
An Introduction to Network Flows Over Time

Martin Skutella

April 25, 2008

Flow variation over time is an important feature in network flow problems arising in various
applications such as road or air traffic control, production systems, communication networks
(e. g., the Internet), and financial flows. Moreover, apart from the effect that flow values on
arcs may change over time, there is a second temporal dimension in these applications: Usually,
flow does not travel instantaneously through a network but requires a certain amount of time
to travel through each arc. Thus, not only the amount of flow to be transmitted but also the
time needed for the transmission plays an essential role.

The above mentioned aspects of network flows are not captured by the classic static network
flow models. This is where network flows over time come into play. They include a temporal
dimension and therefore provide a more realistic modeling tool for numerous real-world appli-
cations. In textbooks on combinatorial optimization and network flows, however, network flows
over time are marginally covered at best; see, e.g., Ford and Fulkerson [15, Chapter III.9], Ahuja,
Magnanti, and Orlin [1, Chapter 19.6], Korte and Vygen [25, Chapter 9.7], and Schrijver [34,
Chapter 12.5c]. The following treatment of the topic has been developed for the purpose of
teaching in an advanced course on combinatorial optimization.

We concentrate on flows over time (also called “dynamic flows” in the literature) with finite
time horizon and constant capacities and constant transit times in a continuous time model.
For a broader overview of flows over time we refer to the survey papers by Aronson [5], Powell,
Jaillet, and Odoni [33], Kotnyek [26], and Lovetskii and Melamed [27]. We also refer to the PhD
thesis of Hoppe [20] for an easily accessible and detailed treatment of the topic based on the
discrete time model.

The paper is organized as follows. In Section 1 we introduce notation and shortly repeat some
basic definitions and results from static network flow theory that are of particular importance
for our purposes. For a more detailed treatment of those issues we refer to standard textbooks
such as, e.g., [1] and [25]. In Section 2 we present a classical result of Ford and Fulkerson on
the Maximum Flow Over Time Problem. This problem can be reduced to a static min-cost flow
computation. Section 3 is devoted to a special class of flows over time called earliest arrival flows
which can be used to model evacuation scenarios. We present a classical result that shows how
to compute an earliest arrival flow with the Successive Shortest Path Algorithm. In Section 4
we consider flows over time with costs on the arcs, discuss their complexity, and introduce
time-expanded networks. With the help of these networks, many flow over time problems can
be reduced to static flow problems at the cost of a considerable increase in the size of the
network. Finally, in Section 5 we discuss multi-commodity flows over time and present a recent
approximation result. Pointers to the literature are discussed at the end of each section. We
do not claim, however, to give a complete review of all related literature. Several Exercises are
given in the very end.

1



1 Basic Notions and Results on Static Network Flows

In this section we compile basic notions and results from the area of static network flows that
are needed in the remainder of the paper.

Network. Let G = (V,E) be a network (directed graph) with a source node s ∈ V and a sink
node t ∈ V . Each arc e ∈ E has an associated capacity ue and a transit time (or length) τe ≥ 0.
In the setting with costs, each arc e also has a cost coefficient ce, which determines the cost
for sending one unit of flow through the arc. An arc e from node v to node w is sometimes
also denoted (v, w); in this case, we write head(e) = w and tail(e) = v. To avoid confusion, we
assume without loss of generality that there is at most one arc between any pair of nodes in G
and that there are no loops.

Let δ+(v) and δ−(v) denote the set of arcs e ∈ E leaving node v (tail(e) = v) and entering
node v (head(e) = v), respectively. We sometimes also write δ+

E (v) and δ−E (v) to emphasize the
underlying set of arcs E. For a subset of nodes X ⊆ V , let

δ+(X) := {(v, w) ∈ E | v ∈ X ∧ w ∈ V \X} .

For technical reasons we assume that there is an s-v-path and a v-t-path in G for every node
v ∈ V . Notice that nodes violating this condition (and their incident arcs) are useless when it
comes to sending flow from s to t and can therefore be deleted.

Network flow. A (static) network flow x assigns a non-negative flow value xe to each arc e ∈
E. The flow x is feasible if it obeys the capacity constraints: xe ≤ ue for each e ∈ E. An s-t-flow x
satisfies flow conservation at each node v ∈ V \ {s, t}:∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 . (1)

The value |x| of an s-t-flow x is

|x| :=
∑

e∈δ−(t)

xe −
∑

e∈δ+(t)

xe =
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe .

A circulation is a flow obeying flow conservation (1) at each node v ∈ V . The cost of flow x is

c(x) :=
∑
e∈E

ce · xe .

Residual network. For an arc e = (v, w) ∈ E we denote the corresponding backward
arc (w, v) by ←

e := (w, v). Notice that e ∈ E implies ←e 6∈ E due to our assumption that
there is at most one arc between any pair of nodes in G. The bidirected network

↔
G = (V,

↔
E)

corresponding to G = (V,E) is defined by
↔
E := E

.∪{←e | e ∈ E}. The transit time of a backward
arc ←e with e ∈ E is τ←e := −τe. In particular, the transit time of a backward arc can be negative.

Given a feasible flow x in G, the residual capacity of arc e ∈ E is ue − xe and the residual
capacity of the corresponding backward arc ←e is xe. The residual network Gx = (V,Ex) consists
of all arcs in

↔
E with positive residual capacity. For v, w ∈ V we denote the transit time of a

shortest v-w-path in Gx by distx(v, w).

2



Flow decomposition. Let P and C denote the sets of all simple s-t-paths and all simple
cycles in G, respectively. For P ∈ P ∪ C we write e ∈ P and v ∈ P to indicate that arc e ∈ E
and node v ∈ V , respectively, lie on P . The well known Flow Decomposition Theorem states
that any static s-t-flow x has a flow decomposition (xP )P∈P∪C where xP ≥ 0 for each P ∈ P ∪C
and

xe =
∑

P∈P∪C:e∈P
xP for each e ∈ E.

Moreover, there always exists a flow decomposition for which the number of flow-carrying paths
and cycles P with xP > 0 is bounded by the number of arcs |E|.

The set of s-t-paths in
↔
G is denoted by

↔
P. For a path or cycle P ∈

↔
P ∪ C we set τ(P ) :=∑

e∈P τe. If node v is contained in an s-t-path P ∈
↔
P, we denote the subpath from s to v by

Ps,v and the subpath from v to t by Pv,t.
The collection (xP )

P∈
↔
P is a generalized path decomposition of a given s-t-flow x if xP ≥ 0

for each P ∈
↔
P and

xe =
∑

P∈
↔
P:e∈P

xP −
∑

P∈
↔
P:
←
e∈P

xP for each e ∈ E.

We mention that there are s-t-flows that do not have a generalized path decomposition since,
in general, cycles are also needed in a decompoition.

Multi-commodity flow. Every commodity i = 1, . . . , k has a source node si ∈ V , a sink
node ti ∈ V , and a demand di ≥ 0. A (static) multi-commodity flow x consists of k single-
commodity flows xi, i = 1, . . . , k. We call x feasible if it satisfies the capacity constraints∑k

i=1 x
i
e ≤ ue for each e ∈ E and if xi is an si-ti-flow for each commodity i = 1, . . . , k. A feasible

multi-commodity flow x satisfies demands d1, . . . , dk if |xi| ≥ di for i = 1, . . . , k.

2 Maximum Flows Over Time

We consider flows over time with a fixed time horizon T ≥ 0.

Definition 2.1 (Flow over time). A flow over time f with time horizon T consists of a Lebesgue-
integrable function fe : [0, T ) → R≥0 for each arc e ∈ E; moreover fe(θ) = 0 must hold for
θ ≥ T − τe. To simplify notation, we sometimes consider fe as a function with domain R; in this
case we set fe(θ) := 0 for all θ 6∈ [0, T ).

