
1 Overview: Solving the ATSP using SCIP
SCIP is a framework for Constrained Integer Programs, which are a generalization of MIPs. The
generalization comes from the ability to deal with arbitrary constraints, provided some basic
operations are provided for them.

In order to solve the ATSP problem, one could use the ATSP model based on (all) subtour
elimination constraints. However, if one wants to employ dynamic generation of violated subtour
elimination constraints (i. e., cutting planes methods), the “correct” way to represent the ATSP
problem as a model to be solved by SCIP is

min
∑

a∈An

caxa (1)

s. t. x(d+(v)) = 1 ∀v ∈ V (2)

x(d−(v)) = 1 ∀v ∈ V (3)
NoSubtour(G, x) (4)

x ∈ {0, 1}|An| (5)

where
NoSubtour(G, x) : ⇐⇒ there exists only one cycle in the set {a | xa = 1}.

The constraint NoSubtour(G, x) is an example of a complex constraint. In order that SCIP
can handle this type of constraint, we need to supply a constraint handler, which is one of the
many types of plugins SCIP offers. The job of a constraint handler is to ensure that each overall
feasible solution is feasible with respect to this kind of constraint.

In principle, there are many ways to establish the feasibility of the NoSubtour(G, x)-constraint
during the solution process of SCIP. The main purpose of these exercises is to get experience
with using cutting planes, so we will use separation of subtour elimination constraints to ensure
feasibility. In other words, any solution will only fulfill the NoSubtour(G, x)-constraint if it does
not violate any subtour elimination constraint. In this light, the above model is equivalent to that
featuring all subtour elimination constraints.

Before we provide some more background on constraint handlers, here is an overview of the
files in the exercise distribution:

Problem_Data.{hh,cc} These files define a data structure that stores additional problem data (a
graph in our case). Moreover, they implement a file reader plugin, that reads our file format,
sets up the graph and creates the model above in SCIP.

Graph.{hh,cc} These files implement the graph class to be used and some algorithms available
for operating on them. For details, see Section 3.

Subtour_Handler.hh This file defines the interface of our constraint handler implementation for
the NoSubtour(G, x)-constraint.

Subtour_Handler_framework.cc This file implements some auxiliary framework stuff which is
not important for the exercises.

Subtour_Handler_stubs.cc This file is the only file to be changed by you. It contains interfaces
and comments for the methods to be implemented during this exercise.

main.cc This file contains the main function which sets up our constraint handler and starts
SCIP.
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2 The constraint handler concept of SCIP
The constraint handler concept of SCIP allows SCIP to deal with nearly arbitrary constraints
without knowing anything specific about them. This flexibility is achieved by providing so-called
callbacks which are methods with specified semantics that a constraint handler needs to provide.

We will implement the following callbacks (some more are implemented in the framework part):

scip_check() The purpose of this callback is to check an arbitrary solution for feasibility with
respect to this type of constraints. It may either claim that the solution is feasible or
infeasible.

scip_enfolp() The purpose of this callback is to guide the solution process towards final feasi-
bility. It is called at the very end of processing a node in the branch and bound tree. If the
solution is not yet feasible, the constraint handler should take an action to make progress
towards feasibility. In our case, this means adding violated subtour elimination constraints,
i. e., separation. Other possibilities are for instance branching or trying to cut the node off
based on bound computations.

scip_sepalp() This callback is called if during node processing the current solution is still frac-
tional. The constraint handler can then improve the LP relaxation by adding valid violated
linear inequalities.

While the first two callbacks are needed for a correct implementation, implementing the
scip_sepalp() callback is optional, but may improve performance.

The SCIP documentation of all callbacks was copied to the file Subtour_Handler_stubs.cc
for reference.

3 The graph classes

3.1 Preliminaries
We provide two C++ classes representing graphs: Weighted_Graph and Weighted_Digraph for
undirected and directed graphs, respectively. Both classes provide types Node and Edge, which
describe a node or an edge. This type is given by the expression Weighted_Graph::Node or
Weighted_Digraph::Edge and so on.

