Cutting Planes in ScIP

Kati Wolter

Zuse-Institute Berlin
Department Optimization

Berlin, 6th June 2007
(1) Cutting Planes in SCIP
(2) Cutting Planes for the 0-1 Knapsack Problem
2.1 Cover Cuts
2.2 Lifted Minimal Cover Cuts
(3) Computational Results
(1) Cutting Planes in SCIP
(2) Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts
2.2 Lifted Minimal Cover Cuts
(3) Computational Results

General cutting planes

\triangleright Complemented mixed integer rounding cuts
\triangleright Gomory mixed integer cuts
\triangleright Strong Chvátal-Gomory cuts
\triangleright Implied bound cuts

General cutting planes

\triangleright Complemented mixed integer rounding cuts
\triangleright Gomory mixed integer cuts
\triangleright Strong Chvátal-Gomory cuts
\triangleright Implied bound cuts

Cutting planes for special problems
\triangleright 0-1 knapsack problem
\triangleright 0-1 single node flow problem
\triangleright Stable set problem

General cutting planes

\triangleright Complemented mixed integer rounding cuts
\triangleright Gomory mixed integer cuts
\triangleright Strong Chvátal-Gomory cuts
\triangleright Implied bound cuts

Cutting planes for special problems
\triangleright 0-1 knapsack problem
\triangleright 0-1 single node flow problem
\triangleright Stable set problem

I want to solve general MIPs!
Why do I care about cutting planes for special problems?

General Cutting Plane Method

| $\min \left\{c^{\top} x: x \in X^{M I P}\right\}$ | $X^{M I P}:=\left\{x \in \mathbb{Z}^{n} \times \mathbb{R}^{m}: A x \leq b\right\}$ |
| :--- | ---: | :--- |
| $\min \left\{c^{T} x: x \in X^{L P}\right\}$ | $X^{L P}:=\left\{x \in \mathbb{R}^{n} \times \mathbb{R}^{m}: A x \leq b\right\}$ |

General Cutting Plane Method

$\begin{array}{lrl}\min \left\{c^{\top} x: x \in X^{M I P}\right\} & X^{M I P}:=\left\{x \in \mathbb{Z}^{n} \times \mathbb{R}^{m}: A x \leq b\right\} \\ \min \left\{c^{T} x: x \in X^{L P}\right\} & X^{L P}:=\left\{x \in \mathbb{R}^{n} \times \mathbb{R}^{m}: A x \leq b\right\}\end{array}$

Observation

\triangleright If the data are rational, then

- $\operatorname{conv}\left(X^{\text {MIP }}\right)$ is a rational polyhedron
- we can formulate the MIP as $\underbrace{\min \left\{c^{\top} x: x \in \operatorname{conv}\left(X^{M I P}\right)\right\}}_{\text {LP }}$

General Cutting Plane Method

$\begin{array}{lrl}\min \left\{c^{\top} x: x \in X^{M I P}\right\} & X^{M I P}:=\left\{x \in \mathbb{Z}^{n} \times \mathbb{R}^{m}: A x \leq b\right\} \\ \min \left\{c^{T} x: x \in X^{L P}\right\} & X^{L P}:=\left\{x \in \mathbb{R}^{n} \times \mathbb{R}^{m}: A x \leq b\right\}\end{array}$

Observation
\triangleright If the data are rational, then

- $\operatorname{conv}\left(X^{\text {MIP }}\right)$ is a rational polyhedron
- we can formulate the MIP as $\underbrace{\min \left\{c^{\top} x: x \in \operatorname{conv}\left(X^{\text {MIP }}\right)\right\}}_{\text {LP }}$

Problem (in general)

\triangleright Complete linear description of $\operatorname{conv}\left(X^{\text {MIP }}\right)$?
\triangleright Number of constraints needed to describe $\operatorname{conv}\left(X^{M I P}\right)$ is extremely large

General Cutting Plane Method

$\min \left\{c^{\top} x: x \in X^{M I P}\right\} \quad X^{M I P}:=\left\{x \in \mathbb{Z}^{n} \times \mathbb{R}^{m}: A x \leq b\right\}$
$\min \left\{c^{T} x: x \in X^{L P}\right\} \quad X^{L P}:=\left\{x \in \mathbb{R}^{n} \times \mathbb{R}^{m}: A x \leq b\right\}$