We say that fe(θ) is the rate of flow (i.e., amount of flow per time unit) entering arc e at
time θ. The flow particles entering arc e at its tail at time θ arrive at the head of e exactly
τe time units later at time θ + τe. In particular, the outflow rate at the head of arc e at time
θ equals fe(θ − τe). Definition 2.1 ensures that all flow has left arc e at time T as fe(θ) = 0
for θ ≥ T − τe.

In order to gain an intuitive understanding of flows over time, one can associate arcs of the
network with pipes in a pipeline system for transporting some kind of fluid. The length of each
pipeline determines the transit time of the corresponding arc while the width determines its
capacity.

Example 2.2. To illustrate the described model of flows over time, we consider the following
simple example with two nodes s and t that are connected by an arc e = (s, t) with transit

3



s t
τe = 3s

θ = 0 θ = 1 θ = 2

θ = 3 θ = 4 θ = 5

Figure 1: Snapshots of the simple flow over time discussed in Example 2.2 for several points in
time. At time 0, the arc e = (s, t) (directed from left to right) is empty and we start to pump
flow at rate 1 into the arc. At time 1 we have pumped one flow unit into the arc, at time 2 there
are two flow units and we stop pumping. The first flow particles of the first flow unit reach the
head node t at time τe = 3. At time 4 the first flow unit has arrived entirely at node t while the
second flow unit is still on the arc. Finally, at time 5 the last flow particles of the second flow
unit have arrived at node t and the arc is empty again.

time τe = 3. We can, for example, send two units of flow from s to t as follows: At time 0 we
start to pump flow at rate 1 into arc e and continue to do so until time 2. More precisely, we
define a flow over time f with time horizon T := 5 by

fe(θ) :=

{
1 for θ ∈ [0, 2),
0 otherwise.

The amount of flow that we have sent into arc e is obtained by integrating the flow rate fe over
time: ∫ T

0
fe(θ) dθ = 2 .

Since the last flow particle enters arc e shortly before time 2, it arrives at node t three time
units later, that is, shortly before time 5. More precisely, the outflow rate fe(θ − τe) of arc e at
its head node t is

fe(θ − τe) =

{
1 for θ ∈ [3, 5),
0 otherwise.

(2)

An illustration of this example is given in Figure 1.

Definition 2.3 (Capacity, excess, flow conservation, s-t-flow over time). Let f be a flow over
time with time horizon T .

(a) The flow over time f fulfills the capacity constraints (and is called feasible) if fe(θ) ≤ ue for
each e ∈ E and all θ ∈ [0, T ).

(b) For v ∈ V , the excess at node v and time θ is the net amount of flow that enters node v up
to time θ, that is,

exf (v, θ) :=
∑

e∈δ−(v)

∫ θ−τe

0
fe(ξ) dξ −

∑
e∈δ+(v)

∫ θ

0
fe(ξ) dξ .

(c) The flow over time f fulfills the weak flow conservation constraints if exf (θ) ≥ 0 for each
v ∈ V \ {s} and all θ ∈ [0, T ). Moreover, exf (T ) = 0 must hold for each v ∈ V \ {s, t}.

4



v3

2

3

v1

3

2

3

v2

v4 3

2
ts

Figure 2: A network consisting of arcs (pipelines) with unit capacities. The arcs are all directed
from left to right towards the sink t. The numbers at arcs indicate transit times.

(d) A flow over time obeying the weak flow conservation constraints is an s-t-flow over time.
The value of an s-t-flow over time with time horizon T is |f | := exf (t, T ).

(e) An s-t-flow over time f fulfills the strict flow conservation constraints if exf (v, θ) = 0 for
all v ∈ V \ {s, t} and θ ∈ [0, T ]. The strict flow conservation constraints say that flow must
not be stored at intermediate nodes.

Consider the network depicted in Figure 2. An illustration of a feasible s-t-flow over time
fulfilling the strict flow conservation constraints is given in Figure 3.

We study the following basic optimization problem for flows over time.

Maximum Flow Over Time Problem

Given: A network G = (V,E) with capacities and transit times on the arcs, a source node
s ∈ V , a sink node t ∈ V , and a time horizon T ≥ 0.

Task: Find a feasible s-t-flow over time f with time horizon T and maximum value |f |.

We consider a special class of feasible s-t-flows over time that are induced by static s-t-flows
and feature a very simple structure. The intuition behind the following definition is to take a
path decomposition (xP ) of a static s-t-flow x. At time 0 the resulting s-t-flow over time starts
to send flow on each s-t-path P with flow rate xP . It keeps sending flow along each path as
long as there is enough time left for the flow along the path to arrive at the sink by time T .
We first give a formal definition and afterwards, in Observation 2.5, a precise interpretation and
intuition.

Definition 2.4 (Temporally repeated flow). Let x be a static s-t-flow with some flow decompo-
sition (xP )P∈P∪C . The corresponding temporally repeated flow f with time horizon T is defined
by

fe(θ) :=
∑

P∈Pe(θ)

xP for e = (v, w) ∈ E, θ ∈ [0, T ), (3)

where

Pe(θ) := {P ∈ P : e ∈ P ∧ τ(Ps,v) ≤ θ ∧ τ(Pv,t) < T − θ} .

5



θ = 1 θ = 2 θ = 3

θ = 4 θ = 5 θ = 6

θ = 7 θ = 8 θ = 9

Figure 3: Snapshots of a feasible s-t-flow over time with time horizon T = 9 and value 3 in
the network depicted in Figure 2. In order to distinguish flow units traveling one after another
along an arc, different shadings are used for the flow units.

Notice that the flow xP on path P ∈ P contributes to the flow rate fe on arc e = (v, w) ∈ P
within the time interval starting at time τ(Ps,v) and ending before time T −τ(Pv,t) = T −τ(P )+
τ(Ps,v). Thus, an alternative “path-based” description of the temporally repeated flow f is as
follows.

Observation 2.5. The temporally repeated flow f in Definition 2.4 can be obtained as follows:
For each path P ∈ P, send flow at rate xP into P from the source s during the time interval
[0, T −τ(P )) and let the flow progress towards the sink without any delay at intermediate nodes.
In particular, all flow reaches the sink by time T .

Lemma 2.6. Let x be a feasible static s-t-flow with flow decomposition (xP )P∈P∪C. Then the
corresponding temporally repeated flow f is a feasible s-t-flow over time with time horizon T
that satisfies the strict flow conservation constraints.

Proof. By construction (see Observation 2.5), f is an s-t-flow over time with time horizon T
that satisfies the strict flow conservation constraints. By (3) the feasibility of x implies

fe(θ) ≤
∑

P∈P:e∈P
xP ≤ xe ≤ ue for e ∈ E, θ ∈ [0, T ).

Thus f is feasible.

6



The next lemma gives an indication how the static s-t-flow x should be chosen to get a
temporally repeated flow with large value.

Lemma 2.7. Let x be a feasible static s-t-flow with flow decomposition (xP )P∈P∪C such that
xP = 0 for all P ∈ P with τ(P ) > T and for all P ∈ C. Then the value of the corresponding
temporally repeated flow f is equal to

|f | = T · |x| −
∑
e∈E

τe · xe .

In particular, the value of f does not depend on the chosen path decomposition of x.

Proof. By Observation 2.5 we get

|f | =
∑
P∈P

(T − τ(P )) · xP

= T ·
∑
P∈P

xP −
∑
P∈P

∑
e∈P

τe · xP

= T · |x| −
∑
e∈E

τe ·
∑

P∈P:e∈P
xP

= T · |x| −
∑
e∈E

τe · xe .

This concludes the proof.

We mention the following corollary only for later use in Section 5.