A value of these types is only valid for the graph instance it corresponds to. This is incovenient
since we deal with more than one graph which need to be related in some way. For instance, the
undirected graph corresponding to the current LP solution is a subgraph of the graph defining the
ATSP instance and we need to express the correspondence between both node sets. To this end,
we use values of type ID_Type to provide numerical IDs for each node and edge. So the node with
ID 5 in the solution graph corresponds to the node with ID 5 in the original ATSP graph.

This is particularly useful when dealing with sets of nodes represented as instances of Node_ID_Set,
which is just a set of node IDs. We can construct such a node set for the solution graph and –based
on the node IDs– find the edge set in the original ATSP graph for generating subtour elimination
constraints. The class Node_ID_Set supports the following operations.

N.insert( ID_Type node_ID )
inserts ID node_ID in node set N

N.erase( ID_Type node_ID )
deletes ID node_ID from node set N

Node_ID_Set::iterator N.begin()
returns an iterator pointing to the beginning of the node set

Node_ID_Set::iterator N.end()
returns an iterator pointing past the last element of the node set
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Node_ID_Set::iterator N.find( ID_Type node_ID )
returns an iterator to the element in the set and N.end() if node_ID is not in the set

Example: Using iterators The following C++ code shows how to deal with a Node_ID_Set,
in particular how to use iterators for iterating through it.

Node_ID_Set S;

// S={1,...,10}.
for( ID_Type i = 1; i <= 10; ++i )

S.insert( i );

// Remove 3, 7, 8.
S.erase( 3 );
S.erase( 7 );
S.erase( 8 );

// Print the set using iterators.
// ++it advances the iterator to the next element of the set
// *it dereferences the iterator, ie returns the element the iterator points to
for( Node_ID_Set::iterator it = S.begin(); it != S.end(); ++it )
{

std::cout << *it << std::endl;
}

3.2 Common operations of Weighted_Graph and Weighted_Digraph

This sections lists methods of the graph classes.

Modifying a graph

Node add_node( const ID_Type node_ID )
adds a node with node_ID and returns corresponding Node instance for accessing this node
(however, nodes are usually accessed using their IDs)

void delete_node( const ID_Type node_ID )
deletes node with ID node_ID and all incident edges

Edge add_edge( const ID_Type source_ID, const ID_Type target_ID, const double weight )
adds an edge between the nodes with IDs source_ID and target_ID with weight weight

void set_weight( const Edge edge, const double new_weight )
set a new weight for the edge

Accessing nodes and edges and related information

int nr_nodes()

int nr_edges()
number of nodes (edges) in the graph

ID_Type max_node_ID()

ID_Type max_edge_ID()
Maximum node (edge) ID that has been in the graph. Useful if node or edge related infor-
mation should be stored in a std::vector.
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Node node( const ID_Type node_ID )
access a node through its ID

ID_Type node_ID( const Node node )
retrieve ID of a node

std::pair< Node_Iterator, Node_Iterator > nodes()

std::pair< Edge_Iterator, Edge_Iterator > edges()
Support for iterating over nodes (edges). If p is the resulting std::pair, p.first is an
iterator to the first node (edge) and p.second is an iterator pointing past the last node
(edge).

std::pair< In_Edge_Iterator, In_Edge_Iterator > in_edges( const Node node )

std::pair< Out_Edge_Iterator, Out_Edge_Iterator > out_edges( const Node node ) support
for iterating over all edges incident to a node, semantics as above

Node source( const Edge edge )

Node target( const Edge edge )

ID_Type source_ID( const Edge edge )

ID_Type target_ID( const Edge edge )

double weight( const Edge edge )
retrieve information related to an edge: source node, target node, ID of source node, ID of
target node, edge weight

Example: Building a graph and iterating over edges incident to node 2 The following
C++ code sets up a small graph on four vertices and prints all edges incident to the node with
ID 2.

