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. 0-1 single node flow problem
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I want to solve general MIPs!
Why do I care about cutting planes for special problems?
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General Cutting Plane Method

min{cT x : x ∈ X MIP} X MIP := {x ∈ Zn × Rm : Ax ≤ b}
min{cT x : x ∈ X LP} X LP := {x ∈ Rn × Rm : Ax ≤ b}

Observation

. If the data are rational, then
I conv(X MIP) is a rational polyhedron
I we can formulate the MIP as min{cT x : x ∈ conv(X MIP)}︸ ︷︷ ︸

LP
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Problem (in general)

. Complete linear description of conv(X MIP)?

. Number of constraints needed to describe conv(X MIP) is
extremely large



General Cutting Plane Method

min{cT x : x ∈ X MIP} X MIP := {x ∈ Zn × Rm : Ax ≤ b}
min{cT x : x ∈ X LP} X LP := {x ∈ Rn × Rm : Ax ≤ b}

Observation

. If the data are rational, then
I conv(X MIP) is a rational polyhedron
I we can formulate the MIP as min{cT x : x ∈ conv(X MIP)}︸ ︷︷ ︸

LP

Idea

. Construct a polyhedron Q with
I conv(X MIP) ⊆ Q ⊆ X LP

I min{cT x : x ∈ conv(X MIP)} = min{cT x : x ∈ Q}

 Start with X LP and add inequalities which are valid for X MIP

(but violated by the current LP solution) to X LP



Valid Inequalities for X MIP

. Inequalities valid for a relaxation of X MIP are valid for X MIP

. Generating valid inequalities for a relaxation is often easier

. The intersection of the relaxations should be a good
approximation of X MIP

Relaxations of X MIP

1. Linear combinations of constraints defining X MIP

(row of the simplex tab., single constraint)
2. Other information

I Logical implications between binary variables
(conflict graph)

I Logical implications between a binary and a real variable
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0-1 Knapsack Polytope

conv(X BK ) X BK := {x ∈ {0, 1}n :
∑
j∈N

ajxj ≤ a0}

. N = {1, . . . , n}

. a0 and aj are integers for all j ∈ N

. aj > 0 for all j ∈ N
(since binary variables can be complemented)

. aj ≤ a0 for all j ∈ N
(since aj > a0 implies xj = 0)
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Class of Cover Inequalities

Definition (Cover)

C ⊆ N .
∑

j∈C aj > a0

Theorem

If C ⊆ N is a cover for X BK , then the cover inequality∑
j∈C

xj ≤ |C| − 1

is valid for X BK .
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Separation Problem

Let x∗ ∈ [0, 1]n\{0, 1}n be a fractional vector with∑
j∈N ajx∗

j ≤ a0.

Find C ⊆ N with
∑

j∈C aj > a0 such that∑
j∈C

x∗
j > |C| − 1,

or show that no inequality in the class of cover inequalities is
violated by x∗.

The separation problem can be formulated as a 0-1 KP.
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Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover ∑
j∈C

