SoSe 07 Ausgabe: 17.05.2007 Abgabe: 24.05.2007

Albrecht Gündel vom Hofe José Mendez

5. Übung zur Analysis III

1. Präsentationsaufgabe

Seien $\mathbf{x} \in \mathbb{R}^2$ mit $\mathbf{x} = (a_1x_1, a_2x_2)$ $a_i, x_i \in \mathbb{R}, 1 \leq i \leq 2$ und $\Phi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ die bilinieare Abbildung, die durch das kanonische Skalarprodukt definiert wird. Darüber hinaus sei $\Phi(\mathbf{x}, \mathbf{x})$ formal als $f(x_1, x_2) : U \to \mathbb{R}$ betrachtet mit $U \in \mathbb{R}^2$ offen und $f(x_1, x_2) \in \mathcal{C}^2(\mathbb{R}^2)$. Die Abbildung

$$\Delta f := div \, grad \, f$$

heisst Laplace-Operator Δ .

- (a) Bestimme $a_i \in \mathbb{R}$, $1 \le i \le 2$ so dass $\Delta f = 0$ gilt. Eine Funktion mit dieser Eigenschaft heisst harmonisch. Die Gleichung $\Delta f = 0$ heisst Potentialgleichung.
- (b) Sei $U \in \mathbb{R}^2$ offen und $f(x,y) := -\frac{x^2}{2} + 2xy + \frac{y^2}{2} \in \mathcal{C}^2(\mathbb{R}^2)$. Zeige, dass f harmonisch ist.
- (c) Sei $U \in \mathbb{R}^3$ offen und $\mathbf{v}: U \to \mathbb{R}^3$ ein zweimal stetig differenzierbares Vektorfeld. Es lässt sich zeigen, dass

$$div \ rot \mathbf{v} = 0$$

gilt.

(5 Punkte)

- 2. Seien $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ die kanonische Basis des \mathbb{R}^3 und $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ Zeige:
 - (a) $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| |\sin \alpha|$, wobei α der Winkel zwischen \mathbf{u} und \mathbf{v} ist.
 - (b) $||\mathbf{u} \times \mathbf{v}|| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle \langle \mathbf{u}, \mathbf{v} \rangle^2}$.
 - (c) $\mathbf{b}_i \times \mathbf{b}_i = 0$
 - (d) $\mathbf{b}_i \times \mathbf{b}_j = -(\mathbf{b}_j \times \mathbf{b}_i) \quad i \neq j$

(5 Punkte)

3. Es seien $c \in \mathbb{R}^{>0}$, $\mathbf{k} \in \mathbb{R}^n$ und $\omega := c||\mathbf{k}||$ sowie $f : \mathbb{R} \to \mathbb{R}$ $f \in \mathcal{C}^2(\mathbb{R})$ eine beliebige Funktion. Man zeige:

$$F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, \qquad (\mathbf{x}, t) \mapsto f(\langle \mathbf{k}, \mathbf{x} \rangle - \omega t)$$

besitzt die Eigenschaft

$$\Delta F = \frac{1}{c^2} \frac{\partial^2 F}{\partial t^2}$$

 Δ ist der Laplace-Operator $\Delta F:=\operatorname{div}\operatorname{grad} F.$ Diese Gleichung stellt eine Schwingungsgleichung dar.

(5 Punkte)

4. Es seien $\mathbf{F} = (3x^2 - 6yz, 2y + 3xz, 1 - 4xyz^2), \quad \boldsymbol{\alpha}(t) := (t, t^2, t^3) \text{ und } P_1 = (0, 0, 0), P_2 = (1, 1, 1).$ Bestimme die Werte $a, b \in (-2, 2)$ von t, damit man

$$\int_{\alpha} \mathbf{F} \cdot d\mathbf{x} = \int_{a}^{b} \mathbf{F}(\alpha(t)) \cdot \alpha'(t) dt$$

das Kurvenintegral von ${\bf F}$ über ${\boldsymbol \alpha}$ von P_1 nach P_2 berechnen kann. Ändert sich etwas wenn das Kurvenintegral von ${\bf F}$ über ${\boldsymbol \alpha}$ von P_2 nach P_1 berechnet wird?

(4 Punkte)