Observation
\triangleright If the data are rational, then

- $\operatorname{conv}\left(X^{\text {MIP }}\right)$ is a rational polyhedron
- we can formulate the MIP as $\underbrace{\min \left\{c^{\top} x: x \in \operatorname{conv}\left(X^{\text {MIP }}\right)\right\}}_{\text {LP }}$

Idea
\triangleright Construct a polyhedron Q with

- $\operatorname{conv}\left(X^{M I P}\right) \subseteq Q \subseteq X^{L P}$
- $\min \left\{c^{\top} x: x \in \operatorname{conv}\left(X^{M I P}\right)\right\}=\min \left\{c^{\top} x: x \in Q\right\}$
\rightsquigarrow Start with $X^{L P}$ and add inequalities which are valid for $X^{\text {MIP }}$ (but violated by the current LP solution) to $X^{L P}$

Valid Inequalities for $X^{M I P}$

\triangleright Inequalities valid for a relaxation of $X^{\text {MIP }}$ are valid for $X^{\text {MIP }}$
\triangleright Generating valid inequalities for a relaxation is often easier
\triangleright The intersection of the relaxations should be a good approximation of $X^{M I P}$

Valid Inequalities for $X^{\text {MIP }}$

\triangleright Inequalities valid for a relaxation of $X^{M I P}$ are valid for $X^{M I P}$
\triangleright Generating valid inequalities for a relaxation is often easier
\triangleright The intersection of the relaxations should be a good approximation of $X^{M I P}$

Relaxations of $X^{M I P}$

1. Linear combinations of constraints defining $X^{M I P}$ (row of the simplex tab., single constraint)
2. Other information

- Logical implications between binary variables (conflict graph)
- Logical implications between a binary and a real variable

General cutting planes
\triangleright Complemented mixed integer rounding cuts (Linear comb.)
\triangleright Gomory mixed integer cuts (Row of the simplex tab.)
\triangleright Strong Chvátal-Gomory cuts (Row of the simplex tab.)
\triangleright Implied bound cuts (Logical impl.)

SCIP

General cutting planes

\triangleright Complemented mixed integer rounding cuts (Linear comb.)
\triangleright Gomory mixed integer cuts (Row of the simplex tab.)
\triangleright Strong Chvátal-Gomory cuts (Row of the simplex tab.)
\triangleright Implied bound cuts (Logical impl.)

Cutting planes for special problems
\triangleright 0-1 knapsack problem (Single constraint)
$\triangleright 0-1$ single node flow problem (Linear comb. and bounds)
\triangleright Stable set problem (Conflict graph)

Outline

(1) Cutting Planes in SCIP

(2) Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2 Lifted Minimal Cover Cuts
(3) Computational Results

0-1 Knapsack Polytope

$\operatorname{conv}\left(X^{B K}\right)$

$$
X^{B K}:=\left\{x \in\{0,1\}^{n}: \sum_{j \in N} a_{j} x_{j} \leq a_{0}\right\}
$$

$\triangleright N=\{1, \ldots, n\}$
$\triangleright a_{0}$ and a_{j} are integers for all $j \in N$
$\triangleright a_{j}>0$ for all $j \in N$
(since binary variables can be complemented)
$\triangleright a_{j} \leq a_{0}$ for all $j \in N$ (since $a_{j}>a_{0}$ implies $x_{j}=0$)

(1) Cutting Planes in SCIP

(2) Cutting Planes for the 0-1 Knapsack Problem
2.1 Cover Cuts
2.2 Lifted Minimal Cover Cuts
(3) Computational Results

Class of Cover Inequalities

Definition (Cover)

$$
C \subseteq N \quad \triangleright \sum_{j \in C} a_{j}>a_{0}
$$

Class of Cover Inequalities

Definition (Cover)

$$
C \subseteq N \quad \triangleright \sum_{j \in C} a_{j}>a_{0}
$$

Theorem
If $C \subseteq N$ is a cover for $X^{B K}$, then the cover inequality

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

is valid for $X^{B K}$.

Separation Problem

Let $x^{*} \in[0,1]^{n} \backslash\{0,1\}^{n}$ be a fractional vector with $\sum_{j \in N} a_{j} x_{j}^{*} \leq a_{0}$.

Find $C \subseteq N$ with $\sum_{j \in C} a_{j}>a_{0}$ such that

$$
\sum_{j \in C} x_{j}^{*}>|C|-1
$$

or show that no inequality in the class of cover inequalities is violated by x^{*}.

