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What Is A MIP?

Definition MIP
The optimization problem

min cTx
s.t. Ax ≤ b

l ≤ x ≤ u
xj ∈ Z ∀j ∈ I

is called a MIP
(mixed integer program).
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How Do We Solve MIPs?

Exact methods

. Branch-And-Bound

. Cutting planes

. Combination: Branch-And-Cut
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CP - A Further Concept

Constraint Program (CP)

. General constraints

. Integer variables ⇒ (CIP)

Examples

. TSP as CP

. n-Queens

How do we solve CPs?

. Branching:
I Divide into subproblems, solve recursively

. Domain Propagation:
I Reductions in variables’ domains “propagate”
I E.g. x1 + 2x2 ≥ 5, x1 ≤ 2 ⇒ x2 ≥ 2
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SCIP: Solver & Framework

SCIP ← CP+MIP

. SCIP combines technologies

. Standalone-solver for MIP
I A bundle of MIP-solving-components as default plugins
I MIP-solver as fast as CPlex 9.0
I Underlying LP-solver: treated as blackbox

. Branch-Cut-And-Price-Framework for MIP and CIP
I C++ wrapper classes for user plugins
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SCIP: Solver & Framework

Key data

. Since October 2002

. Achterberg, Wolter, B. et al.

. Approx. 220.000 lines of C code

. Free für academic use

. Available at http://scip.zib.de

. July 2007: version 1.0

. . . I hope so. . .
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SCIP: Solver & Framework

Types of plugins

. Presolver: simplifies the problem in advance, strengthens structure

. Node selection: which subproblem should be regarded next?

. Branching rule: how to divide the problem?

. Separator: adds cuts, improves dual bound

. Constraint handler: assures feasibility, strengthens formulation

. Conflict handler: learns from infeasibility, improves dual bound

. Heuristic: searches solutions, improves primal bound

. Propagator: simplifies problem, improves dual bound locally

. Pricer: allows dynamic generation of variables
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Flow Chart SCIP

Start Init Presolving

Stop

Node selection

Processing

Branching

Conflict analysis

Primal heuristics

LP inf.

LP feas.IP inf.

IP feas.

Domain Propagation

Solve LP

Pricing

Cuts

Enforce Constraints
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Living By Numbers

Default plugins

. 5 presolvers

. 5 node selection rules

. 14 constraint handlers

. 8 separators

. 8 branching rules

. 4 conflict handlers

. 2 propagators

. 23 primal heuristics

SCIP as a framework
for a TSP-solver

main program: 196 lines
TSP file reader: 407 lines
graph structure: 80 lines
subtour constraint: 793 lines
Gomory-Hu algo.: 658 lines
FarInsert heuristic: 354 lines
2-Opt heuristic: 304 lines
altogether: 2792 lines
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Comparison With Other Free MIP-Solvers

10 / 23



Primal Heuristics

Characteristics

. Highest priority to feasibility

. Distinguish:
I Start heuristics
I Improvement heuristics

. Keep control of effort!

. Use available information
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Primal Heuristics

Used Information

. Variables’ locking numbers:
Potentially violated rows

. Variables’ pseudocosts:
Average objective change

. Special points:
I LP optimum at root node
I Current LP optimum
I Current best solution
I Other known solutions
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Primal Heuristics

Approaches

. Rounding

. Diving: simulate DFS in the Branch-And-Bound-tree using some
special branching rule

. Objective diving: manipulate objective function

. LNS: solve some sub-MIP

. Pivoting: manipulate simplex algorithm
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Overview

Implemented into SCIP

. 5 Rounding heuristics

. 8 Diving heuristics

. 3 Objective divers

. 4 LNS improvement heuristics

14 / 23



Rounding Heuristics

Ideas

. Simple Rounding always stays feasible,

. Rounding may violate constraints,

. Shifting may unfix integers.
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Diving Heuristics

Idea: iteratively solve the LP and round a variable

Applied branching rules

. Fractional Diving: lowest fractionality

. Coefficient Diving: lowest locking number

. Linesearch Diving: highest increase since root

. Guided Diving: lowest difference to best known solution

. Pseudocost Diving: highest ratio of pseudocosts

. Vectorlength Diving: lowest ratio of objective change and number
of rows containing the variable
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The Feasibility Pump

Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
4. Stop!
5. Else:
6. Change Objective;
7. Go to 1;
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The Objective Feasibility Pump

Improvements

. Objective cTx regarded at each step

. Algorithm able to resolve from cycling

. Quality of solutions much better

Results

. Finds a solution for 74% of the test instances

. On average 5.5 seconds running time

. Optimality gap decreased from 107% to 38%
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Rens– An LNS Rounding Heuristic

Algorithm

1. x̄ ← LP optimum;
2. Fix all integral variables:

xi := x̄i ∀i : x̄i ∈ Z;
3. Reduce domain of fractional variables:

xi ∈ {bx̄ic; dx̄ie};
4. Solve the resulting sub-MIP
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Rens– An LNS Rounding Heuristic

Observations

. Solutions found by Rens are roundings of x̄

. Yields best possible rounding

. Yields certificate, if no rounding exists

Results

. Approx. 2
3 of the test instances are roundable

. Rens finds optimum for 20%!

. Dominates all other rounding heuristics
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An Example

Instanz aflow30a: performance of SCIP with and without heuristics
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Thesis Conclusions

Results

. Coordination important

. Positive side effects

. Improvement of overall performance

. SCIP with heuristics twice as fast
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