aj > a0 ⇔
∑
j∈N

ajzj > a0

⇔
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality∑
j∈C

x∗j > |C| − 1 ⇔
∑
j∈N

x∗j zj >
∑
j∈N

zj − 1

⇔
∑
j∈N

(1− x∗j )zj < 1



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover ∑
j∈C

aj > a0

⇔
∑
j∈N

ajzj > a0

⇔
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality∑
j∈C

x∗j > |C| − 1 ⇔
∑
j∈N

x∗j zj >
∑
j∈N

zj − 1

⇔
∑
j∈N

(1− x∗j )zj < 1



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover ∑
j∈C

aj > a0 ⇔
∑
j∈N

ajzj > a0

⇔
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality∑
j∈C

x∗j > |C| − 1 ⇔
∑
j∈N

x∗j zj >
∑
j∈N

zj − 1

⇔
∑
j∈N

(1− x∗j )zj < 1



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover ∑
j∈C

aj > a0 ⇔
∑
j∈N

ajzj > a0

⇔
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality∑
j∈C

x∗j > |C| − 1 ⇔
∑
j∈N

x∗j zj >
∑
j∈N

zj − 1

⇔
∑
j∈N

(1− x∗j )zj < 1



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover ∑
j∈C

aj > a0 ⇔
∑
j∈N

ajzj > a0

⇔
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality∑
j∈C

x∗j > |C| − 1

⇔
∑
j∈N

x∗j zj >
∑
j∈N

zj − 1

⇔
∑
j∈N

(1− x∗j )zj < 1



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover ∑
j∈C

aj > a0 ⇔
∑
j∈N

ajzj > a0

⇔
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality∑
j∈C

x∗j > |C| − 1 ⇔
∑
j∈N

x∗j zj >
∑
j∈N

zj − 1

⇔
∑
j∈N

(1− x∗j )zj < 1



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover ∑
j∈C

aj > a0 ⇔
∑
j∈N

ajzj > a0

⇔
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality∑
j∈C

x∗j > |C| − 1 ⇔
∑
j∈N

x∗j zj >
∑
j∈N

zj − 1

⇔
∑
j∈N

(1− x∗j )zj < 1



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality
∑
j∈N

(1− x∗j )zj < 1

x∗ satisfies all cover inequalities

⇔ ∀ z ∈ {0, 1}n with
∑
j∈N

ajzj ≥ a0 + 1 :
∑
j∈N

(1− x∗j )zj ≥ 1

⇔ min{
∑
j∈N

(1− x∗j )zj :
∑
j∈N

ajzj ≥ a0 + 1,

z ∈ {0, 1}n } ≥ 1

⇔ max{
∑
j∈N

(1− x∗j )z̄j :
∑
j∈N

aj z̄j ≤
∑
j∈N

aj − (a0 + 1),

z̄ ∈ {0, 1}n } ≥ 1−
∑
j∈N

(1− x∗j )



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality
∑
j∈N

(1− x∗j )zj < 1

x∗ satisfies all cover inequalities

⇔ ∀ z ∈ {0, 1}n with
∑
j∈N

ajzj ≥ a0 + 1 :
∑
j∈N

(1− x∗j )zj ≥ 1

⇔ min{
∑
j∈N

(1− x∗j )zj :
∑
j∈N

ajzj ≥ a0 + 1,

z ∈ {0, 1}n } ≥ 1

⇔ max{
∑
j∈N

(1− x∗j )z̄j :
∑
j∈N

aj z̄j ≤
∑
j∈N

aj − (a0 + 1),

z̄ ∈ {0, 1}n } ≥ 1−
∑
j∈N

(1− x∗j )



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality
∑
j∈N

(1− x∗j )zj < 1

x∗ satisfies all cover inequalities

⇔ ∀ z ∈ {0, 1}n with
∑
j∈N

ajzj ≥ a0 + 1 :
∑
j∈N

(1− x∗j )zj ≥ 1

⇔ min{
∑
j∈N

(1− x∗j )zj :
∑
j∈N

ajzj ≥ a0 + 1,

z ∈ {0, 1}n } ≥ 1

⇔ max{
∑
j∈N

(1− x∗j )z̄j :
∑
j∈N

aj z̄j ≤
∑
j∈N

aj − (a0 + 1),

z̄ ∈ {0, 1}n } ≥ 1−
∑
j∈N

(1− x∗j )



Separation Problem as 0-1 KP

For C ⊆ N, we introduce the characteristic vector z ∈ {0, 1}n.

Cover
∑
j∈N

ajzj ≥ a0 + 1

Violated cover inequality
∑
j∈N

(1− x∗j )zj < 1

x∗ satisfies all cover inequalities

⇔ ∀ z ∈ {0, 1}n with
∑
j∈N

ajzj ≥ a0 + 1 :
∑
j∈N

(1− x∗j )zj ≥ 1

⇔ min{
∑
j∈N

(1− x∗j )zj :
∑
j∈N

ajzj ≥ a0 + 1,

z ∈ {0, 1}n } ≥ 1

⇔ max{
∑
j∈N

(1− x∗j )z̄j :
∑
j∈N

aj z̄j ≤
∑
j∈N

aj − (a0 + 1),

z̄ ∈ {0, 1}n } ≥ 1−
∑
j∈N

(1− x∗j )



Heuristic for the 0-1 KP

Input : c ∈ Qn
+, a ∈ Qn

+\{0}, and b ∈ Q+

Output : Feasible solution of max{cT x : aT x ≤ b, x ∈ {0, 1}n}

1 Sort the indices such that c1
a1
≥ . . . ≥ cn

an

2 ā ← 0

3 for j ← 1 to n do
4 if ā + aj ≤ b then
5 xj ← 1

6 ā ← ā + aj

7 else
8 while j ≤ n do
9 xj ← 0

10 j ← j + 1

11 return x
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Heuristic for the 0-1 KP
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+, a ∈ Qn
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an
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3 for j ← 1 to n do
4 if ā + aj ≤ b then
5 xj ← 1