Separation Problem

Let $x^{*} \in[0,1]^{n} \backslash\{0,1\}^{n}$ be a fractional vector with $\sum_{j \in N} a_{j} x_{j}^{*} \leq a_{0}$.

Find $C \subseteq N$ with $\sum_{j \in C} a_{j}>a_{0}$ such that

$$
\sum_{j \in C} x_{j}^{*}>|C|-1
$$

or show that no inequality in the class of cover inequalities is violated by x^{*}.

The separation problem can be formulated as a 0-1 KP.

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover

$$
\sum_{j \in C} a_{j}>a_{0}
$$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover

$$
\sum_{j \in C} a_{j}>a_{0} \Leftrightarrow \sum_{j \in N} a_{j} z_{j}>a_{0}
$$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover

$$
\begin{aligned}
\sum_{j \in C} a_{j}>a_{0} & \Leftrightarrow \sum_{j \in N} a_{j} z_{j}>a_{0} \\
& \Leftrightarrow \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1
\end{aligned}
$$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover

$$
\begin{aligned}
\sum_{j \in C} a_{j}>a_{0} & \Leftrightarrow \sum_{j \in N} a_{j} z_{j}>a_{0} \\
& \Leftrightarrow \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1
\end{aligned}
$$

Violated cover inequality

$$
\sum_{j \in C} x_{j}^{*}>|C|-1
$$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover

$$
\begin{aligned}
\sum_{j \in C} a_{j}>a_{0} & \Leftrightarrow \sum_{j \in N} a_{j} z_{j}>a_{0} \\
& \Leftrightarrow \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1
\end{aligned}
$$

Violated cover inequality

$$
\sum_{j \in C} x_{j}^{*}>|C|-1 \Leftrightarrow \sum_{j \in N} x_{j}^{*} z_{j}>\sum_{j \in N} z_{j}-1
$$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover

$$
\begin{aligned}
\sum_{j \in C} a_{j}>a_{0} & \Leftrightarrow \sum_{j \in N} a_{j} z_{j}>a_{0} \\
& \Leftrightarrow \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1
\end{aligned}
$$

Violated cover inequality

$$
\begin{aligned}
\sum_{j \in C} x_{j}^{*}>|C|-1 & \Leftrightarrow \sum_{j \in N} x_{j}^{*} z_{j}>\sum_{j \in N} z_{j}-1 \\
& \Leftrightarrow \sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j}<1
\end{aligned}
$$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover $\quad \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1$
Violated cover inequality $\quad \sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j}<1$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover $\quad \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1$
Violated cover inequality $\quad \sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j}<1$
x^{*} satisfies all cover inequalities

$$
\Leftrightarrow \forall z \in\{0,1\}^{n} \text { with } \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1: \sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j} \geq 1
$$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover $\quad \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1$
Violated cover inequality $\quad \sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j}<1$
x^{*} satisfies all cover inequalities

$$
\begin{aligned}
& \Leftrightarrow \forall z \in\{0,1\}^{n} \text { with } \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1: \sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j} \geq 1 \\
& \Leftrightarrow \min \left\{\sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j}: \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1,\right. \\
& \left.\quad z \in\{0,1\}^{n}\right\} \geq 1
\end{aligned}
$$

Separation Problem as 0-1 KP

For $C \subseteq N$, we introduce the characteristic vector $z \in\{0,1\}^{n}$.
Cover $\quad \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1$
Violated cover inequality $\quad \sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j}<1$
x^{*} satisfies all cover inequalities

$$
\begin{aligned}
& \Leftrightarrow \forall z \in\{0,1\}^{n} \text { with } \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1: \sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j} \geq 1 \\
& \Leftrightarrow \min \left\{\sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j}: \sum_{j \in N} a_{j} z_{j} \geq a_{0}+1,\right. \\
& \left.\quad z \in\{0,1\}^{n}\right\} \geq 1
\end{aligned}
$$

$$
\Leftrightarrow \max \left\{\sum_{j \in N}\left(1-x_{j}^{*}\right) \bar{z}_{j}: \sum_{j \in N} a_{j} \bar{z}_{j} \leq \sum_{j \in N} a_{j}-\left(a_{0}+1\right),\right.
$$

