

The MIP-Solving-Framework SCIP

Timo Berthold Zuse Institut Berlin

DFG Research Center MATHEON Mathematics for key technologies

Berlin, 23.05.2007

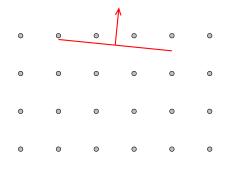
▲□▶ ▲□▶ ▲ Ξ▶ ▲ Ξ ● ○ < ○</p>

The optimization problem

0	0	0	0	0	0
0	0	0	0	0	0
		0			
0	٥	٥	٥	٥	٥

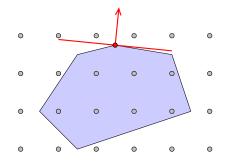
The optimization problem

min $c^T x$



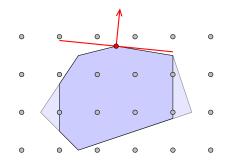
The optimization problem

 $\begin{array}{ll} \min & c^{T}x\\ s.t. & Ax \leq b \end{array}$



The optimization problem

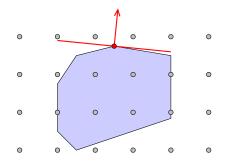
$$\begin{array}{ll} \min & c^{\mathsf{T}}x\\ s.t. & Ax \leq b\\ & l \leq x \leq u \end{array}$$



The optimization problem

$$\begin{array}{ll} \min & c^{\mathsf{T}}x\\ s.t. & Ax \leq b\\ & l \leq x \leq u \end{array}$$

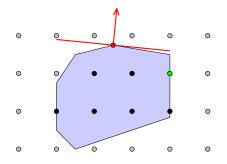
is called a MIP (mixed integer program).



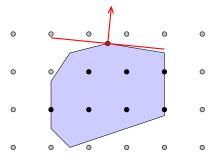
2 / 23

The optimization problem

$$\begin{array}{ll} \min \quad c^{\mathsf{T}}x\\ s.t. \quad Ax \leq b\\ I \leq x \leq u\\ x_j \in \mathbb{Z} \quad \forall j \in I \end{array}$$

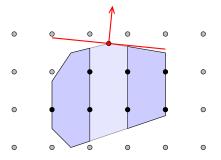


- Branch-And-Bound
- \triangleright Cutting planes
- Combination: Branch-And-Cut



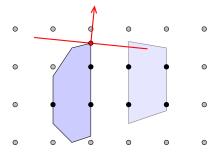
Exact methods

- \triangleright Cutting planes
- Combination: Branch-And-Cut



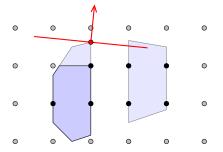
Exact methods

- \triangleright Cutting planes
- Combination: Branch-And-Cut



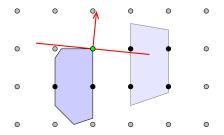
Exact methods

- \triangleright Cutting planes
- Combination: Branch-And-Cut



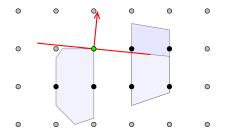
Exact methods

- \triangleright Cutting planes
- Combination: Branch-And-Cut



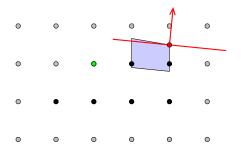
Exact methods

- \triangleright Cutting planes
- Combination: Branch-And-Cut



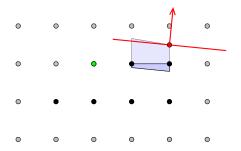
Exact methods

- \triangleright Cutting planes
- Combination: Branch-And-Cut



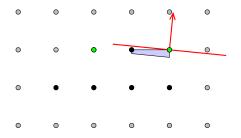
Exact methods

- \triangleright Cutting planes
- Combination: Branch-And-Cut

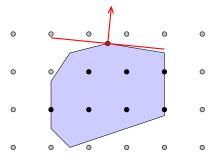


Exact methods

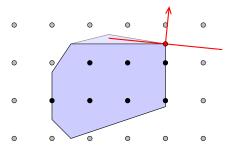
- \triangleright Cutting planes
- Combination: Branch-And-Cut



