Technische Universität Berlin

Sommer 2004

Stand 27. April 2004

Fakultät II – Institut für Mathematik

Prof. Günter M. Ziegler / Dagmar Timmreck

Sekretariat MA 6-2

http://www.math.tu-berlin.de/Vorlesungen/SoSeO4/KombGeoI/

Second Problem Set 'Discrete Geometry'

Main Theorem and Lattices

Deadline: Wednesday, 5 May 2004

Don't miss the quiz! New on the webpage! Identify the polytope and win a phantastic prize!

Homework

1. Show: The intersection of two faces of a polytope P is a face of P.

5 points

2. State and prove a Farkas lemma for systems of the form $Ax \leq z, x \geq 0$.

5 points

- 3. Let P be a d-polytope with n vertices and m facets. Number the vertices 1 to n and the facets 1 to m. Let $M(P) = (m_{ij}) \in \{0,1\}^{m \times n}$ be the facet-vertex-incidence-matrix of P, that means $m_{ij} = 1$ if and only if facet i contains vertex j (otherwise $m_{ij} = 0$).
 - (a) How can you reconstruct the face lattice of P from M(P) uniquely?
 - (b) Where do you get the dimension of P in this calculation?
 - (c) Where could the algorithm fail if the given matrix is not the facet-vertex-incidence-matrix of a polytope but for example of an unbounded polyhedron?
 - (d) How are the matrices M(P) and $M(P^{\Delta})$ related?

5 points

 Σ 15 points

p.t.o.

Further Material

- 1. Let P be a 3-polytope with n facets. As we shall see P has at most 2n-4 vertices. Use Fourier-Motzkin-elimination to obtain the polygon P'. How many vertices/facets has P' at most? Give for each $n \geq 4$ an example with the maximum number of vertices/facets.
- 2. Find a V-description of the \mathcal{H} -polytope given by

$$0 \leq x_i \leq 1$$

for $i \in \{1, \ldots, d\}$ and

$$\sum_{i=1}^{d} x_i \leq \frac{3}{2}.$$

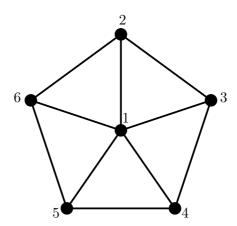
How many facets and vertices are there?

Remark. These polytopes are known as dwarfed cubes.

3. Show:

If a polytope is k-neighborly then every ℓ -face with $\ell \leq 2k-1$ is an ℓ -simplex. Conclude that every $(\lfloor \frac{d}{2} \rfloor + 1)$ -neighborly polytope is a simplex.

4. Let G = (V, E) be the following graph. (V denotes the set of vertices and E the set of edges.)



A subset V' of V is called *stable* if no edge in E joins two vertices in V'. The convex hull of all incidence vectors of stable sets is a \mathcal{V} -polytope in \mathbb{R}^6 , which we denote by STAB(G). The aim of this exercise is the description of STAB(G) as an \mathcal{H} -polytope.

- (a) Find all stable sets of the graph G and determine the dimension of STAB(G).
- (b) Show that no inequality of the form $x_i + x_j \leq 1$ where ij is an edge of G, defines a facet of STAB(G).
- (c) Show that every inequality of the form $x_i \geq 0$ where i is a vertex of G, defines a facet of STAB(G).
- (d) Show that every inequality of the form $x_i + x_j + x_k \leq 1$ where ijk is a triangle of G, defines a facet of STAB(G).

- (e) Show that the inequality $2x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 2$, defines a facet of STAB(G).
- (f) Show that there are no other facets of STAB(G).
- (g) Verify this result by using polymake to find all facets of STAB(G).

(Hint for part (f): Begin by showing that every vertex of the polytope defined by the inequalities in (c), (d) and (e) has integer coordinates.)

- 5. Define the face figure P/F for any face of P by $P/F := (F^{\diamond})^{\Delta}$, that is, the polar of the face of P^{Δ} which corresponds to F.
 - (a) Show that P/F is a polytope of dimension

$$\dim(P/F) = \dim(P) - \dim(F) - 1.$$

- (b) Characterize the face lattice of a face figure in terms of the face lattice of P and of the element $F \in L(P)$.
- (c) Describe a more direct construction of P/F, generalizing the case of a vertex figure.
- (d) How can the face figure P/F be obtained as an iterated vertex figure?

Remark. The face figures P/F are also known as the quotients of P. Thus a quotient of P is the same thing as an iterated vertex figure.

- 6. Let (S, \leq) be a finite poset. Show that any two of the following properties imply the third.
 - (a) (S, \leq) is bounded.
 - (b) Any two elements $x, y \in S$ have a unique minimal upper bound $x \vee y$.
 - (c) Any two elements $x, y \in S$ have a unique maximal lower bound $x \wedge y$.

7. Show:

Every V-polytope with n vertices is an affine image of the (n-1)-dimensional standard simplex.

- 8. (a) Let P be a 3-polytope and v a vertex of P. Show that the number of facets containing v equals the number of edges containing v.
 - (b) Prove or disprove the claim of part (a) for polytopes of higher dimension.
 - (c) Prove or disprove the claim of part (a) for *simple* polytopes of higher dimension.
- 9. Look at the *d*-cube $C_d \subseteq \mathbb{R}^d$.

Find all $3^d + 1$ faces of C_d together with a (natural) bijection of the non-empty faces and the set of sign vectors $\{+, -, 0\}^d$.

10. Show that there are exponentially many combinatorial types of 3-dimensional stacked polytopes with n vertices.