6 ā ← ā + aj

7 else
8 while j ≤ n do
9 xj ← 0

10 j ← j + 1

11 return x

Time complexity: O(n log n)
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+, a ∈ Zn
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Output : Optimal solution of max{cT x : aT x ≤ b, x ∈ {0, 1}n}

Algorithm uses dynamic programming
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Class of Minimal Cover Inequalities

Definition (Minimal cover)

C ⊆ N
.

∑
j∈C aj > a0

.
∑

j∈C\{i} aj ≤ a0 for all i ∈ C

Theorem

If C ⊆ N is a minimal cover for X BK , then the
minimal cover inequality∑

j∈C

xj ≤ |C| − 1

defines a facet of

conv( X BK ⋂
{x ∈ {0, 1}n : xj = 0 for all j ∈ N\C} ).
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. (j1, . . . , jt) lifting sequence of the variables in N\C

. X i := X BK ⋂
{x ∈ {0, 1}n : xji+1 = . . . = xjt = 0}
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. X i := X BK ⋂
{x ∈ {0, 1}n : xji+1 = . . . = xjt = 0}

∑
j∈C

xj ≤ |C| − 1 valid for X 0

∑
j∈C

xj + αj1xj1 ≤ |C| − 1 valid for X 1

...∑
j∈C

xj +
t∑

k=1

αjk xjk ≤ |C| − 1 valid for X t = X BK



Sequential Up-Lifting

. (j1, . . . , jt) lifting sequence of the variables in N\C

. X i := X BK ⋂
{x ∈ {0, 1}n : xji+1 = . . . = xjt = 0}

Theorem
For each i = 1, . . . , t , consider the 0-1 knapsack problem

zji = max{
∑
j∈C

xj +
i−1∑
k=1

αjk xjk :
∑
j∈C

ajxj +
i−1∑
k=1

ajk xjk ≤ a0 − aji ,

x ∈ {0, 1}|C|+(i−1)}

and let αji = (|C| − 1)− zji . Then for each i = 1, . . . , t ,

∑
j∈C

xj +
i∑

k=1

αjk xjk ≤ |C| − 1

defines a facet of conv(X i).



Sequential Up-Lifting

. (j1, . . . , jt) lifting sequence of the variables in N\C

. X i := X BK ⋂
{x ∈ {0, 1}n : xji+1 = . . . = xjt = 0}

Different lifting sequences may lead to different inequalities!



Computing the Lifting Coefficients

. For each i = 1, . . . , t , solve the 0-1 KP
I approximately (O(n log n))
I exactly (O(nb))

. Zemel: Exact algo to calculate all lifting coefficients (O(n2))

I Uses dynamic programming to solve a reformulation of the
0-1 KPs
(role of the objective function and the constraint is reversed)



Practice

. Using sequential up-lifting to strengthen minimal cover cuts
improves the performance of SCIP

But, a separator which uses up- and down-lifting performs even
better!
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Class of Minimal Cover Inequalities

Theorem

If C ⊆ N is a minimal cover for X BK , then the
minimal cover inequality∑

j∈C

xj ≤ |C| − 1

defines a facet of

conv( X BK ⋂
{x ∈ {0, 1}n : xj = 0 for all j ∈ N\C} ).

 Up-lifting: variables in N\C



Class of Minimal Cover Inequalities

Theorem

If C ⊆ N is a minimal cover for X BK and (C1, C2) is any partition
of C with C1 6= ∅, then inequality∑

j∈C1

xj ≤ |C1| − 1

defines a facet of

conv( X BK ⋂
{x ∈ {0, 1}n : xj = 0 for all j ∈ N\C,

xj = 1 for all j ∈ C2} ).



Class of Minimal Cover Inequalities

Theorem

If C ⊆ N is a minimal cover for X BK and (C1, C2) is any partition
of C with C1 6= ∅, then inequality∑

j∈C1

xj ≤ |C1| − 1

defines a facet of

conv( X BK ⋂
{x ∈ {0, 1}n : xj = 0 for all j ∈ N\C,

xj = 1 for all j ∈ C2} ).

