Technische Universität Berlin

Sommer 2004

Stand 10. Mai 2004

Fakultät II – Institut für Mathematik

Prof. Günter M. Ziegler / Dagmar Timmreck

Sekretariat MA 6-2

http://www.math.tu-berlin.de/Vorlesungen/SoSeO4/KombGeoI/

Fourth Problem Set 'Discrete Geometry'

4-Polytopes, Diagrams

Deadline: Wednesday, 19 May 2004

Homework

1. Let P be a 4-polytope and u, v two vertices of P. Prove: There is an edge connecting u and v if and only if there are at least 3 facets containing both u and v.

5 points

- 2. (a) Find a small simplicial 2-diagram that isn't regular. Hint. Don't forget to prove that it works!
 - (b) Show that the following 2-diagram is regular, but not Schlegel:

5 points

3. Describe how the Schlegel-diagram of a 3- or 4-polytope changes if you cut off a vertex.

Hint. There are two cases!

5 points

 Σ 15 points

p.t.o.

Further Material

- 1. How can stellar subdivisions be performed/visualized on Schlegel-diagrams?
- 2. If P has dimension at least 4, then the graph G(P) is not planar. In fact, show that it contains a subdivision of the complete graph K_{d+1} .

 K_d is the complete graph on d vertices. A graph G contains a subdivision of a graph H, if you can get G from H by a series of the following operations:

- (a) Remove a vertex (and all incident edges),
- (b) Remove an edge,
- (c) Replace a path v_0, \ldots, v_k by an edge $v_0 v_k$.

Hint. Induction and vertex figures.

- 3. A d-polytope P is called dimensionally ambiguous if there is a polytope Q of a different dimension $\dim(Q) \neq \dim(P)$ which has an isomorphic graph, $G(P) \cong G(Q)$.
 - (a) Show that the d-simplex is dimensionally ambiguous for $d \geq 5$, but not for d < 4.
 - (b) Show that 3-polytopes, and simple 4-polytopes, cannot be dimensionally ambiguous.

Hint. Use Exercise 2.

(c) Show that the d-cubes are dimensionally ambiguous for $d \geq 5$. For example, if Q is the standard 2-cube (also known as square), then the 4-polytope

$$conv(Q \times 2Q \cup 2Q \times Q)$$

has a graph that is isomorphic to $G(C_5)$.

- 4. Construct a Schlegel diagram and calculate the f-vectors for
 - (a) the pyramid over a cube.
 - (b) the prism over an octahedron.
 - (c) the product

$$\Delta_2 \times \Delta_2$$

and its polar.

(d) the cyclic polytopes $C_3(6)$ and $C_4(7)$.

You can do this exercise by hand and/or with polymake.

5. Let $P \subseteq \mathbb{R}^d$ be a d-polytope, $A \subseteq \mathbb{R}^d$ an affine k-subspace. Then $P \cap A$ is a polytope of dimension at most k. All faces of $P \cap A$ are of the form $F \cap A$ for faces $F \subset P$, and $\dim F \geq \dim(F \cap A)$.