Corollary 2.8. Let x be a feasible static s-t-flow with flow decomposition (xP )P∈P∪C. Then the
value of the corresponding temporally repeated flow f is at least

|f | ≥ T · |x| −
∑
e∈E

τe · xe .

Proof. We modify x by deleting flow on all paths P ∈ P with τ(P ) > T and on all cycles P ∈ C.
More precisely, we set

x̃P :=

{
xP if P ∈ P and τ(P ) ≤ T ,
0 otherwise,

for P ∈ P ∪ C.

By Observation 2.5, the temporally repeated flows f and f̃ corresponding to (xP )P∈P∪C and
(x̃P )P∈P∪C , respectively, are identical. Moreover, since flow along cycles and flow along s-t-paths
of length at least T make a non-positive contribution to

T · |x| −
∑
e∈E

τe · xe ,

we get by Lemma 2.7

|f | = |f̃ | = T · |x̃| −
∑
e∈E

τe · x̃e ≥ T · |x| −
∑
e∈E

τe · xe .

This concludes the proof.

7



As a consequence of Lemma 2.7, a maximum temporally repeated flow can be obtained as
follows.

Ford-Fulkerson Algorithm

Input: A network G = (V,E) with capacities and transit times on the arcs, a source node
s ∈ V , a sink node t ∈ V , and a time horizon T ≥ 0.

Output: A temporally repeated flow with time horizon T .

1. Compute a feasible static s-t-flow x maximizing

T · |x| −
∑
e∈E

τe · xe .

2. Compute a flow decomposition (xP )P∈P∪C of x.

3. Output the corresponding temporally repeated flow f .

Observation 2.9. The static s-t-flow in Step 1 of the Ford-Fulkerson Algorithm can be obtained
from a static min-cost circulation computation in an extended network G′ = (V,E′) where the
set of arcs E′ is obtained by adding the artificial arc (t, s) to E with u(t,s) :=∞ and τ(t,s) := −T .
In a circulation on the extended network G′, the flow on the artificial arc (t, s) equals the value
of the corresponding s-t-flow in G. If we interpret transit times as cost coefficients (ce := τe
for e ∈ E), we obtain a min-cost circulation problem on G′ which yields the desired s-t-flow x
in Step 1.

As a consequence of this interpretation, we obtain the following insights on the path decom-
position computed in Step 2.

Lemma 2.10. For any flow decomposition (xP )P∈P∪C computed in Step 2 of the Ford-Fulkerson
Algorithm the following holds for all P ∈ P ∪ C:

If xP > 0 , then τ(P )

{
= 0 if P ∈ C,
≤ T if P ∈ P.

(4)

In particular, all flow along cycles in x can be canceled without changing the objective function
value of x. The resulting s-t-flow x is still feasible and optimal and satisfies the requirements of
Lemma 2.7.

Proof. Notice that a path or cycle P ∈ P ∪ C violating (4) yields a negative cost cycle in the
residual network G′x. This contradicts the optimality of x.

Since the static s-t-flow x computed in Step 1 satisfies the requirements of Lemma 2.7, the
flow value of the temporally repeated flow equals the optimum objective function value of x.

Corollary 2.11. Let x be the static s-t-flow computed in Step 1 of the Ford-Fulkerson Algorithm
and f the temporally repeated flow obtained in Step 3. Then

|f | = T · |x| −
∑
e∈E

τe · xe .

8



s

θ2 θ3 θ4 θ5 < T0 = θ1

t

< << <

Figure 4: An s-t-cut over time moves through the network over time from the source towards
the sink.

We conclude from Corollary 2.11 that the s-t-flow over time f computed by the Ford-
Fulkerson Algorithm has maximum value among all temporally repeated flows. The following
theorem states that it is even a maximum s-t-flow over time.

Theorem 2.12. The temporally repeated flow computed by the Ford-Fulkerson Algorithm is
a maximum s-t-flow over time with time horizon T . The running time of the algorithm is
dominated by the static min-cost flow computation in Step 1.

A proof can be found below. As a result of this theorem we know that computing a maximum
s-t-flow over time is at most as difficult as computing a (static) min-cost flow.

The proof of the theorem goes along the same lines as the proof of the corresponding theorem
for maximum static s-t-flows. The idea is to come up with an s-t-cut whose capacity is an upper
bound on the maximum flow value and matches the value of the computed flow. In the static
setting, an s-t-cut is defined by a subset of nodes X ⊆ V with s ∈ X and t 6∈ X. It consists of
the arcs in δ+(X) and its capacity is

∑
e∈δ+(X) ue. For the case of flows over time, however, a

more elaborate definition of an s-t-cut and its capacity is required in order to find a tight upper
bound on the maximum flow value (see also Exercise 1).

Definition 2.13 (s-t-cut over time). An s-t-cut over time with time horizon T is specified by
threshold values αv ∈ R for each v ∈ V with αs = 0 and αt ≥ T . The capacity of an s-t-cut
over time is defined as ∑

e=(v,w)∈E

max{0, αw − τe − αv} · ue .

We say that node v ∈ V belongs to the t-side of the s-t-cut over time up to time αv and to
the s-side of the s-t-cut over time from time αv on. Thus, we can think of the s-t-cut over time
as a sequence of s-t-cuts moving through the network over time towards the sink. An illustration
is given in Figure 4.

The definition of the capacity of an s-t-cut over time is motivated as follows: Every flow
particle moving from s to t within the time interval [0, T ) will eventually cross the considered
s-t-cut, i.e., move from the s-side to the t-side of the cut. A particle moving along some arc
e = (v, w) crosses the cut if it enters the arc at node v while v is on the s-side of the cut and
leaves the arc at node w while w is on the t-side of the cut. Thus, any particle entering arc e
within the critical time interval [αv, αw − τe) crosses the cut while traveling along this arc. The
total amount of flow that can cross the cut on arc e is thus bounded by ue times the size of the
critical time interval. The capacity of the s-t-cut over time is the sum of those values.

This motivates the following result.

9



Lemma 2.14. The capacity of an s-t-cut over time with time horizon T is an upper bound on
the value of any feasible s-t-flow over time with time horizon T .

Proof. Let f be a feasible s-t-flow over time with time horizon T and let (αv)v∈V define an
s-t-cut over time with time horizon T . By Definition 2.3 we get

|f | = exf (t, αt) ≤
∑
v∈V

exf (v, αv) =
∑
v∈V

 ∑
e∈δ−(v)

∫ αv−τe

0
fe(θ) dθ −

∑
e∈δ+(v)

∫ αv

0
fe(θ) dθ

 .

For the inequality we also use the fact that exf (s, 0) = 0. Exchanging the order of summation
in the right hand side term yields

|f | ≤
∑

e=(v,w)∈E

(∫ αw−τe

0
fe(θ) dθ −

∫ αv

0
fe(θ) dθ

)

=
∑

e=(v,w)∈E

∫ αw−τe

αv

fe(θ) dθ

≤
∑

e=(v,w)∈E

max{0, αw − τe − αv} · ue .

This concludes the proof.

We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12. It follows from Observation 2.9 and Corollary 2.11 that the value of the
temporally repeated flow computed by the Ford-Fulkerson Algorithm is equal to the optimum
solution value of the following linear programming formulation of a min-cost circulation problem
on the extended network G′ = (V,E′).

max T · x(t,s) −
∑
e∈E

τe · xe

s.t.
∑

e∈δ+
E′ (v)

xe −
∑

e∈δ−
E′ (v)

xe = 0 for all v ∈ V ,

xe ≤ ue for all e ∈ E,
xe ≥ 0 for all e ∈ E′.

The dual linear program looks as follows.

min
∑
e∈E

ueye

s.t. ye + αv − αw ≥ −τe for all e = (v, w) ∈ E,
αt − αs ≥ T
ye ≥ 0 for all e ∈ E.

