Prof. Dr. Dr. h.c. Martin Grötschel
Andreas Bley
Benjamin Hiller

## Exercise sheet 2

Deadline: Thursday, May 3rd, 2007, 08:30 h in MA-313

## Exercise 1:

## 4 points

a) Show that the integer linear program $\left(\mathrm{CYC}^{*}\right)$ is not a correct ATSP formulation:

$$
\begin{array}{rlrl}
\min c^{T} x & &  \tag{*}\\
\text { s.t. } \mathbf{1}^{T} x & =n & & \\
x(C) & \leq|C|-1 & & \forall \text { cycles } C \subseteq A,|C|<n \\
0 \leq x_{a} & \leq 1 & & \forall a \in A \\
\mathbf{x} & \in \mathbb{Z}^{A} & &
\end{array}
$$

b) Show that the integer linear program (CYC) is a correct ATSP formulation:

$$
\begin{array}{rlrl}
\min c^{T} x & & \\
\text { s.t. } & x\left(\delta^{+}(v)\right) & =1 & \\
x\left(\delta^{-}(v)\right) & =1 & & \forall v \in V \\
& x(C) & \leq|C|-1 & \\
& & \forall v \in V \\
& 0 \leq x_{a} & \leq 1 & \\
& \mathbf{x} & \in \mathbb{Z}^{A} &
\end{array}
$$

(CYC)

## Exercise 2:

Show that the cut formulation (CUT) and and the subtour formulation (SUB) for ATSP are equally strong, (i.e., that their linear programming relaxations are equivalent.)

$$
\begin{array}{rlrl}
\min c^{T} x & &  \tag{CUT}\\
\text { s.t. } x\left(\delta^{+}(v)\right) & =1 & & \forall v \in V \\
x\left(\delta^{-}(v)\right) & =1 & & \forall v \in V \\
x\left(\delta^{+}(W)\right) & \geq 1 & & \forall \emptyset \neq W \subsetneq V \\
0 \leq x_{a} & \leq 1 & & \forall a \in A \\
\mathbf{x} & \in \mathbb{Z}^{A} & &
\end{array}
$$

$$
\begin{array}{rlrl}
\min c^{T} x & & \\
\text { s.t. } \begin{array}{rlrl}
x\left(\delta^{+}(v)\right) & =1 & & \forall v \in V \\
x\left(\delta^{-}(v)\right) & =1 & & \forall v \in V \\
x(A(W)) & \leq|W|-1 & & \forall \emptyset \neq W \subsetneq V \\
& 0 \leq x_{a} & \leq 1 & \\
& & \forall a \in A \\
\mathbf{x} & \in \mathbb{Z}^{A} & &
\end{array} \text { ( } &
\end{array}
$$

Hint: Show that every solution $x^{*}$ of the linear relaxation of (CUT) is also a solution of the linear relaxation of (SUB) and vice versa.

## Exercise 3:

4 points

Show that the linear relaxation of the cut formulation (CUT) (or, equivalently, of the subtour formulation (SUB)) is stonger than the linear relaxation of the cycle formulation (CYC).

Hint:

- Show that every solution $x^{*}$ of the linear relaxation of (CUT) is also a solution of the linear relaxation of (CYC).
- Construct an ATSP instance and a solution $x^{*}$ of the linear relaxation of (CYC) such that $x^{*}$ violates some of the subtour constraints (*).


## Exercise 4:

4 points

Show that the linear relaxation of the cut formulation (CUT) (or, equivalently, of the subtour formulation (SUB)) is stronger than the linear relaxation of the Miller-TuckerZemlin formulation (MTZ).

$$
\begin{array}{rlrl}
\min c^{T} x & &  \tag{MTZ}\\
\text { s.t. } x\left(\delta^{+}(v)\right) & =1 & & \forall v \in V \\
x\left(\delta^{-}(v)\right) & =1 & & \forall v \in V \\
u_{v}-u_{w}+(n-1) x_{(v, w)} & \leq n-2 & & \forall(v, w) \in A, v \\
0 \leq x_{a} & \leq 1 & & \forall a \in A \\
1 \leq u_{v} & \leq n-1 & & \forall v \in V \backslash\{1\} \\
u_{1} & =0 & & \\
\mathbf{x} & \in \mathbb{Z}^{A} & & \\
\mathbf{u} & \in \mathbb{Z}^{V} & &
\end{array}
$$