Weighted_Graph G;

// Setup G.
G.add_node( 1 );
G.add_node( 2 );
G.add_node( 3 );
G.add_node( 4 );

G.add_edge( 1, 2, 3.14 );
G.add_edge( 4, 2, 1.41 );
G.add_edge( 1, 3, 2.78 );

Weighted_Graph::Out_Edge_Iterator out_edge_i, out_edge_end;
for( boost::tie( out_edge_i, out_edge_end ) = G.out_edges( G.node( 2 ) );

out_edge_i != out_edge_end; ++out_edge_i )
{

std::cout << "(" << G.source_ID( *out_edge_i ) << ","
<< G.target_ID( *out_edge_i ) << ")" << std::endl;

}

In the for-loop, we employ the boost::tie()-function from the Boost library. It takes the
iterator pair returned by G.out_edges() and assigns the first component to out_edge_i and the
second to out_edge_end.
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3.3 Operations for Weighted_Graph

Further methods of Weighted_Graph:

std::pair< bool, Edge > find_edge( ID_Type source_ID, ID_Type target_ID ) Checks whether
an edge between the two nodes is in the graph. If this is the case, the first component of
the std::pair is true and the second component contains the corresponding Edge instance.
If the edge is not present, first is false.

Further functions dealing with Weighted_Graph:

size_t connected_components( const Weighted_Graph& graph, std::vector< int >& component )
Returns the number of connected components in graph. Moreover, the vector component
stores for each node ID the number of the component it belongs to (i. e., all node IDs with
the same number belong to the same connected component).

3.4 Operations for Weighted_Digraph

Further methods of Weighted_Graph:

bool has_reverse_edge( const Edge e )
checks whether there is also an edge in the other direction in the graph

Edge reverse_edge( const Edge e )
return edge in the other direction

Further functions dealing with Weighted_Graph:

double min_cut( Weighted_Digraph& graph,
const ID_Type source_ID,
const ID_Type sink_ID,
std::vector< Color_Type >& node_color ) Computes a minimum cut separating nodes
with IDs source_ID and sink_ID. The vector node_color encodes the two node sets corre-
sponding to the cut by mapping each node ID to colors BLACK or WHITE.

4 Implementation tasks
All the implementation has to be done in the file Subtour_Handler_stubs.cc in the src directory.
The program can be compiled by just doing make.

1. Test the program on the instance xwin10.dat from the ATSP example files already used for
our ZIMPL models by calling

./ATSPcuts -f <path-to-dir>/xwin10.dat

The program should print the initial LP solution and wait for a key to be pressed.

2. Implement the method setup_solution_graph() which constructs the undirected graph
corresponding to the solution. In the current setup it is called by scip_enfolp() and outputs
the current LP value for each edge if it is nonzero. You need to adjust this code to build the
graph. The result can be printed to the screen using empty_graph.pretty_print( std::cerr ).

3. Implement the scip_enfolp() callback to work correctly.

(a) Adjust the scip_enfolp() callback to call separate_connected_components() with
the solution graph.

(b) Adjust this method to print the components of the graph and to build node ID sets
corresponding to the vertices of each component.
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(c) Implement the method generate_subtour_elimination() which adds a violated sub-
tour elimination constraint based on a set of nodes to the model.

(d) In scip_enfolp(), call separate_connected_components() for each component if
there is more than one.

4. Implement the scip_check() callback to work correctly as described in the comment there.

5. Test the code with some instances. It should now correctly solve them.

6. Implement the scip_sepalp() callback to get better performance.

(a) Try to separate connected components of the solution graph.

(b) If the solution graph has only one component, try to separate subtour elimination
constraints using minimum cuts. To this end, implement separate_min_cut() as de-
scribed in the comment and use it in scip_sepalp().

(c) Test the implementation.
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