Let (αv)v∈V , (ye)e∈E be an optimum dual solution. We can assume without loss of generality
that αs = 0 (otherwise, replace αv with αv−αs for each v ∈ V ). Thus, the values (αv)v∈V define
an s-t-cut over time. Moreover, for an optimum solution it holds that ye := max{0, αw−τe−αv}.
Therefore the optimum dual solution value equals the capacity of the cut defined by the αv’s.
On the other hand, the value of the temporally repeated flow computed by the Ford-Fulkerson
Algorithm equals the optimum primal solution value. The result follows from strong linear
programming duality.

10



Corollary 2.15. An s-t-cut over time with time horizon T and minimum capacity can be ob-
tained by a static min-cost flow computation.

Proof. We consider again the pair of linear programs in the proof of Theorem 2.12. It is well
known (and easy to observe using complementary slackness) that an optimum dual solution can
be obtained from an optimum primal solution (min-cost circulation) x as follows. For each v ∈ V ,
let αv be the length of a shortest s-v-path in the residual network G′x.

As another corollary we get the following Max-Flow-Min-Cut Theorem for flows and cuts
over time.

Theorem 2.16 (Max-Flow-Min-Cut Theorem). The maximum value of an s-t-flow over time
with time horizon T equals the minimum capacity of an s-t-cut over time with time horizon T .

Pointers to the Literature

The results on the Maximum Flow Over Time Problem presented above are due to Ford and
Fulkerson [14, 15]. More precisely, these results were originally developed for a discrete time
model, that is, time is discretized into steps of unit length. In each step, flow can be sent from
a node v through an arc (v, w) to the adjacent node w, where it arrives τ(v,w) time steps later.
In particular, the time-dependent flow on an arc is represented by a time-indexed vector in this
model. Fleischer and Tardos [13] point out a strong connection between the two models. They
show that many results and algorithms which have been developed for the discrete time model
can be carried over to the continuous time model. The continuous time version of Theorem 2.12
has first been observed by Anderson and Philpott [4].

The concept of s-t-cuts over time was introduced by Anderson, Nash, and Philpott [3] (see
also [2]) for the case of zero transit times and later extended to arbitrary transit times by
Philpott [32]. In particular, Lemma 2.14 is due to [3, 32].

A problem closely related to the Maximum Flow Over Time Problem is the Quickest s-t-Flow
Problem: Send a given amount of flow from the source to the sink in the shortest possible time.
This problem can be solved in polynomial time by incorporating the Ford-Fulkerson Algorithm
in a binary search framework; see also [13]. Using Megiddo’s method of parametric search [30],
Burkard, Dlaska, and Klinz [8] present a faster algorithm which solves the Quickest s-t-Flow
Problem in strongly polynomial time.

An interesting generalization of the Quickest s-t-Flow Problem is the Quickest Transshipment
Problem: Given a vector of supplies and demands at the nodes, the task is to find a flow over time
that satisfies all supplies and demands within minimal time. Unlike the situation for standard
(static) network flow problems, this multiple source, multiple sink, single commodity flow over
time problem is not equivalent to a maximum s-t-flow over time problem (see Exercise 3). Hoppe
and Tardos describe the first polynomial-time algorithm to solve this problem [22, 20]. They
introduce a generalized class of temporally repeated flows which can also be compactly encoded
as a collection of paths. However, in contrast to temporally repeated flows, these paths may
also contain backward arcs. Therefore, a careful analysis is necessary to show feasibility of the
resulting flows over time (see also Section 3). Moreover, the algorithm of Hoppe and Tardos is
not practical as it requires a submodular function minimization oracle for a subroutine.

3 Earliest Arrival Flows

In the last section we have considered a given, fixed time horizon T and the problem to send
as much flow as possible from source s to sink t by time T . A possible application scenario

11



for this problem is evacuation planning where one wants to get as many people as possible out
of an endangered building or area. Since it is usually not clear a priori how long a building
can withstand a fire before it collapses or how long a dam can resist a flood before it breaks,
the exact time horizon T is not known in such a setting. It is therefore advisable to organize
an evacuation such that as much as possible is saved no matter when the inferno will actually
happen.

Coined in terms of s-t-flows over time, the goal is to find a single s-t-flow over time that
simultaneously maximizes the amount of flow reaching the sink t up to any time θ ≥ 0.

Definition 3.1 (Earliest arrival flow). A feasible s-t-flow over time f with time horizon T has the
earliest arrival property and is called earliest arrival flow if it maximizes exf (t, θ) simultaneously
for all θ ∈ [0, T ].

At first sight, the existence of earliest arrival flows is not evident. One can indeed show
that the important class of temporally repeated flows does, in general, not contain an earliest
arrival flow (see Exercise 4). The situation changes if we consider a slightly more general class
of s-t-flows over time.

Definition 3.2 (Generalized temporally repeated flow). Let x be a static s-t-flow with gener-
alized path decomposition (xP )

P∈
↔
P . The corresponding generalized temporally repeated flow f

with time horizon T is defined by

fe(θ) :=
∑

P∈
↔
Pe(θ)

xP −
∑

P∈
↔
P←
e
(θ)

xP for each e = (v, w) ∈ E, θ ∈ [0, T ), (5)

where
↔
Pe(θ) := {P ∈

↔
P | e ∈ P ∧ τ(Ps,v) ≤ θ ∧ τ(Pv,t) < T − θ}

and analogously

↔
P←e(θ) := {P ∈

↔
P | ←e ∈ P ∧ τ(Ps,v) ≤ θ ∧ τ(Pv,t) < T − θ} .

Notice that a generalized temporally repeated flow f is not necessarily a proper flow over
time since fe(θ) can, in general, be negative. More precisely, and in analogy to Observation 2.5,
f can be interpreted as follows.

Observation 3.3. The generalized temporally repeated flow f in Definition 3.2 can be obtained
as follows: For each path P ∈

↔
P, send flow into P at rate xP during the time interval [0, T−τ(P ))

and let the flow progress towards the sink without any delay at intermediate nodes. In particular,
if some path P contains a backward arc ←e = (w, v) with negative transit time −τe, flow traveling
along arc ←e goes back in time. A flow particle entering ←e in node w at time θ arrives in node
v at time θ − τe. In (5) this anomaly is captured by a negative flow rate fe(θ − τe) on the
corresponding forward arc e.

Under certain circumstances, however, going back in time can be justified. If there is another
flow particle at node v that is about to enter arc e at time θ − τe, the two particles traveling
along e in opposite (also w.r.t. time) directions cancel out, that is, they exchange their identity.
In (5) this is reflected by the fact that the positive terms in the first sum compensate for a
negative contribution of the second sum.

The following example illustrates the intuition behind Observation 3.3.

12



θ = 0 θ = 1 θ = 2

θ = 3 θ = 4 θ = 5

θ = 6 θ = 7 θ = 8

θ = 9 θ = 10 θ = 11

Figure 5: Snapshots of the generalized temporally repeated flow f with time horizon T = 11
described in Example 3.4.

Example 3.4. Consider again the network depicted in Figure 2. Let x be the feasible s-t-
flow that sends one unit of flow across each arc except (v3, v2) where the flow value is zero.
A generalized path decomposition of x is obtained by sending one unit of flow on the shortest
s-t-path P 1 = s, v3, v2, t and one unit along the path P 2 = s, v1, v2, v3, v4, t. The corresponding
generalized temporally repeated flow f with time horizon T = 11 is illustrated in Figure 5.
Since τ(P 1) = 6, the flow over time f sends 5 = 11 − 6 units of flow through path P 1 (dark
flow in Figure 5). Moreover, since τ(P 2) = 10, it sends 1 = 11− 10 flow units through path P 2

(light flow in Figure 5). As can be seen in Figure 5, f is a feasible s-t-flow over time with
time horizon T = 11 although the light flow unit goes back in time when traveling through the
backward arc (v2, v3) with transit time −2. As a result, we see two copies of this flow unit in the
network at times θ = 5 and θ = 6. Since the light flow unit and the third dark flow unit cancel
out on arc (v3, v2), this dark flow unit has disappeared at times θ = 5 and θ = 6. It reappears
at time 7 on arc (v2, t) when the light flow unit has arrived at node v2.