$$
\left.\bar{z} \in\{0,1\}^{n}\right\} \geq 1-\sum\left(1-x_{j}^{*}\right)
$$

Heuristic for the $0-1 \mathrm{KP}$

Input : $c \in \mathbb{Q}_{+}^{n}, a \in \mathbb{Q}_{+}^{n} \backslash\{0\}$, and $b \in \mathbb{Q}_{+}$
Output: Feasible solution of $\max \left\{c^{T} x: a^{T} x \leq b, x \in\{0,1\}^{n}\right\}$
1 Sort the indices such that $\frac{c_{1}}{a_{1}} \geq \ldots \geq \frac{c_{n}}{a_{n}}$
$2 \bar{a} \leftarrow 0$
3 for $j \leftarrow 1$ to n do
$4 \quad$ if $\bar{a}+a_{j} \leq b$ then
5
$6 \quad \bar{a} \leftarrow \bar{a}+a_{j}$
7 else
$8 \quad$ while $j \leq n$ do
9
10
$x_{j} \leftarrow 0$
$j \leftarrow j+1$
11 return x

Heuristic for the $0-1 \mathrm{KP}$

Input : $c \in \mathbb{Q}_{+}^{n}, a \in \mathbb{Q}_{+}^{n} \backslash\{0\}$, and $b \in \mathbb{Q}_{+}$
Output: Feasible solution of $\max \left\{c^{T} x: a^{T} x \leq b, x \in\{0,1\}^{n}\right\}$
1 Sort the indices such that $\frac{c_{1}}{a_{1}} \geq \ldots \geq \frac{c_{n}}{a_{n}}$
$2 \bar{a} \leftarrow 0$
3 for $j \leftarrow 1$ to n do
4 if $\bar{a}+a_{j} \leq b$ then
5
$6 \quad \bar{a} \leftarrow \bar{a}+a_{j}$
7 else
$8 \quad$ while $j \leq n$ do
9
10

```
                                    xj}\leftarrow
```

$L j \leftarrow j+1$
11 return x
Solves the LP relaxation and rounds down the solution.

Heuristic for the $0-1 \mathrm{KP}$

Input : $c \in \mathbb{Q}_{+}^{n}, a \in \mathbb{Q}_{+}^{n} \backslash\{0\}$, and $b \in \mathbb{Q}_{+}$
Output: Feasible solution of $\max \left\{c^{T} x: a^{T} x \leq b, x \in\{0,1\}^{n}\right\}$
1 Sort the indices such that $\frac{c_{1}}{a_{1}} \geq \ldots \geq \frac{c_{n}}{a_{n}}$
$2 \bar{a} \leftarrow 0$
3 for $j \leftarrow 1$ to n do
4 if $\bar{a}+a_{j} \leq b$ then
$6 \quad \bar{a} \leftarrow \bar{a}+a_{j}$
7 else
$8 \quad$ while $j \leq n$ do
9
$10 \quad\lfloor j \leftarrow j+1$
11 return x
Time complexity: $O(n \log n)$

Exact Algorithm for the 0-1 KP

Input : $c \in \mathbb{Q}_{+}^{n}, a \in \mathbb{Z}_{+}^{n} \backslash\{0\}$, and $b \in \mathbb{Z}_{+}$
Output: Optimal solution of $\max \left\{c^{\top} x: a^{T} x \leq b, x \in\{0,1\}^{n}\right\}$
Algorithm uses dynamic programming

Exact Algorithm for the 0-1 KP

Input : $c \in \mathbb{Q}_{+}^{n}, a \in \mathbb{Z}_{+}^{n} \backslash\{0\}$, and $b \in \mathbb{Z}_{+}$
Output: Optimal solution of $\max \left\{c^{\top} x: a^{T} x \leq b, x \in\{0,1\}^{n}\right\}$
Algorithm uses dynamic programming
Time complexity: $O(n b)$

Practice

\triangleright A separator for cover cuts has only a limited effect on the overall performance of SCIP
\triangleright It seems to be important to separate strong cutting planes (facets or at least faces of reasonably high dimension)

Practice

\triangleright A separator for cover cuts has only a limited effect on the overall performance of SCIP
\triangleright It seems to be important to separate strong cutting planes (facets or at least faces of reasonably high dimension)

Can we strengthen the cover inequalities?