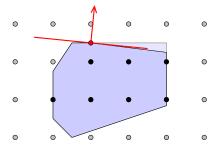
- Branch-And-Bound
- \triangleright Cutting planes
- Combination: Branch-And-Cut



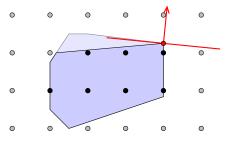
- Branch-And-Bound
- ▷ Cutting planes
- Combination: Branch-And-Cut



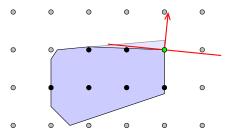
- Branch-And-Bound
- ▷ Cutting planes
- Combination: Branch-And-Cut



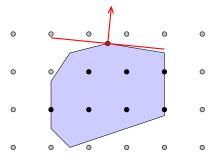
- Branch-And-Bound
- ▷ Cutting planes
- Combination: Branch-And-Cut



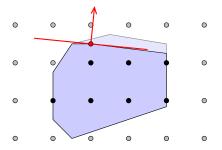
- Branch-And-Bound
- ▷ Cutting planes
- Combination: Branch-And-Cut



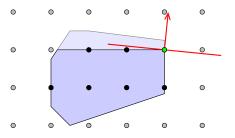
- Branch-And-Bound
- \triangleright Cutting planes
- Combination: Branch-And-Cut



- Branch-And-Bound
- ▷ Cutting planes
- Combination: Branch-And-Cut



- Branch-And-Bound
- \triangleright Cutting planes
- Combination: Branch-And-Cut



Constraint Program (CP)	Examples
 ▷ General constraints ▷ Integer variables ⇒ (CIP) 	
How do we solve CPs?	

Constraint Program (CP)	Examples
 ▷ General constraints ▷ Integer variables ⇒ (CIP) 	▷ TSP as CP▷ n-Queens

How do we solve CPs?

4 / 23

Constraint Program (CP)	Examples
 ▷ General constraints ▷ Integer variables ⇒ (CIP) 	▷ TSP as CP▷ n-Queens

How do we solve CPs?

- Branching:
 - Divide into subproblems, solve recursively
- Domain Propagation:
 - Reductions in variables' domains "propagate"
 - E.g. $x_1 + 2x_2 \ge 5$, $x_1 \le 2 \implies x_2 \ge 2$

$\mathsf{SCIP} \gets \mathsf{CP}{+}\mathsf{MIP}$

- SCIP combines technologies
- Standalone-solver for MIP
 - A bundle of MIP-solving-components as default plugins
 - MIP-solver as fast as CPlex 9.0
 - Underlying LP-solver: treated as blackbox
- ▷ Branch-Cut-And-Price-Framework for MIP and CIP
 - C++ wrapper classes for user plugins

$\mathsf{SCIP} \gets \mathsf{CP}{+}\mathsf{MIP}$

- SCIP combines technologies
- Standalone-solver for MIP
 - A bundle of MIP-solving-components as default plugins
 - MIP-solver as fast as CPlex 9.0
 - Underlying LP-solver: treated as blackbox
- ▷ Branch-Cut-And-Price-Framework for MIP and CIP
 - C++ wrapper classes for user plugins

Key data

- Since October 2002
- ▷ Achterberg, Wolter, B. et al.
- ▷ Approx. 220.000 lines of C code
- Free f
 ür academic use
- > Available at http://scip.zib.de
- ▷ July 2007: version 1.0

6 / 23

Key data

- Since October 2002
- ▷ Achterberg, Wolter, B. et al.
- ▷ Approx. 220.000 lines of C code
- Free f
 ür academic use
- > Available at http://scip.zib.de
- ▷ July 2007: version 1.0 ... I hope so...

6 / 23

SCIP: Solver & Framework

> Presolver: simplifies the problem in advance, strengthens structure

- > Presolver: simplifies the problem in advance, strengthens structure
- ▷ Node selection: which subproblem should be regarded next?

- Presolver: simplifies the problem in advance, strengthens structure
 Node selection: which subproblem should be regarded next?
- Branching rule: how to divide the problem?