13



In the following we interpret transit times also as cost coefficients, that is, we set ce := τe
for each e ∈ E. In particular, distx(v, w) refers to the minimum transit time of a v-w-path in
the residual network Gx. Notice that the two paths P 1 and P 2 considered in Example 3.4 are
exactly the augmenting paths chosen by the Successive Shortest Path Algorithm. Moreover, it
can be easily checked that the resulting s-t-flow over time f is an earliest arrival flow. We show
that the augmenting paths chosen by the Successive Shortest Path Algorithm always yield a
generalized temporally repeated flow that is feasible and has the earliest arrival property.

Earliest Arrival Algorithm

Input: A network G = (V,E) with capacities and transit times on the arcs, a source node
s ∈ V , a sink node t ∈ V , and a time horizon T ≥ 0.

Output: A generalized temporally repeated flow with time horizon T .

1. Let xP := 0 for all P ∈
↔
P and let x denote the static s-t-flow with generalized path

decomposition (xP )
P∈
↔
P ;

2. While distx(s, t) < T , find a shortest s-t-path P in Gx and increase xP by the residual
capacity of P .

3. Output the generalized temporally repeated flow f with time horizon T corresponding
to (xP )

P∈
↔
P .

We assume that Step 2 of the Earliest Arrival Algorithm terminates after q iterations. For i =
1, . . . , q let xi denote the feasible s-t-flow x before iteration i and let P i be the shortest path
found in iteration i. In particular, (xP i)i=1,...,k is a generalized path decomposition of xk+1.
Since P i is a shortest s-t-path in the residual network Gxi , we get for each node v ∈ P i

τ(P is,v) = distxi(s, v) and τ(P iv,t) = distxi(v, t) .

In order to show that f is a feasible flow over time, we need the following result from the theory
of static network flows.

Lemma 3.5. The values distxi(s, v) and distxi(v, t) are monotonically increasing in i.

Sketch of proof. It is well known (see, e.g., [1, Chapter 9.7] or [25, Chapter 9.4]) that the flows xi

are min-cost flows in G. A certificate of optimality for xi is the feasible node potential πi(v) :=
distxi(s, v) (remember that distances are measured with respect to transit times of arcs). After
augmenting flow along the shortest s-t-path P i in Gxi , the node potential πi(v) is still feasible.
This implies that the shortest path distances have not decreased.

We show that the flow over time computed by the Earliest Arrival Algorithm is feasible.

Lemma 3.6. The generalized temporally repeated flow f computed by the Earliest Arrival Al-
gorithm is a feasible s-t-flow over time with time horizon T .

Proof. We first show that f is indeed a feasible flow over time, i.e., 0 ≤ fe(θ) ≤ ue for e =
(v, w) ∈ E, θ ∈ [0, T ). For fixed e and θ, let

k := max{i | distxi(s, v) ≤ θ ∧ distxi(v, t) < T − θ} .

14



By the definition of f in (5) and by Lemma 3.5 we get

fe(θ) =
∑

P∈
↔
Pe(θ)

xP −
∑

P∈
↔
P←
e
(θ)

xP

=
∑

i∈{1,...,k}:e∈P i
xP i −

∑
i∈{1,...,k}:←e∈P i

xP i

= xk+1(e) ∈ [0, ue] .

Finally, it follows from Observation 3.3 that f fulfills strict flow conservation and has time
horizon T .

Theorem 3.7. The generalized temporally repeated flow f computed by the Earliest Arrival
Algorithm is an earliest arrival flow with time horizon T .

Proof. We prove that exf (t, θ) is maximal for all θ ∈ [0, T ]. For a fixed θ let

k := max{i | distxi(s, t) ≤ θ} .

Since τ(P i) = distxi(s, t) is monotonically increasing in i, Observation 3.3 yields

exf (t, θ) =
k∑
i=1

(θ − τ(P i)) · xP i = θ · |xk+1| −
∑
e∈E

τe · xk+1
e .

By our choice of k, the s-t-flow xk+1 is not only a min-cost s-t-flow in G (w.r.t. cost coeffi-
cients ce := τe for each e ∈ E) but also induces a min-cost circulation in the extended network
that is obtained by adding arc (t, s) with transit time τ(t,s) := −θ (see also Section 2). Notice
that the additional arc (t, s) and its backward arc do not induce a negative cycle in the residual
graph as by our choice of k the length of each flow-carrying s-t-path in xk+1 is bounded by θ and
the length of each s-t-path in Gxk+1 is greater than θ. Therefore xk+1 maximizes the objective
function

θ · |x| −
∑
e∈E

τe · xe

and exf (t, θ) is therefore maximal (see Section 2).

Notice that the running time of the Earliest Arrival Algorithm is not polynomially bounded
in the input size as the Successive Shortest Path Algorithm in Step 2 requires an exponential
number of iterations in the worst case (see Zadeh [37]). As a consequence, it is also known
that the function θ 7→ exf (t, θ) can have exponentially many breakpoints for an earliest arrival
flow f . It is therefore unlikely that an algorithm exists that computes f and whose running time
is polynomially bounded in the input size.

Pointers to the Literature

Shortly after Ford and Fulkerson introduce flows over time, Gale [16] shows that earliest arrival s-
t-flows always exist (they are also called “universally maximum dynamic flows” or “universally
quickest flow” in the literature). The Earliest Arrival Algorithm is due to Minieka [31] and
Wilkinson [36]. While Gale, Wilkinson, and Minieka all work in the discrete time model, the
existence of earliest arrival flows in the continuous time model is first observed by Philpott [32].

15



Fleischer and Tardos [13] finally discuss the Earliest Arrival Algorithm in the continuous time
setting.

Zadeh [37] presents a class of instances for which the Successive Shortest Path Algorithm and
thus also the Earliest Arrival Algorithm requires an exponential number of iterations. Those
instances also show that the piece-wise linear and convex function θ 7→ exf (t, θ) has exponentially
many breakpoints in the worst case.

Hoppe and Tardos [21] present a fully polynomial-time approximation scheme for the earliest
arrival s-t-flow problem that is based on a clever scaling trick. For a fixed ε > 0, the computed
s-t-flow over time f has the following property. For all θ, the excess exf (t, θ) is at least (1− ε)
times the value of a maximum s-t-flow over time with time horizon θ.

In a network with several sources and sinks with given supplies and demands, flows over time
having the earliest arrival property do not necessarily exist [12] (see Exercise 6). For the case of
several sources with given supplies and a single sink, however, earliest arrival transshipments do
always exist. This follows, for example, from the existence of lexicographically maximal flows in
time-expanded networks; see, e.g., [31] and [29]. Hajek and Ogier [17] give the first polynomial
time algorithm for computing earliest arrival flows in networks with several sources and zero
transit times. Fleischer [12] gives an algorithm with improved running time.

Baumann and Skutella [6] give an algorithm that computes earliest arrival flows for the case
of several sources and arbitrary transit times and whose running time is polynomially bounded
in the input plus output size. Fleischer and Skutella [11] use condensed time-expanded networks
to approximate such earliest arrival flows. They give a fully polynomial-time approximation
scheme that approximates the time delay as follows: For every time θ ≥ 0, the amount of flow
that should have reached the sink in an earliest arrival flow by time θ, reaches the sink at latest
at time (1 + ε)θ. Tjandra [35] shows how to compute earliest arrival transshipments in networks
with time dependent supplies and capacities in time polynomial in the time horizon and the
total supply at sources.