(1) Cutting Planes in SCIP

(2) Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts
2.2 Lifted Minimal Cover Cuts
(3) Computational Results

Class of Minimal Cover Inequalities

Definition (Minimal cover)

$$
C \subseteq N
$$

$\triangleright \sum_{j \in C} a_{j}>a_{0}$
$\triangleright \sum_{j \in C \backslash\{i\}} a_{j} \leq a_{0}$ for all $i \in C$

Class of Minimal Cover Inequalities

Definition (Minimal cover)

$$
C \subseteq N
$$

$$
\triangleright \sum_{j \in C} a_{j}>a_{0}
$$

$\triangleright \sum_{j \in C \backslash\{i\}} a_{j} \leq a_{0}$ for all $i \in C$

Theorem

If $C \subseteq N$ is a minimal cover for $X^{B K}$, then the minimal cover inequality

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

defines a facet of

$$
\operatorname{conv}\left(X^{B K} \cap\left\{x \in\{0,1\}^{n}: x_{j}=0 \text { for all } j \in N \backslash C\right\}\right) .
$$

Sequential Up-Lifting

$\triangleright\left(j_{1}, \ldots, j_{t}\right)$ lifting sequence of the variables in $N \backslash C$
$\triangleright X^{i}:=X^{B K} \bigcap\left\{x \in\{0,1\}^{n}: x_{j_{i+1}}=\ldots=x_{j_{t}}=0\right\}$

Sequential Up-Lifting

$\triangleright\left(j_{1}, \ldots, j_{t}\right)$ lifting sequence of the variables in $N \backslash C$
$\triangleright X^{i}:=X^{B K} \cap\left\{x \in\{0,1\}^{n}: x_{j_{i+1}}=\ldots=x_{j_{t}}=0\right\}$

$$
\begin{array}{ll}
\sum_{j \in C} x_{j} & \leq|C|-1 \text { valid for } X^{0} \\
\sum_{j \in C} x_{j}+\alpha_{j_{1}} x_{j_{1}} & \leq|C|-1 \text { valid for } X^{1} \\
& \vdots \\
\sum_{j \in C} x_{j}+\sum_{k=1}^{t} \alpha_{j_{k}} x_{j_{k}} & \leq|C|-1 \text { valid for } X^{t}=X^{B K}
\end{array}
$$

Sequential Up-Lifting

$\triangleright\left(j_{1}, \ldots, j_{t}\right)$ lifting sequence of the variables in $N \backslash C$
$\triangleright X^{i}:=X^{B K} \cap\left\{x \in\{0,1\}^{n}: x_{j_{i+1}}=\ldots=x_{j_{t}}=0\right\}$
Theorem
For each $i=1, \ldots, t$, consider the 0-1 knapsack problem

$$
\begin{array}{r}
z_{j_{i}}=\max \left\{\sum_{j \in C} x_{j}+\sum_{k=1}^{i-1} \alpha_{j_{k}} x_{j_{k}}: \sum_{j \in C} a_{j} x_{j}+\sum_{k=1}^{i-1} a_{j_{k}} x_{j_{k}} \leq a_{0}-a_{j_{i}}\right. \\
\left.x \in\{0,1\}^{|C|+(i-1)}\right\}
\end{array}
$$

and let $\alpha_{j_{i}}=(|C|-1)-z_{j i}$. Then for each $i=1, \ldots, t$,

$$
\sum_{j \in C} x_{j}+\sum_{k=1}^{i} \alpha_{j_{k}} x_{j_{k}} \leq|C|-1
$$

defines a facet of $\operatorname{conv}\left(X^{i}\right)$.

Sequential Up-Lifting

$\triangleright\left(j_{1}, \ldots, j_{t}\right)$ lifting sequence of the variables in $N \backslash C$
$\triangleright X^{i}:=X^{B K} \cap\left\{x \in\{0,1\}^{n}: x_{j_{i+1}}=\ldots=x_{j_{t}}=0\right\}$

Different lifting sequences may lead to different inequalities!

Computing the Lifting Coefficients

\triangleright For each $i=1, \ldots, t$, solve the $0-1 \mathrm{KP}$

- approximately $(O(n \log n))$
- exactly $(O(n b))$
\triangleright Zemel: Exact algo to calculate all lifting coefficients $\left(O\left(n^{2}\right)\right)$
- Uses dynamic programming to solve a reformulation of the 0-1 KPs (role of the objective function and the constraint is reversed)

Practice

\triangleright Using sequential up-lifting to strengthen minimal cover cuts improves the performance of SCIP

Practice

\triangleright Using sequential up-lifting to strengthen minimal cover cuts improves the performance of SCIP

But, a separator which uses up- and down-lifting performs even better!