- \triangleright Presolver: simplifies the problem in advance, strengthens structure
- Node selection: which subproblem should be regarded next?
- Branching rule: how to divide the problem?
- Separator: adds cuts, improves dual bound

- ▷ Presolver: simplifies the problem in advance, strengthens structure
- Node selection: which subproblem should be regarded next?
- Branching rule: how to divide the problem?
- Separator: adds cuts, improves dual bound
- Constraint handler: assures feasibility, strengthens formulation

7 / 23

- ▷ Presolver: simplifies the problem in advance, strengthens structure
- ▷ Node selection: which subproblem should be regarded next?
- Branching rule: how to divide the problem?
- Separator: adds cuts, improves dual bound
- Constraint handler: assures feasibility, strengthens formulation
- Conflict handler: learns from infeasibility, improves dual bound

7 / 23

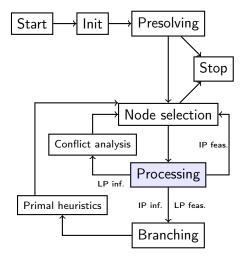
- ▷ Presolver: simplifies the problem in advance, strengthens structure
- ▷ Node selection: which subproblem should be regarded next?
- Branching rule: how to divide the problem?
- Separator: adds cuts, improves dual bound
- Constraint handler: assures feasibility, strengthens formulation
- Conflict handler: learns from infeasibility, improves dual bound
- ▷ Heuristic: searches solutions, improves primal bound

- ▷ Presolver: simplifies the problem in advance, strengthens structure
- ▷ Node selection: which subproblem should be regarded next?
- Branching rule: how to divide the problem?
- Separator: adds cuts, improves dual bound
- Constraint handler: assures feasibility, strengthens formulation
- > Conflict handler: learns from infeasibility, improves dual bound
- > Heuristic: searches solutions, improves primal bound
- Propagator: simplifies problem, improves dual bound locally

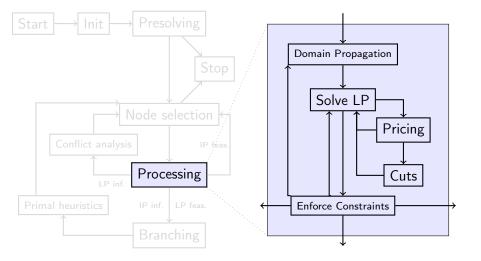
- ▷ Presolver: simplifies the problem in advance, strengthens structure
- Node selection: which subproblem should be regarded next?
- Branching rule: how to divide the problem?
- > Separator: adds cuts, improves dual bound
- Constraint handler: assures feasibility, strengthens formulation
- > Conflict handler: learns from infeasibility, improves dual bound
- > Heuristic: searches solutions, improves primal bound
- Propagator: simplifies problem, improves dual bound locally
- ▷ Pricer: allows dynamic generation of variables

7 / 23

Flow Chart SCIP



Flow Chart SCIP



4

イロト イ団ト イヨト イヨト

Living By Numbers

Default plugins

- ▷ 5 presolvers
- 5 node selection rules
- 14 constraint handlers
- 8 separators
- 8 branching rules
- 4 conflict handlers
- 2 propagators
- > 23 primal heuristics

SCIP as a framework for a TSP-solver

Living By Numbers

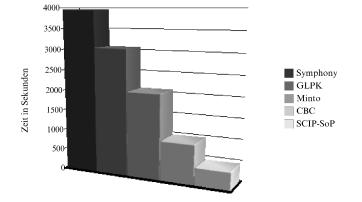
Default plugins

SCIP as a framework for a TSP-solver

main program:	196 lines
TSP file reader:	407 lines
graph structure:	80 lines
subtour constraint:	793 lines
Gomory-Hu algo.:	658 lines
FarInsert heuristic:	354 lines
2-Opt heuristic:	304 lines
altogether:	2792 lines

→ < ∃ > < ∃ >

Comparison With Other Free MIP-Solvers

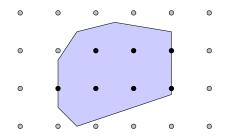


(日) (同) (三) (三)

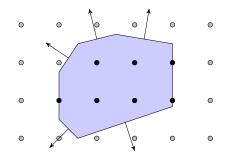
Characteristics

- Highest priority to feasibility
- Distinguish:
 - Start heuristics
 - Improvement heuristics
- ▷ Keep control of effort!
- > Use available information

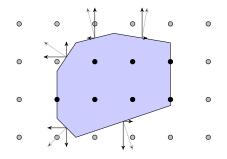
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