Earliest arrival flows and transshipments are motivated by applications related to evacuation.
In the context of emergency evacuation from buildings, Berlin [7] and Chalmet, Francis, and
Saunders [9] study the quickest transshipment problem in networks with multiple sources and
a single sink. Jarvis and Ratliff [23] show that three different objectives of this optimization
problem can be achieved simultaneously: (i) Minimizing the total time needed to send the
supplies of all sources to the sink, (ii) fulfilling the earliest arrival property, and (iii) minimizing
the average time for all flow needed to reach the sink. Hamacher and Tufecki [19] study an
evacuation problem and propose solutions which further prevent unnecessary movement within
a building.

4 Minimum Cost Flows Over Time

In this section we consider flows over time in networks with additional cost coefficients ce ≥ 0
on the arcs e ∈ E. As in the case of static flows, ce is the cost for sending one flow unit along
arc e. Thus, the cost of a given flow over time f with time horizon T is

c(f) :=
∑
e∈E

ce ·
∫ T

0
fe(θ) dθ .

We consider the following minimum cost flow over time problem.

16



ē2

en

ēn

ts

e1

ē1

e2

Figure 6: The network obtained from an instance of the Partition Problem in the proof of
Theorem 4.1.

Minimum Cost s-t-Flow Over Time Problem

Given: A network G = (V,E) with capacities, transit times, and costs on the arcs, a source
node s ∈ V , a sink node t ∈ V , a time horizon T ≥ 0, and a demand d ≥ 0.

Task: Find a feasible s-t-flow over time f with time horizon T , value d, and minimum cost.

Surprisingly, and in contrast to static min-cost flow problems, this problem is already NP-
hard.

Theorem 4.1. The Minimum Cost s-t-Flow Over Time Problem is weakly NP-hard.

Proof. We consider the corresponding decision problem that asks for a feasible s-t-flow over time
f with time horizon T , value d, and cost at most b for some given cost bound b. We reduce the
well-known weakly NP-complete Partition Problem to this decision problem.

Partition Problem

Given: a1, . . . , an ∈ Z>0 with A :=
∑n

i=1 ai even.

Question: Is there a subset I ⊆ {1, . . . , n} with
∑

i∈I ai =
∑

i 6∈I ai.

We denote the complement of I ⊆ {1, . . . , n} by Ī := {1, . . . , n} \ I.
Given an instance of the Partition Problem, we build up the network consisting of unit

capacity arcs1 depicted in Figure 6. For i = 1, . . . , n, arc ei has transit time τei := ai and
cost cei := 0, while arc ēi has transit time τēi := 0 and cost cēi := ai. The demand is set
to d := 2, the time horizon is T := 1 + A/2 and the cost bound is b := A. We get a natural
bijection between subsets I ⊆ {1, . . . , n} and s-t-paths by defining PI to be the unique s-t-paths
with ei ∈ PI if and only if i ∈ I. Notice that PI and PĪ are arc-disjoint s-t-paths with

τ(PI) =
∑
i∈I

ai , c(PI) =
∑
i 6∈I

ai ,

τ(PĪ) =
∑
i 6∈I

ai , c(PĪ) =
∑
i∈I

ai .

We argue that the Partition instance is a yes-instance if and only if there exists a feasible s-t-flow
over time with time horizon T , value d, and cost at most b.

If the given Partition instance is a yes-instance with solution I, the two arc-disjoint paths PI
and PĪ have transit time and cost A/2 and can thus be used to send two units of flow (one on
each path) to the sink within time T = 1 +A/2 and cost b = 2 ·A/2.

We now assume by contradiction that the given instance of the Partition Problem is a no-
instance but f is a feasible s-t-flow over time with time horizon T , value d, and cost at most b.

1The network violates our general assumption that there is at most one arc between any pair of nodes. Notice,
however, that this can be avoided if we split arcs by introducing intermediate nodes.

17



Since all flow arrives strictly before time T in the sink, flow can only be sent along s-t-paths
with transit time at most T −1 = A/2. Moreover, by our assumption, no path with transit time
A/2 exists such that all flow travels along paths with transit time at most A/2−1. Those paths,
however, have cost at least A/2 + 1 such that the total cost of f is at least 2(A/2 + 1) > b. This
contradicts our assumption and thus proves the result.

On the positive side, there is an algorithm that solves the Minimum Cost s-t-Flow Over
Time Problem in pseudo-polynomial time.

Theorem 4.2. The Minimum Cost s-t-Flow Over Time Problem can be solved in pseudo-poly-
nomial time.

The proof of this theorem is given below. It relies on the very general concept of time-
expanded networks which we introduce next.

Definition 4.3 (Time-expanded network). Let G = (V,E) be a network with capacities u,
integral transit times τ ∈ Z≥0, and costs c on the arcs. For a given time horizon T ∈ Z>0, the
corresponding time-expanded network GT = (V T , ET ) with capacities and costs on the arcs is
defined as follows. For each node v ∈ V we create T copies v0, v1, . . . , vT−1, that is,

V T := {vθ | v ∈ V, θ = 0, 1, . . . , T − 1} .

For each arc e = (v, w) ∈ E, there are T − τe copies e0, e1, . . . , eT−1−τe where arc eθ connects
node vθ to node wθ+τe . Arc eθ has capacity ueθ := ue and cost ceθ := ce. Moreover, ET contains
holdover arcs (vθ, vθ+1) for v ∈ V and θ = 0, . . . , T − 2. The capacity of holdover arcs is infinite
and they have zero cost. Summarizing, the set of arcs ET is given by

ET := {eθ = (vθ, wθ+τe) | e = (v, w) ∈ E, θ = 0, 1, . . . , T − 1− τe}
∪ {(vθ, vθ+1) | v ∈ V, θ = 0, 1, . . . , T − 1} .

An example of a time-expanded network is given in Figure 7. Notice that the size of the
time-expanded network GT is linear in T and therefore only pseudo-polynomial in the input
size.

Lemma 4.4. Let G = (V,E) be a network with capacities u, integral transit times τ ∈ Z≥0,
and costs c on the arcs. For a given time horizon T ∈ Z>0, a feasible static s0-tT−1-flow x
in GT yields a feasible s-t-flow over time f in G with time horizon T , cost c(x) = c(f), and
value |f | = |x|. The reverse direction is also true.

Proof. Given x, we define f by

fe(ξ) := xeθ for e ∈ E, ξ ∈ [θ, θ + 1), θ = 0, 1, . . . , T − 1− τe.

It is straightforward to verify that f obeys capacity and weak flow conservation constraints, has
cost c(f) = c(x), and value |f | = |x|. Conversely, given f , we define x by

xeθ :=
∫ θ+1

θ
fe(ξ) dξ for e ∈ E, θ = 0, 1, . . . , T − 1− τe.

The flow values on holdover arcs are defined by

x(vθ,vθ+1) :=
∑

e∈δ−(v)

∫ θ+1−τe

0
fe(ξ) dξ −

∑
e∈δ+(v)

∫ θ+1

0
fe(ξ) dξ ,

18



2

t

3

s

0

τ (s,
v)

= 0

1

w

v

s

[4, 5)

[3, 4)

[2, 3)

[1, 2)

[0, 1)

twv

Figure 7: On the left hand side a network G with transit times on the arcs is given. On the
right hand side the time-expanded network GT with time horizon T = 5 is depicted. There is
one copy of each node for each time interval [θ, θ + 1), for θ = 0, 1, . . . , T − 1.

for v ∈ V \ {s}, θ = 0, 1, . . . , T − 2. For the special case of the source node s, we set

x(sθ,sθ+1) :=
∑

e∈δ+(s)

∫ T

θ+1
fe(ξ) dξ −

∑
e∈δ−(s)

∫ T

θ+1−τe
fe(ξ) dξ ,

for θ = 0, 1, . . . , T − 2. It is again straightforward to verify that x obeys capacity and flow
conservation constraints, has cost c(x) = c(f), and value |x| = |f |.

