Technische Universität Berlin
Institut für Mathematik

ADM III - Advanced Methods for Integer Linear Programming Summer Term 2007

Prof. Dr. Dr. h.c. Martin Grötschel
Andreas Bley
Benjamin Hiller

Exercise sheet 11

Deadline: Thursday, July 12th, 2007, 08:30 h in MA-313

Exercise 1:

4 points
Let E be a finite set and E_{1}, \ldots, E_{k} a partition of E. Furthermore, let b_{1}, \ldots, b_{k} be integers satisfying $1 \leq b_{i} \leq\left|E_{k}\right|$. Then (E, \mathcal{I}) with \mathcal{I} defined by

$$
\mathcal{I}:=\left\{I \subseteq E| | I \cap E_{i} \mid \leq b_{i}, 1 \leq i \leq k\right\}
$$

is a matroid, called the partitioning matroid.
Determine the facets of the partitioning matroid based on the characterization of the facets of the matroid polytope given in the lecture.

Exercise 2:

4 points
a) Let b_{1}, \ldots, b_{m} be positive integers. Show that $L(a)=L\left(b_{1}, \ldots, b_{m}\right)$, where $a=\operatorname{gcd}\left(b_{1}, \ldots, b_{m}\right)$ is the greatest common divisor of b_{1}, \ldots, b_{m}.
b) Give an algorithm that from a set of possibly dependent vectors $a_{1}, \ldots, a_{m} \in \mathbb{Z}^{n}$ finds a basis b_{1}, \ldots, b_{k} of $L\left(a_{1}, \ldots, a_{m}\right)$ such that $b_{i}^{T} e_{j}=0$ for $j<i$, where e_{j} is the j th unit vector.
Hint: Consider one dimension at a time and use the first part of this exercise.

Exercise 3:

A matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is said to be in integer normal form if it is of the form $[B, 0]$, where $B \in \mathbb{Z}^{n \times n}$ is invertible and lower triangular. For every matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank there is a unimodular matrix U such that $A U$ is in integer normal form.
Prove the following theorem:
Theorem 1 Let $A \in \mathbb{Z}^{m \times n}$ be a matrix of full row rank and let $[B, 0]=A U$ be the integer normal form of A with a unimodular matrix U. Let $b \in \mathbb{Z}^{m}$ and $\mathcal{F}=\left\{x \in \mathbb{Z}^{n} \mid A x=b\right\}$.
a) \mathcal{F} is nonempty if and only if $B^{-1} b \in \mathbb{Z}^{m}$.
b) If $\mathcal{F} \neq \emptyset$, every element of \mathcal{F} is of the form

$$
x=U_{1} B^{-1} b+U_{2} z, z \in \mathbb{Z}^{n-m}
$$

where U_{1}, U_{2} are submatrices of U such that $U=\left[U_{1}, U_{2}\right]$.
c) $\mathcal{L}=\left\{x \in \mathbb{Z}^{n} \mid A x=0\right\}$ is a lattice and the column vectors of U_{2} constitute a basis of \mathcal{L}.

The theorem of the last exercise suggests a way to solve certain integer programs via alternative bases of lattices. Consider the integer program

$$
\begin{array}{ll}
\max & c^{T} x \\
& x \in \mathcal{F}:=\left\{x \in \mathbb{Z}_{\geq 0}^{n} \mid A x=b\right\}
\end{array}
$$

where A is an integer matrix of full row rank and b and c are integer vectors. Suppose x_{0} is an integer point satisfying $A x_{0}=b$. Then every $x \in \mathcal{F}$ can be written as

$$
x=x_{0}+y, \quad \text { for some } y \in \mathbb{Z}^{n} \text { s.t. } A y=0, y \geq-x_{0} .
$$

Let $\mathcal{L}:=\left\{y \in \mathbb{Z}^{n} \mid A y=0\right\}$ and consider the integer normal form $[B, 0]$ of A obtained using the unimodular matrix U. Due to b) in the theorem, we have

$$
\mathcal{L}=\left\{y \in \mathbb{Z}^{n} \mid y=U_{2} z, z \in \mathbb{Z}^{n-m}\right\}
$$

which allows us to reformulate the original IP as

$$
\begin{array}{ll}
\max & c^{T} U_{2} z \\
& U_{2} z \geq-x_{0}, \\
& z \in \mathbb{Z}^{n-m}
\end{array}
$$

Since all bases of \mathcal{L} can be obtained from U_{2} via unimodular matrices, we get an alternative reformulation for any basis B of \mathcal{L}, namely

$$
\begin{array}{ll}
\max & c^{T} B z \\
& B z \geq-x_{0}, \\
& z \in \mathbb{Z}^{n-m}
\end{array}
$$

For a suitable chosen basis the reformulation might be easier to solve than the orginal formulation. Solve the following IP via reformulations based on alternative bases.

$$
\max \begin{aligned}
& x_{1}+x_{2}+x_{3} \\
& \\
& 3 x_{1}+7 x_{2}+10 x_{3}=19 \\
& x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{\geq 0}
\end{aligned}
$$

