Technische Universität Berlin Institut für Mathematik

Prof. Dr. Dr. h.c. Martin Grötschel Andreas Bley Benjamin Hiller

Exercise sheet 8

Deadline: Thursday, June 21th, 2007, 08:30 h in MA-313

Exercise 1:

For a set $P \subseteq \mathbb{R}^n$ of antiblocking type, the set

$$A(P) = \{ z \in \mathbb{R}^n \mid z^T x \le 1 \; \forall x \in P \}$$

is called the *antiblocker of P*. Show that the antiblocker of the stable set polytope STAB(G) for a graph G is the polytope QSTAB(G).

Exercise 2:

Find an explicit orthonormal representation of C_5 , i. e., determine the vectors u_i and c corresponding to the "umbrella" mentioned in the lecture.

Exercise 3:

Show that for any graph G the maximum degree $\Delta(G)$ plus one is an upper bound for the chromatic number $\chi(G)$.

Exercise 4:

The Mycielski graphs M_k , $k \ge 2$ are inductively defined as follows:

 $M_2 := P_2 \pmod{2}$

$$V(M_{k+1}) := V(M_k) \cup \{u_i \mid i \in V(M_k)\} \cup \{w\}$$

$$E(M_{k+1}) := E(M_k) \cup \{u_i w \mid i \in V(M_k)\} \cup \{u_i v_j, v_i u_j \mid v_i v_j \in E(M_k = \}.$$

Prove the following:

- a) The clique number $\omega(M_k)$ is 2, $k \ge 2$.
- b) The coloring number $\chi(M_k)$ is $k, k \ge 2$.

4 points

4 points

4 points

4 points