We can finally prove Theorem 4.2.

Proof of Theorem 4.2. As a result of Lemma 4.4, a min-cost s-t-flow over time in G can be ob-
tained in pseudo-polynomial time by computing a min-cost s0-tT−1-flow x in the time expanded
network GT . This result relies on the assumption that all transit times and the time horizon
are integral. In the more general setting with arbitrary rational transit times and time horizon,
integrality can be achieved if we scale time by the least common multiple of the denominators
of those rational numbers. This concludes the proof.

Pointers to the Literature

Time-expanded networks have already been introduced by Ford and Fulkerson [14, 15]. Unfor-
tunately, due to the time expansion, the size of the network grows linearly in T which is, in
general, exponential in the input size of the problem. This difficulty has already been pointed
out by Ford and Fulkerson. On the other hand, the advantage of a time-expanded network is
that it turns the problem of determining an optimal flow over time into a static network flow
problem. Moreover, time-expanded networks are very flexible since they can also model time-
dependent capacities, costs, transit times etc. This approach is also used in practice to solve
flow over time problems. In many cases, however, the size of these networks makes the problem
solution prohibitively expensive.

19



The NP-hardness result in Theorem 4.1 and the presented reduction are due to Klinz and
Woeginger [24]. They also show that computing a temporally repeated flow with minimum cost is
strongly NP-hard (via a reduction of the strongly NP-complete 3-Partition Problem). Fleischer
and Skutella [11] show that there always exists a minimum cost flow over time obeying the strict
flow conservation constraints, even for the case of multiple sources and sinks with given supplies
and demands, respectively. Moreover, Fleischer and Skutella [11] introduce condensed time
expanded networks of polynomial size that lead to fully polyomial-time approximation schemes
for several NP-hard flow over time problems including min-cost flows over time. The idea is
to partition time into intervals of size ε2 · n/T and to round transit times accordingly. For the
case that arc costs are proportional to transit times, Fleischer and Skutella [10] describe a very
simple fully polyomial-time approximation scheme based on capacity scaling for the Minimum
Cost s-t-Flow Over Time Problem. They observe that optimal solutions to this problem are
flows over time satisfying the earliest arrival and latest departure property (see Exercise 7 for
the definition of latest departure flows). Their algorithm runs directly on the original network
(i.e., no time expansion).

5 Multi-Commodity Flows Over Time

In the preceding sections we have considered single-commodity flows in the network G with one
source node s and one sink node t. In this section we consider the situation where multiple
commodities have to be shipped through a common network G and thus have to share the
capacities of arcs. Each commodity i has a source node si ∈ V and a sink node ti ∈ V .

Definition 5.1 (Multi-commodity flow over time). A multi-commodity flow over time f with k
commodities and time horizon T is a collection of k single-commodity flows over time f i, i =
1, . . . , k, with time horizon T . We call f feasible if it satisfies the capacity constraints

k∑
i=1

f ie(θ) ≤ ue for e ∈ E, θ ∈ [0, T ),

and f i is an si-ti-flow over time for each commodity i = 1, . . . , k. A feasible multi-commodity
flow over time f satisfies given demands d1, . . . , dk if |f i| ≥ di, for i = 1, . . . , k.

Multi-Commodity Flow Over Time Problem

Given: A network G = (V,E) with capacities and transit times on the arcs; k commodities
i = 1, . . . , k, each with a source node si ∈ V , a sink node ti ∈ V , and a demand di ≥ 0;
a time horizon T ≥ 0.

Task: Find a feasible multi-commodity flow over time with time horizon T satisfying the
given demands.

We mention the following theorem on the complexity of the Multi-Commodity Flow Over
Time Problem without proof (see Hall, Hippler, and Skutella [18] for a proof).

Theorem 5.2. For k ≥ 2 commodities, the Multi-Commodity Flow Over Time Problem is
weakly NP-hard.

Is is not clear whether the Multi-Commodity Flow Over Time Problem is contained in NP
since the encoding size of a feasible solution might be exponential in the input size.

20



Theorem 5.3. The Multi-Commodity Flow Over Time Problem can be solved in pseudo-poly-
nomial time.

Proof. The Multi-Commodity Flow Over Time Problem on network G can be reduced to a
static multi-commodity flow problem on the time-expanded network GT (see Definition 4.3).
Static multi-commodity flows can be computed by general linear programming techniques in
time polynomial in the size of the network.

As for the case of single-commodity flows over time, we consider multi-commodity flows over
time with a simple structure and generalize the concept of temporally repeated flows.

Definition 5.4 (Temporally repeated multi-commodity flow). A temporally repeated multi-
commodity flow f with time horizon T is a collection of temporally repeated flows f i with
time horizon T , for each commodity i = 1, . . . , k, such that the underlying si-ti-flows xi form a
feasible multi-commodity flow x, that is,

∑k
i=1 x

i
e ≤ ue for each e ∈ E.

Lemma 5.5. A temporally repeated multi-commodity flow f with time horizon T is a feasible
multi-commodity flow over time with time horizon T .

Proof. By definition, f i is an si-ti-flow over time with time horizon T , for i = 1, . . . , k. Moreover,
capacity constraints are satisfied since f ie(θ) ≤ xie, for e ∈ E, θ ∈ [0, T ), and thus

k∑
i=1

f ie(θ) ≤
k∑
i=1

xie = xe ≤ ue for e ∈ E, θ ∈ [0, T ).

This concludes the proof.

We obtain the following approximation result.

Theorem 5.6. If there is a feasible multi-commodity flow over time f with time horizon T
satisfying demands d1, . . . , dk, then there exists a temporally repeated multi-commodity flow with
time horizon 2T satisfying demands d1, . . . , dk. Moreover, such a temporally repeated multi-
commodity flow can be computed in polynomial time.

Proof. Consider a feasible multi-commodity flow over time f with time horizon T satisfying
demands d1, . . . , dk. We define a static multi-commodity flow x̄ by averaging f over the entire
time horizon, that is,

x̄ie :=
1
T
·
∫ T

0
f ie(θ) dθ for i = 1, . . . , k, e ∈ E. (6)

The feasibility of f implies that the capacity constraint
∑k

i=1 f
i
e(θ) ≤ ue holds for e ∈ E,

θ ∈ [0, T ). As a consequence, x̄ also obeys capacity constraints:

k∑
i=1

x̄ie =
1
T
·
∫ T

0

k∑
i=1

f ie(θ) dθ ≤
1
T
·
∫ T

0
ue dθ = ue .

Similarly, since exf i(v, T ) = 0 for v ∈ V \ {si, ti}, i = 1, . . . , k (see Definition 2.3 (c)) it follows
that x̄i obeys flow conservation:

∑
e∈δ−(v)

x̄ie −
∑

e∈δ+(v)

x̄ie =
1
T
·

 ∑
e∈δ−(v)

∫ T

0
f ie(θ) dθ −

∑
e∈δ+(v)

∫ T

0
f ie(θ) dθ


=

exf i(v, T )
T

= 0

21



for v ∈ V \{si, ti}, i = 1, . . . , k. Applying the same argument for node t implies that |x̄i| = |f i|/T
for i = 1, . . . , k.

We have thus shown that x̄ is a feasible multi-commodity flow with |x̄i| = |f i|/T , for i =
1, . . . , k. Moreover, for i = 1, . . . , k,∑

e∈E
τe · x̄ie =

1
T
·
∑
e∈E

τe ·
∫ T

0
f ie(θ) dθ .

