First Problem Set 'Discrete Geometry'

Basic Notions and Examples of Polytopes

Homework

1. Find coordinates for the regular icosahedron.

Hint:

DFG Research Center
 mathematics for key technologies

2. Let $K \subseteq \mathbb{R}^{d}$. The equality

$$
\operatorname{conv} K=\operatorname{aff} K \cap \operatorname{cone} K
$$

doesn't hold in general. Which inclusion holds? Prove it. Where (exactly!) does the proof for the other inclusion fail? Give a counter-example! Under which extra assumptions does equality hold? Are these conditions necessary?

5 points
3. Classify all 3 -dimensional $0 / 1$-polytopes up to
(a) congruence and
(b) combinatorial equivalence.

Hint: polymake may help your intuition.
5 points
$\Sigma 15$ points

Further Material

1. Classify the 3 -polytopes with 4,5 or 6 vertices up to combinatorial equivalence. Construct them using polymake.
2. Let $S \subseteq \mathbb{R}^{n}$. Fill in the following table, finding either proofs or counter-examples in \mathbb{R}^{2}.

If S is a \ldots then it is a \ldots	convex set	affine subspace	cone	\mathcal{V}-polyhedron	\mathcal{V}-polytope
convex set					
affine subspace					
cone					
\mathcal{V}-polyhedron					
\mathcal{V}-polytope					

What needs to be adjusted in the proofs or counter-examples if \mathcal{V} is replaced by \mathcal{H} ?
3. If you are not familiar with the notion of affine independence you should carefully work through this exercise.
Let $x_{0}, \ldots, x_{n} \in \mathbb{R}^{d}$. Show the equivalence of the following conditions.
(a) x_{0}, \ldots, x_{n} are affinely independent.
(b) $x_{1}-x_{0}, \ldots, x_{n}-x_{0}$ are linearly independent.
(c) $\operatorname{dim} \operatorname{span}\left\{x_{1}-x_{0}, \ldots, x_{n}-x_{0}\right\}=n$.
(d) $\binom{x_{0}}{1}, \ldots,\binom{x_{n}}{1} \in \mathbb{R}^{d+1}$ are linearly independent.
(e) Let $\lambda_{0}, \ldots, \lambda_{n} \in \mathbb{R}$.

If $\lambda_{0} x_{0}+\ldots+\lambda_{n} x_{n}=0$ and $\lambda_{0}+\ldots+\lambda_{n}=0$,
then $\lambda_{0}=\ldots=\lambda_{n}=0$.
4. Let P be a 3-dimensional polytope such that any two vertices are adjacent (joined by an edge). Show that P is a tetrahedron.
5. Any simple and simplicial polytope is a simplex or an n-gon.
6. Construct a 3-polytope which is combinatorially equivalent to a cube and such that the disjoint facets are in orthogonal planes.
7. Show:

A polytope is the affine image of a crosspolytope if and only if it is centrally symmetric.
8. If $x, y \in M \Longrightarrow \forall \lambda \in \mathbb{R}: \lambda x+(1-\lambda) y \in M$ then M is an affine subspace.
9. Realize the n-gon $C_{2}(n)$ with small integral coordinates in $\{0,1, \ldots, f(n)\}$, for a 'small' $f(n)$.
10. Compute the number of facets and vertices of 'Complete Stacked' d-polytopes. Have a go on the complete f-vector!
11. Create a random 3-polytope with 100 vertices using polymake. Find a vertex of maximal degree and cut it off.

