Markov process on $\{0, 1\}^\mathbb{Z}$.

Density parameter $p \in (0, 1)$.

Generator

$$\mathcal{L} f(\eta) = \sum_{x \in \mathbb{Z}} (1 - \eta_{x+1})(p(1 - \eta_x) + (1 - p)\eta_x)[f(\eta^x) - f(\eta)],$$

where

$$\eta^x_y = \begin{cases}
1 - \eta_x & \text{if } y = x \\
\eta_y & \text{if } y \neq x
\end{cases}$$
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty,
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the East neighbour is occupied,
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the East neighbour is occupied, nothing happens.
Graphical construction

- Initial configuration \(\eta \in \{0, 1\}^\mathbb{Z} \).
- Each site \(x \) waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, \(x \) is refreshed to 1 with probability \(p \) and 0 w.p. \(q = 1 - p \).
- If the East neighbour is occupied, nothing happens.
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the East neighbour is occupied, nothing happens.
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the East neighbour is occupied, nothing happens.
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the East neighbour is occupied, nothing happens.
Graphical construction

- Initial configuration \(\eta \in \{0, 1\}^\mathbb{Z} \).
- Each site \(x \) waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, \(x \) is refreshed to 1 with probability \(p \) and 0 w.p. \(q = 1 - p \).
- If the East neighbour is occupied, nothing happens.
Graphical construction

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if its East neighbour in the current configuration is empty, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the East neighbour is occupied, nothing happens.
Some properties of the East model

- Non attractive.
Some properties of the East model

- Non attractive.
Some properties of the East model

▶ Non attractive.
Some properties of the East model

- Non attractive.

- Equilibrium measure $\mu = B(p)^{\otimes \mathbb{Z}}$ (reversible)
Some properties of the East model

- Non attractive.

\[\begin{align*}
\text{\begin{array}{c}
\includegraphics[width=0.5\textwidth]{diagram.png}
\end{array}}
\end{align*} \]

- Equilibrium measure \(\mu = \mathcal{B}(p)^{\otimes \mathbb{Z}} \) (reversible)

- Exponential return to equilibrium, but not uniform.
The East model

Out of trouble

O. Blondel

Front progression
The East model Front Out of trouble
Problem

- Start from any configuration with right-most zero at 0.
Problem

- Start from any configuration with right-most zero at 0.
- Let the East dynamics run for time t.

X_t: position of the front (i.e. the right-most zero) at time t.

$\theta \eta(t)$: configuration seen from the front at time t.

The East model

Front

Out of trouble
Problem

➤ Start from any configuration with right-most zero at 0.
➤ Let the East dynamics run for time t.

X_t: position of the front (i.e. the right-most zero) at time t.

$\theta(t)$: configuration seen from the front at time t.

Questions
Problem

- Start from any configuration with right-most zero at 0.
- Let the East dynamics run for time t.

X_t: position of the front (i.e. the right-most zero) at time t.

$\theta(t)$: configuration seen from the front at time t.

Questions

- $\frac{X_t}{t} \rightarrow v < 0$?

Out of trouble

O. Blondel

Front progression
Problem

Start from any configuration with right-most zero at 0.

Let the East dynamics run for time t.

X_t: position of the front (i.e. the right-most zero) at time t.

$\theta(t)$: configuration seen from the front at time t.

Questions

$\frac{X_t}{t} \rightarrow v < 0$?

What does the front see?
Problem

- Start from any configuration with right-most zero at 0.
- Let the East dynamics run for time t.

X_t: position of the front (i.e. the right-most zero) at time t.

$\theta(t)$: configuration seen from the front at time t.

Questions

- $\frac{X_t}{t} \rightarrow v < 0$?
- What does the front see? Invariant measure for $(\theta(t))_{t \geq 0}$?
Problem

Start from any configuration with right-most zero at 0.

Let the East dynamics run for time t.

X_t: position of the front (i.e. the right-most zero) at time t.

$\theta \eta(t)$: configuration seen from the front at time t.

Questions

- $\frac{X_t}{t} \rightarrow v < 0$?
- What does the front see? Invariant measure for $(\theta \eta(t))_{t \geq 0}$? Convergence of $(\theta \eta(t))_{t \geq 0}$?
Trouble?

No attractiveness \Rightarrow No subadditive argument.
Ex: Contact process. $\times \xrightarrow{1} \square$ and $\square \xrightarrow{\lambda \cdot \# \sim \times} \times$.

O. Blondel

Front progression
Theorem (B., 2012)
Results

Theorem (B., 2012)

- There exists $v < 0$ such that for every initial η as above

$$\frac{X_t}{t} \xrightarrow{t \to \infty} v \quad \text{in probability}.$$
Theorem (B., 2012)

- There exists $v < 0$ such that for every initial η as above
 \[\frac{X_t}{t} \xrightarrow{t \to \infty} v \quad \text{in probability}. \]

- The process seen from the front has a unique invariant measure ν and
 \[\theta \eta(t) \xrightarrow{} \nu \quad \text{in distribution}. \]
Central argument

Far from the front, $\theta \eta(t)$ is almost distributed as μ.
Central argument

Far from the front, $\theta \eta(t)$ is almost distributed as μ.

\[
X_t \sim \nu_{t;L,M}^{\eta} ; L,M - \mu
\]
Central argument

Far from the front, \(\theta \eta(t) \) is almost distributed as \(\mu \).

Theorem (B., 2012)

- If \(L + M \leq Ct \)
 \[
 \| \nu_{t;L,M}^{\eta} - \mu \|_{TV} \leq e^{-\epsilon L}
 \]
Central argument

Far from the front, $\theta \eta(t)$ is almost distributed as μ.

Theorem (B., 2012)

- If $L + M \leq Ct$
 \[\| \nu^{\eta}_{t;L,M} - \mu \|_{TV} \leq e^{-\epsilon L} \]

- If $L + M > Ct$ and η has "enough zeros"
 \[\| \nu^{\eta}_{t;L,M} - \mu \|_{TV} \leq e^{-\epsilon (L \wedge t)} \]
Thank you!