 Up-lifting: variables in N\C
 Down-lifting: variables in C2



Sequential Up- and Down-Lifting

. Similar theorem as for sequential up-lifting

. Extension of Zemel’s up-lifting procedure can be used

. In SCIP, the separation problem for the class of lifted
minimal cover inequalities using sequential up- and
down-lifting is solved heuristically



Outline of the Separation Algorithm

Step 1 (Cover)

. Determine a cover C for X BK

(separation problem for the class of cover inequalities)

Step 2 (Minimal cover and partition)

. Make the cover minimal by removing vars from C

. Find a partition (C1, C2) of C with C1 6= ∅

Step 3 (Lifting)

. Determine a lifting sequence of the variables in N\C1

. Lift the inequality
∑

j∈C1
xj ≤ |C1| − 1 using sequential up- and

down-lifting



Algorithmic Aspects

Step 1 (Cover)

. Which algorithm do we use to find the cover?

I Fixing of variables
I Modification of the separation problem (Gu et al. (1998))
I Solving the separation problem exactly or approximately

Step 2 (Minimal cover and partition)

. In which order do we remove the variables?

. Which partition of the minimal cover do we use?

Step 3 (Lifting)

. Which lifting sequence do we use?

. Which algorithm do we use to solve the knapsack problems that
occur in the sequential lifting procedure?



Resulting Algorithm

Step 1 (Cover)

. Fix all vars with x∗j = 0 to zero and all vars with x∗j = 1 to one

. Use the modification of the separation problem

. Solve the modified separation problem approximately

Step 2 (Minimal cover and partition)

. Nondecreasing order of x∗j and nondecreasing order of aj

. C2 := {j ∈ C : x∗j = 1} (|C1| = 1: change the partition)

Step 3 (Lifting)

. {j ∈ N\C : x∗j > 0}, C2, and then {j ∈ N\C : x∗j = 0}
(nonincreasing order of aj )

. Use an extension of Zemel’s procedure



Important Aspects

Gap Closed % Sepa Time sec
(Geom. Mean) (Total)

Value 4 Value 4

Default algorithm 16.31 0.00 1355.9 0.0

Cover – 1. modification 15.61 -0.70 7.6 -1348.3

Cover – 2. modification 16.42 0.11 7.1 -1348.8

Resulting algorithm 16.36 0.05 7.4 -1348.5

. Determination of the cover

I Solve the separation problem approximately
I Modification of the separation problem
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Question

Comparison with other MIP solvers

. Are the cutting plane separators implemented in
SCIP competitive to the ones included in
other MIP solvers?



Computational Study

MIP solvers

. SCIP (CPLEX as LP solver)

. CPLEX

. COIN-OR Branch and Cut solver (COIN-OR LP solver)

Settings

. One cutting plane separator

. Isolated application

. Presolving disabled (used presolved instances obtained by
the presolving routines of CPLEX)

Test set

. 134 instances (MIPLIB 2003, MIPLIB 3.0, and
MIP collection of Mittelmann)
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Question

Impact on the overall performance of SCIP

. How strong is the impact of the
individual cutting plane separators on the
overall performance of SCIP?



Two Types of Tests

Impact of the individual cutting plane separators when they are used

as the only separators in
SCIP

1. Started with running
SCIP without any
separators

2. Compared the
performance with the
one of SCIP when we
enabled one separator

in connection with all other
separators of SCIP

1. Started with running
SCIP with all
separators

2. Compared the
performance with the
one of SCIP when we
disabled one separator



Enabling – Computational Study

Performance measures
. Nodes
. Time
. Gap %

Improvement factor for each performance measure

Value for SCIP run without any separators

Value for SCIP run with one separator enabled

 Factor by which enabling the separator improves the
overall performance (Factor > 1?)
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Disabling – Computational Study

Performance measures
. Nodes
. Time
. Gap %

Degradation factor for each performance measure

Value for SCIP run with one separator disabled

Value for SCIP run with all separators

 Factor by which disabling the separator degrades the
overall performance (Factor > 1?)



Disabling – Computational Study

Performance measures
. Nodes
. Time
. Gap %

Degradation factor for each performance measure
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Value for SCIP run with all separators

 Factor by which disabling the separator degrades the
overall performance (Factor > 1?)
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