ADM III: Fortgeschrittene Methoden der Ganzzahligen Linearen Programmierung Exercise sheet 1

deadline: 26.04.2007, 8:30

All exercises deal with the Asymmetric Traveling Salesman Problem (ATSP). The ATSP is supposed to be defined on the complete directed graph on n nodes $D_n = (V, A_n)$ with $V = \{1, \ldots, n\}$ and $A_n = \{(i, j) \mid i, j \in V, i \neq j\}$.

Exercise 1

The following equalities are valid for the ATSP-polytope P_T^n

$$x(\delta^{-}(v)) = 1, \quad \forall v \in V$$
$$x(\delta^{+}(v)) = 1, \quad \forall v \in V$$

Show that the rank of this system is 2n - 1, i.e., one equality is redundant. Note: The notation used means the following:

$x(A) := \sum x_a$	for $A \subseteq A_n$
$a \in A$	
$\delta^{-}(i) := \{(j,i) \in A_n \mid j \in V\}$	for $i \in V$
$\delta^+(i) := \{(i,j) \in A_n \mid j \in V\}$	for $i \in V$

Exercise 2

Show that $x_{ij} \leq 1$ is not a facet of P_T^n .

Exercise 3

Determine and prove the dimension of P_T^3 and P_T^4 .

Exercise 4

Generalize the results of the last exercise and prove a general result for the dimension of P_T^n .

bonus points

2+2 points

4 points

4 points