Class of Minimal Cover Inequalities

Theorem

If $C \subseteq N$ is a minimal cover for $X^{B K}$, then the minimal cover inequality

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

defines a facet of

$$
\operatorname{conv}\left(X^{B K} \cap\left\{x \in\{0,1\}^{n}: x_{j}=0 \text { for all } j \in N \backslash C\right\}\right) .
$$

\rightsquigarrow Up-lifting: variables in $N \backslash C$

Class of Minimal Cover Inequalities

Theorem

If $C \subseteq N$ is a minimal cover for $X^{B K}$ and $\left(C_{1}, C_{2}\right)$ is any partition of C with $C_{1} \neq \emptyset$, then inequality

$$
\sum_{j \in C_{1}} x_{j} \leq\left|C_{1}\right|-1
$$

defines a facet of

$$
\operatorname{conv(~} X^{B K} \cap\left\{x \in\{0,1\}^{n}: \begin{array}{l}
x_{j}=0 \text { for all } j \in N \backslash C, \\
\\
\left.x_{j}=1 \text { for all } j \in C_{2}\right\}
\end{array}\right) .
$$

Class of Minimal Cover Inequalities

Theorem

If $C \subseteq N$ is a minimal cover for $X^{B K}$ and $\left(C_{1}, C_{2}\right)$ is any partition of C with $C_{1} \neq \emptyset$, then inequality

$$
\sum_{j \in C_{1}} x_{j} \leq\left|C_{1}\right|-1
$$

defines a facet of

$$
\operatorname{conv(~} X^{B K} \cap\left\{x \in\{0,1\}^{n}: \begin{array}{l}
x_{j}=0 \text { for all } j \in N \backslash C, \\
\\
\left.x_{j}=1 \text { for all } j \in C_{2}\right\}
\end{array}\right) .
$$

\rightsquigarrow Up-lifting: variables in $N \backslash C$
\rightsquigarrow Down-lifting: variables in C_{2}

Sequential Up- and Down-Lifting

\triangleright Similar theorem as for sequential up-lifting
\triangleright Extension of Zemel's up-lifting procedure can be used
\triangleright In SCIP, the separation problem for the class of lifted minimal cover inequalities using sequential up- and down-lifting is solved heuristically

Outline of the Separation Algorithm

Step 1 (Cover)

\triangleright Determine a cover C for $X^{B K}$ (separation problem for the class of cover inequalities)

Step 2 (Minimal cover and partition)

\triangleright Make the cover minimal by removing vars from C
\triangleright Find a partition $\left(C_{1}, C_{2}\right)$ of C with $C_{1} \neq \emptyset$

Step 3 (Lifting)

\triangleright Determine a lifting sequence of the variables in $N \backslash C_{1}$
\triangleright Lift the inequality $\sum_{j \in C_{1}} x_{j} \leq\left|C_{1}\right|-1$ using sequential up- and down-lifting

Algorithmic Aspects

Step 1 (Cover)

\triangleright Which algorithm do we use to find the cover?

- Fixing of variables
- Modification of the separation problem (Gu et al. (1998))
- Solving the separation problem exactly or approximately

Step 2 (Minimal cover and partition)

\triangleright In which order do we remove the variables?
\triangleright Which partition of the minimal cover do we use?

Step 3 (Lifting)

\triangleright Which lifting sequence do we use?
\triangleright Which algorithm do we use to solve the knapsack problems that occur in the sequential lifting procedure?

Resulting Algorithm

Step 1 (Cover)

\triangleright Fix all vars with $x_{j}^{*}=0$ to zero and all vars with $x_{j}^{*}=1$ to one
\triangleright Use the modification of the separation problem
\triangleright Solve the modified separation problem approximately

Step 2 (Minimal cover and partition)

\triangleright Nondecreasing order of x_{j}^{*} and nondecreasing order of a_{j}
$\triangleright C_{2}:=\left\{j \in C: x_{j}^{*}=1\right\}\left(\left|C_{1}\right|=1\right.$: change the partition $)$

Step 3 (Lifting)

$\triangleright\left\{j \in N \backslash C: x_{j}^{*}>0\right\}, C_{2}$, and then $\left\{j \in N \backslash C: x_{j}^{*}=0\right\}$ (nonincreasing order of a_{j})
\triangleright Use an extension of Zemel's procedure

