ADM III: Fortgeschrittene Methoden der Ganzzahligen Linearen Programmierung Exercise sheet 1

deadline: 26.04.2007, 8:30

All exercises deal with the Asymmetric Traveling Salesman Problem (ATSP). The ATSP is supposed to be defined on the complete directed graph on n nodes $D_{n}=\left(V, A_{n}\right)$ with $V=\{1, \ldots, n\}$ and $A_{n}=\{(i, j) \mid i, j \in V, i \neq j\}$.

Exercise 1

4 points

The following equalities are valid for the ATSP-polytope P_{T}^{n}

$$
\begin{aligned}
& x\left(\delta^{-}(v)\right)=1, \quad \forall v \in V \\
& x\left(\delta^{+}(v)\right)=1 . \quad \forall v \in V
\end{aligned}
$$

Show that the rank of this system is $2 n-1$, i.e., one equality is redundant.
Note: The notation used means the following:

$$
\begin{array}{lr}
x(A):=\sum_{a \in A} x_{a} & \text { for } A \subseteq A_{n} \\
\delta^{-}(i):=\left\{(j, i) \in A_{n} \mid j \in V\right\} & \text { for } i \in V \\
\delta^{+}(i):=\left\{(i, j) \in A_{n} \mid j \in V\right\} & \text { for } i \in V
\end{array}
$$

Exercise 2

4 points
Show that $x_{i j} \leq 1$ is not a facet of P_{T}^{n}.

Exercise 3

$2+2$ points
Determine and prove the dimension of P_{T}^{3} and P_{T}^{4}.

Exercise 4

bonus points

Generalize the results of the last exercise and prove a general result for the dimension of P_{T}^{n}.

