Technische Universität Berlin Institut für Mathematik

ADM III - Advanced Methods for Integer Linear Programming
Summer Term 2007

Prof. Dr. Dr. h.c. Martin Grötschel
Andreas Bley
Benjamin Hiller

Exercise sheet 4

Deadline: Thursday, May 24th, 2007, 08:30 h in MA-313

Exercise 1:
4 points

Prove the following stronger version of the lemma for the component analysis separation method introduced in the exercises.

Lemma: Suppose \bar{x} satisfies

$$
\begin{gathered}
x(\delta(v))=2, \quad \forall v \in V \\
0 \leq x_{e} \leq 1 \quad \forall e \in E_{n} .
\end{gathered}
$$

Then the vertex set of every component of $G(w)$ defines a violated subtour elimination constraint if $G(w)$ is disconnected, where $w_{i j}=\max \left\{0, \bar{x}-7 / n^{2}\right\}$.

Exercise 2:
a) Apply the shrinking heuristic to the following graph $G(\bar{x})$:

b) Find a violated subtour elimination constraint in the reduced graph.

Exercise 3:

4 points

Prove the shrinking lemma:

Lemma: Suppose $G(\bar{x})$ is such that $\bar{x}_{e}=1$. Let $G\left(\bar{x}^{\prime}\right)=\left(V^{\prime}, E^{\prime}\right)$ denote the graph after shrinking edge e.
There exists $W \subseteq V, W \neq\{i, j\}$, such that $\bar{x}(E(W))>|W|-1$ iff there exists $W^{\prime} \subseteq V^{\prime}$ s. t. $\bar{x}^{\prime}\left(E\left(W^{\prime}\right)\right)>\left|W^{\prime}\right|-1$ when e is shrunk.

Exercise 4:

4 points

Let $G=(V, E)$ be a graph.
a) The matching polytope $\operatorname{Match}(G)$ of G is given by

$$
\begin{aligned}
x_{e} \geq 0, & \forall e \in E \\
x(\delta(i)) \leq 1, & \forall i \in V .
\end{aligned}
$$

Show that the odd set inequalities $x(E(W)) \leq(|W|-1) / 2$ for $W \subseteq V,|W|$ odd, are in $e^{1}(\operatorname{Match}(G))$.
b) The stable set polytope $\operatorname{Stab}(G)$ of G is given by

$$
\begin{aligned}
x_{i} \geq 0, & \forall i \in V \\
x_{i}+x_{j} \leq 1, & \forall i j \in E .
\end{aligned}
$$

Show that the odd cycle inequalities $x(E(C)) \leq(|C|-1) / 2$ for an odd cycle C in G are in $e^{1}(\operatorname{Stab}(G))$.

