Technische Universität Berlin

Fakultät II – Institut für Mathematik Stand Prof. Günter M. Ziegler / Dagmar Timmreck Sekretariat MA 6-2 http://www.math.tu-berlin.de/Vorlesungen/SoSeO4/KombGeoI/

First Problem Set 'Discrete Geometry'

Basic Notions and Examples of Polytopes

Homework

1. Find coordinates for the regular icosahedron. Hint:

> DFG Research Center mathematics for key technologies

2. Let $K \subseteq \mathbb{R}^d$. The equality

 $\operatorname{conv} K = \operatorname{aff} K \cap \operatorname{cone} K$

doesn't hold in general. Which inclusion holds? Prove it. Where (exactly!) does the proof for the other inclusion fail? Give a counter-example! Under which extra assumptions does equality hold? Are these conditions necessary?

5 points

- 3. Classify all 3-dimensional 0/1-polytopes up to
 - (a) congruence and
 - (b) combinatorial equivalence.

Hint: polymake may help your intuition.

 Σ 15 points

5 points

p.t.o

5 points

Sommer 2004 Stand 20. April 2004

Further Material

- 1. Classify the 3-polytopes with 4,5 or 6 vertices up to combinatorial equivalence. Construct them using polymake.
- 2. Let $S \subseteq \mathbb{R}^n$. Fill in the following table, finding either proofs or counter-examples in \mathbb{R}^2 .

If S is a then it is a	convex set	affine subspace	cone	$\mathcal{V} ext{-polyhedron}$	$\mathcal{V} ext{-polytope}$
convex set					
affine subspace					
cone					
$\mathcal{V} ext{-polyhedron}$					
$\mathcal{V} ext{-}\mathrm{polytope}$					

What needs to be adjusted in the proofs or counter-examples if \mathcal{V} is replaced by \mathcal{H} ?

3. If you are not familiar with the notion of affine independence you should carefully work through this exercise.

Let $x_0, \ldots, x_n \in \mathbb{R}^d$. Show the equivalence of the following conditions.

- (a) x_0, \ldots, x_n are affinely independent.
- (b) $x_1 x_0, \ldots, x_n x_0$ are linearly independent.
- (c) dim span{ $x_1 x_0, \dots, x_n x_0$ } = n.
- (d) $\binom{x_0}{1}, \ldots, \binom{x_n}{1} \in \mathbb{R}^{d+1}$ are linearly independent.
- (e) Let $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$. If $\lambda_0 x_0 + \ldots + \lambda_n x_n = 0$ and $\lambda_0 + \ldots + \lambda_n = 0$, then $\lambda_0 = \ldots = \lambda_n = 0$.
- 4. Let P be a 3-dimensional polytope such that any two vertices are adjacent (joined by an edge). Show that P is a tetrahedron.
- 5. Any simple and simplicial polytope is a simplex or an n-gon.
- 6. Construct a 3-polytope which is combinatorially equivalent to a cube and such that the disjoint facets are in orthogonal planes.
- 7. Show:

A polytope is the affine image of a crosspolytope if and only if it is centrally symmetric.

- 8. If $x, y \in M \implies \forall \lambda \in \mathbb{R} : \lambda x + (1 \lambda)y \in M$ then M is an affine subspace.
- 9. Realize the *n*-gon $C_2(n)$ with small integral coordinates in $\{0, 1, \ldots, f(n)\}$, for a 'small' f(n).
- 10. Compute the number of facets and vertices of 'Complete Stacked' d-polytopes. Have a go on the complete f-vector!
- 11. Create a random 3-polytope with 100 vertices using polymake. Find a vertex of maximal degree and cut it off.