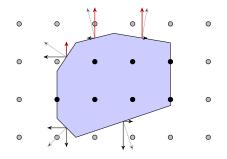
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



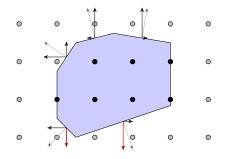
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



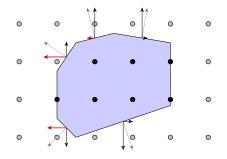
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



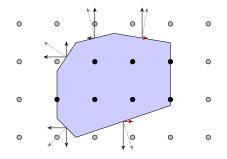
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



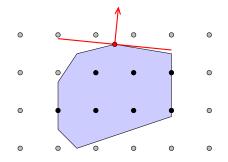
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



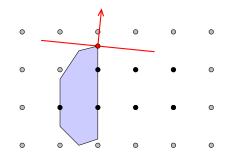
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



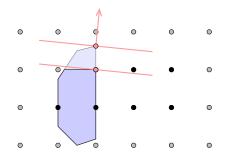
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



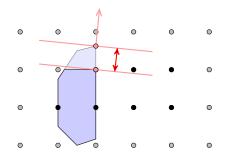
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



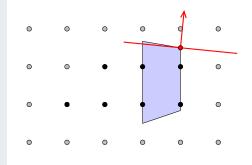
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



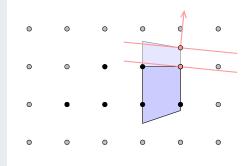
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



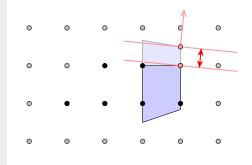
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



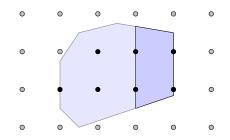
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



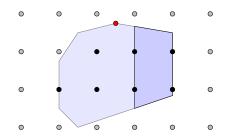
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



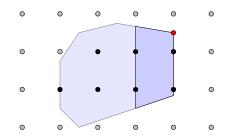
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



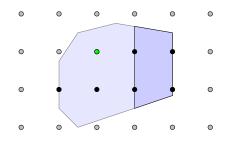
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



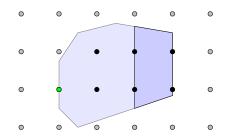
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP optimum
 - Current best solution
 - Other known solutions



Approaches

- ▷ Rounding
- Diving: simulate DFS in the Branch-And-Bound-tree using some special branching rule
- > Objective diving: manipulate objective function
- LNS: solve some sub-MIP
- Pivoting: manipulate simplex algorithm

Approaches

- ▷ Rounding
- Diving: simulate DFS in the Branch-And-Bound-tree using some special branching rule
- > Objective diving: manipulate objective function
- LNS: solve some sub-MIP
- Pivoting: manipulate simplex algorithm

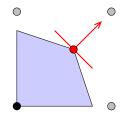
Implemented into SCIP

- ▷ 5 Rounding heuristics
- > 8 Diving heuristics
- ▷ 3 Objective divers
- > 4 LNS improvement heuristics

Rounding Heuristics

Ideas

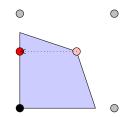
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



Rounding Heuristics

Ideas

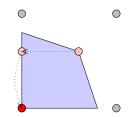
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



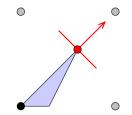
Rounding Heuristics

Ideas

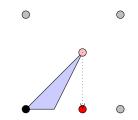
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



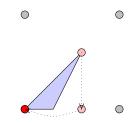
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



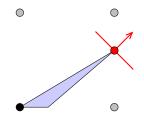
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



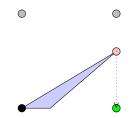
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



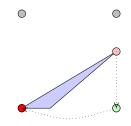
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers.