Important Aspects

	Gap Closed \% (Geom. Mean)		Sepa Time sec (Total)	
	Value	\triangle	Value	\triangle
Default algorithm	16.31	0.00	1355.9	0.0
Resulting algorithm	16.36	0.05	7.4	-1348.5

Important Aspects

	Gap Closed \% (Geom. Mean)		Sepa Time sec (Total)	
	Value	\triangle	Value	\triangle
Default algorithm	16.31	0.00	1355.9	0.0
Cover - 1. modification	15.61	-0.70	7.6	-1348.3
Resulting algorithm	16.36	0.05	7.4	-1348.5

\triangleright Determination of the cover

- Solve the separation problem approximately

Important Aspects

	Gap Closed \% (Geom. Mean)		Sepa Time sec (Total)	
	\triangle	Value	\triangle	
Value	$\triangle .00$	1355.9	0.0	
Cofault algorithm	16.31	0.00		
Cover - 1. modification	15.61	-0.70	7.6	-1348.3
Cover - 2. modification	16.42	0.11	7.1	-1348.8
Resulting algorithm	16.36	0.05	7.4	-1348.5

\triangleright Determination of the cover

- Solve the separation problem approximately
- Modification of the separation problem

Outline

(1) Cutting Planes in SCIP

(2) Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts
2.2 Lifted Minimal Cover Cuts
(3) Computational Results

Comparison with other MIP solvers

\triangleright Are the cutting plane separators implemented in SCIP competitive to the ones included in other MIP solvers?

Computational Study

MIP solvers
\triangleright Scip (Cplex as LP solver)
\triangleright Cplex
\triangleright Coin-Or Branch and Cut solver (Coin-Or LP solver)

Computational Study

MIP solvers
\triangleright Scip (Cplex as LP solver)
\triangleright Cplex
\triangleright Coin-Or Branch and Cut solver (Coin-Or LP solver)

Settings

\triangleright One cutting plane separator
\triangleright Isolated application
\triangleright Presolving disabled (used presolved instances obtained by the presolving routines of CPLEX)

Computational Study

MIP solvers
\triangleright Scip (Cplex as LP solver)
\triangleright Cplex
\triangleright Coin-Or Branch and Cut solver (Coin-Or LP solver)

Settings

\triangleright One cutting plane separator
\triangleright Isolated application
\triangleright Presolving disabled (used presolved instances obtained by the presolving routines of CPLEX)

Test set

$\triangleright 134$ instances (Miplib 2003, Miplib 3.0, and MIP collection of Mittelmann)

Computational Results

Performance measure Gap Closed \% (100 $\left.\frac{d b-z_{L P}}{z_{M P}-z_{L P}}\right)$

Computational Results

Knapsack CpLex: Time in total $\approx 9,400 \mathrm{sec}$
SCIP and CBC: Time in total $\approx 600 \mathrm{sec}$

Impact on the overall performance of SCIP

\triangleright How strong is the impact of the individual cutting plane separators on the overall performance of SCIP?

Two Types of Tests

Impact of the individual cutting plane separators when they are used

as the only separators in SCIP

1. Started with running SCIP without any separators
2. Compared the performance with the one of SCIP when we enabled one separator
in connection with all other separators of SCIP
3. Started with running SCIP with all separators
4. Compared the performance with the one of SCIP when we disabled one separator

Enabling - Computational Study

Performance measures
\triangleright Nodes
\triangleright Time
\triangleright Gap \%

Enabling - Computational Study

Performance measures
\triangleright Nodes
\triangleright Time
\triangleright Gap \%

Improvement factor for each performance measure
Value for SCIP run without any separators
Value for SCIP run with one separator enabled
\rightsquigarrow Factor by which enabling the separator improves the overall performance (Factor > 1?)

Enabling - Computational Results

Disabling - Computational Study

Performance measures
\triangleright Nodes
\triangleright Time
\triangleright Gap \%

Disabling - Computational Study

Performance measures
\triangleright Nodes
\triangleright Time
\triangleright Gap \%

Degradation factor for each performance measure

Value for SCIP run with one separator disabled

Value for SCIP run with all separators
\rightsquigarrow Factor by which disabling the separator degrades the overall performance (Factor >1?)

Disabling - Computational Results

