Technische Universität Berlin
Institut für Mathematik

ADM III - Advanced Methods for Integer Linear Programming Summer Term 2007

Prof. Dr. Dr. h.c. Martin Grötschel
Andreas Bley
Benjamin Hiller

Exercise sheet 8

Deadline: Thursday, June 21th, 2007, 08:30 h in MA-313

Exercise 1:

4 points
For a set $P \subseteq \mathbb{R}^{n}$ of antiblocking type, the set

$$
A(P)=\left\{z \in \mathbb{R}^{n} \mid z^{T} x \leq 1 \forall x \in P\right\}
$$

is called the antiblocker of P. Show that the antiblocker of the stable set polytope $\operatorname{STAB}(G)$ for a graph G is the polytope $\operatorname{QSTAB}(\bar{G})$.

Exercise 2:

4 points
Find an explicit orthonormal representation of C_{5}, i. e., determine the vectors u_{i} and c corresponding to the "umbrella" mentioned in the lecture.

Exercise 3:

4 points
Show that for any graph G the maximum degree $\Delta(G)$ plus one is an upper bound for the chromatic number $\chi(G)$.

Exercise 4:

4 points
The Mycielski graphs $M_{k}, k \geq 2$ are inductively defined as follows:

$$
\begin{aligned}
M_{2} & :=P_{2} \quad \text { (path of length 2) } \\
V\left(M_{k+1}\right) & :=V\left(M_{k}\right) \cup\left\{u_{i} \mid i \in V\left(M_{k}\right)\right\} \cup\{w\} \\
E\left(M_{k+1}\right) & :=E\left(M_{k}\right) \cup\left\{u_{i} w \mid i \in V\left(M_{k}\right)\right\} \cup\left\{u_{i} v_{j}, v_{i} u_{j} \mid v_{i} v_{j} \in E\left(M_{k}=\right\} .\right.
\end{aligned}
$$

Prove the following:
a) The clique number $\omega\left(M_{k}\right)$ is $2, k \geq 2$.
b) The coloring number $\chi\left(M_{k}\right)$ is $k, k \geq 2$.