Diving Heuristics

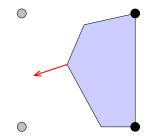
Idea: iteratively solve the LP and round a variable

Applied branching rules

- Fractional Diving: lowest fractionality
- Coefficient Diving: lowest locking number
- Linesearch Diving: highest increase since root
- Guided Diving: lowest difference to best known solution
- Pseudocost Diving: highest ratio of pseudocosts
- Vectorlength Diving: lowest ratio of objective change and number of rows containing the variable

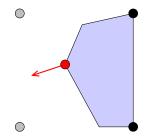
Algorithm

- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;



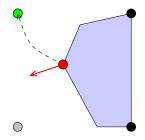
Algorithm

- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;

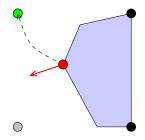


Algorithm

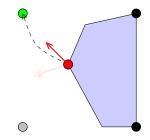
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;



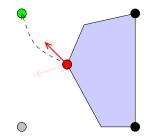
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;



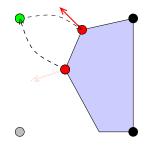
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;



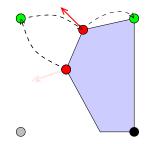
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;



- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;

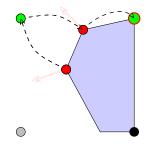


- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;



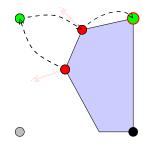
Algorithm

- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;



Algorithm

- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change Objective;
- 7. Go to 1;



Improvements

- \triangleright Objective $c^T x$ regarded at each step
- Algorithm able to resolve from cycling
- Quality of solutions much better

Improvements

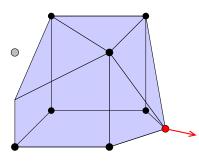
- \triangleright Objective $c^T x$ regarded at each step
- Algorithm able to resolve from cycling
- Quality of solutions much better

Results

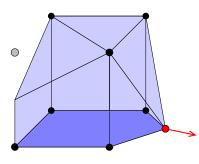
- ▷ Finds a solution for 74% of the test instances
- ▷ On average 5.5 seconds running time
- Optimality gap decreased from 107% to 38%

- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \ \forall i : \bar{x}_i \in \mathbb{Z};$
- 3. Reduce domain of fractional variables: $x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};$
- 4. Solve the resulting sub-MIP

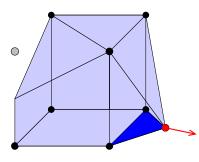
- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \ \forall i : \bar{x}_i \in \mathbb{Z};$
- 3. Reduce domain of fractional variables: $x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};$
- 4. Solve the resulting sub-MIP



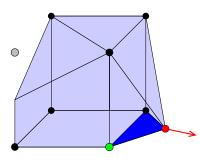
- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \ \forall i : \bar{x}_i \in \mathbb{Z};$
- 3. Reduce domain of fractional variables: $x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};$
- 4. Solve the resulting sub-MIP



- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \ \forall i : \bar{x}_i \in \mathbb{Z};$
- 3. Reduce domain of fractional variables: $x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};$
- 4. Solve the resulting sub-MIP



- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \ \forall i : \bar{x}_i \in \mathbb{Z};$
- 3. Reduce domain of fractional variables: $x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};$
- 4. Solve the resulting sub-MIP



Observations

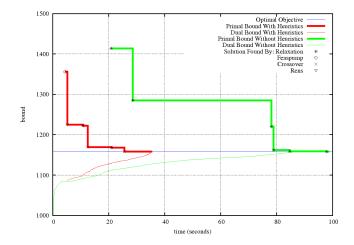
- \triangleright Solutions found by Rens are roundings of \bar{x}
- > Yields best possible rounding
- > Yields certificate, if no rounding exists

Observations

- \triangleright Solutions found by Rens are roundings of \bar{x}
- > Yields best possible rounding
- > Yields certificate, if no rounding exists

Results

- \triangleright Approx. $\frac{2}{3}$ of the test instances are roundable
- ▷ Rens finds optimum for 20%!
- Dominates all other rounding heuristics



Instanz aflow30a: performance of SCIP with and without heuristics

-2

∃ ► < ∃ ►

Image: A matrix and a matrix

Results

- Coordination important
- Positive side effects
- Improvement of overall performance
- SCIP with heuristics twice as fast

The MIP-Solving-Framework SCIP

Timo Berthold Zuse Institut Berlin

DFG Research Center MATHEON Mathematics for key technologies

Berlin, 23.05.2007

▲□▶ ▲□▶ ▲ Ξ▶ ▲ Ξ ● ○ < ○</p>