If we set ce := τe for each e ∈ E, the term on the right hand side is equal to 1/T times the
cost c(f i) of the flow over time f i. Since f i has time horizon T , flow can only travel along
paths of cost at most T ; thus c(f i) ≤ T · |f i|. Putting things together we show that the
temporally repeated multi-commodity flow with time horizon 2T corresponding to the feasible
multi-commodity flow x̄ satisfies demands d1, . . . , dk:

2T · |x̄i| −
∑
e∈E

τe · x̄ie = 2 · |f i| − 1
T
· c(f i) ≥ |f i| ≥ di ,

for i = 1, . . . , k. Thus, the temporally repeated multi-commodity flow with time horizon 2T
corresponding to the feasible multi-commodity flow x̄ has the desired properties.

It remains to show that such a temporally repeated multi-commodity flow can be computed
in polynomial time. The given proof of existence requires knowledge of the multi-commodity flow
over time f which is NP-hard to compute. We can, however, compute a static multi-commodity
flow x which mimics x̄ and still yields the desired temporally repeated multi-commodity flow
with time horizon 2T . The task is to find a feasible multi-commodity flow x such that xi is an
si-ti-flow with

2T · |xi| −
∑
e∈E

τe · xie ≥ di ,

for all i = 1, . . . , k. This is a multi-commodity flow problem with linear cost constraints and
can easily be formulated as a linear program of polynomial size.

The result in Theorem 5.6 implies an approximation algorithm with performance guarantee 2
for the Quickest Multi-Commodity Flow Problem.

Quickest Multi-Commodity Flow Problem

Given: A network G = (V,E) with capacities and transit times on the arcs; k commodities
i = 1, . . . , k, each with a source node si ∈ V , a sink node ti ∈ V , and a demand di ≥ 0.

Task: Find a feasible multi-commodity flow over time with minimum time horizon T satis-
fying the given demands.

Corollary 5.7. There is an approximation algorithm with performance guarantee 2 for the
Quickest Multi-Commodity Flow Problem.

Proof. The algorithm described in the proof of Theorem 5.6 can be embedded into a binary
search for the minimum time horizon T . Since standard binary search can only determine
the minimum T up to a certain finite precision ε, this yields an approximation algorithm with
performance guarantee 2 + ε for any fixed ε > 0. In order to get rid of the additional ε in the
performance guarantee, one can replace the binary search by a parametric search. We omit
further details.

22



Pointers to the Literature

The NP-hardness result in Theorem 5.2 is due to Hall, Hippler, and Skutella [18]. They also
show that the Multi-Commodity Flow Over Time Problem with simple flow paths and strict flow
conservation is strongly NP-hard. The presented approximation result for the Quickest Multi-
Commodity Flow Problem is due to Fleischer and Skutella [11]. The described approach also
works in a more general setting with costs by using length-bounded static flow computations.
Martens and Skutella [28] make use of this approach to approximate s-t-flows over time with
a bound on the number of flow-carrying paths (k-splittable flows over time). Moreover, fully
polynomial-time approximation schemes for various quickest flow problems can be obtained by
using condensed time-expanded networks [11]. More results on single-commodity quickest flows
are described at the end of Section 2.

Exercises

Exercise 1. A simple upper bound on the value of a maximum s-t-flow over time with time
horizon T can be obtained by multiplying the minimum capacity of a (static) s-t-cut by T .
Prove that this upper bound can diverge from the maximum value of a feasible s-t-flow over
time by an arbitrarily large factor.

Exercise 2. Consider the network G depicted in Figure 8.

(a) Use the Ford-Fulkerson Algorithm in order to determine a maximum s-t-flow over time with
time horizon T = 18.

(b) Determine a minimum capacity s-t-cut over time with time horizon T = 18.

Exercise 3. Consider a transshipment problem with a given vector of supplies and demands at
the nodes of the network G. It is well known that the static flow problem to satisfy all supplies
and demands can be reduced to a maximum s-t-flow problem by introducing a super source s
and a super sink t. Try to find a similar reduction for the case of flows over time and discuss
the principal difficulties that occur.

Exercise 4. Find a network such that no temporally repeated flow has the earliest arrival
property.

s

t

(7, 30)

(10, 20)

(5, 25)
(2, 20)

(6, 4)

(5, 5)

(1, 20)

Figure 8: An instance of the Maximum Flow Over Time Problem. The arc labels indicate transit
times and capacities, i.e., the label at arc e is (τe, ue). The time horizon is T = 18.

23



Exercise 5. Use the Earliest Arrival Algorithm in order to determine an earliest arrival flow f
with time horizon T = 18 in the network depicted in Figure 8. Draw the graph of the func-
tion θ 7→ exf (t, θ).

Exercise 6. Definition 3.1 of an earliest arrival flow can be generalized straightforwardly to
a setting with multiple sources, each with a given supply. It turns out that an earliest arrival
flow still exists in this case. On the other hand, we run into problems when there are multiple
sinks t1, . . . , tk with given demands d1, . . . , dk that bound the excess of the sinks. That is,
exf (ti, θ) ≤ di must hold for all i and θ. Construct an example with two sinks and one source
for which no flow over time f maximizes exf (t1, θ) + exf (t2, θ) for all θ simultaneously.

Exercise 7. An s-t-flow over time f with time horizon T is a latest departure flow, if it maximizes
the amount of flow leaving the source after time θ for all θ ∈ [0, T ] (subject to the constraint
that all flow must arrive at t before time T ). Prove that the flow over time computed by the
Earliest Arrival Algorithm is a latest departure flow.

Exercise 8. We consider temporally repeated flows in the context of min-cost flows over time.

(a) Construct a network with two temporally repeated flows f and f ′ corresponding to two
different path decompositions of the same static s-t-flow x such that c(f) 6= c(f ′).

(b) Construct an example in which the cost of any temporally repeated flow with time horizon T
and value d is larger than the minimum cost of an s-t-flow over time with time horizon T
and value d.

Exercise 9. Show that an arbitrary s0-t(T−1)-cut with capacity δ < ∞ in the time-expanded
network GT naturally induces an s-t-cut over time with time horizon T and capacity δ in G.

Exercise 10. It follows from Theorem 2.12 that there always exists a maximum s-t-flow over
time obeying the strict capacity constraints. The purpose of this exercise is to show that this
result does not hold in the more general setting with multiple commodities.

(a) Find an instance of the Multi-Commodity Flow Over Time Problem such that any multi-
commodity flow over time with time horizon T satisfying all demands uses storage of flow
at intermediate nodes for at least one commodity.
Hint: Consider the instance given in Figure 9.

(b) Try to come up with an instance of the Quickest Multi-Commodity Flow Problem such
that the ratio of the minimal possible time horizon without and with storage of flow at
intermediate nodes, respectively, is as large as possible.
Remark: This is an open research question. There is no instance known which achieves a
larger ratio than the one depicted in Figure 9. On the positive side, Theorem 5.6 implies
that the ratio is always bounded by 2.

0 0 2s1 s2 t1

s3

t2

t3

2

Figure 9: An example with k = 3 commodities. Commodities 1 and 3 each have demand 1,
commodity 2 has demand 2. The numbers at the arcs indicate transit times; all arcs have unit
capacity.

24



References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Theory, Algorithms,
and Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] E. J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces, Wi-
ley, New York, 1987.

[3] E. J. Anderson, P. Nash, and A. B. Philpott, A class of continuous network flow
problems, Mathematics of Operations Research, 7 (1982), pp. 501–514.

[4] E. J. Anderson and A. B. Philpott, Optimisation of flows in networks over time, in
Probability, Statistics and Optimisation, F. P. Kelly, ed., Wiley, New York, 1994, ch. 27,
pp. 369–382.

[5] J. E. Aronson, A survey of dynamic network flows, Annals of Operations Research, 20
(1989), pp. 1–66.

[6] N. Baumann and M. Skutella, Solving evacuation problems efficiently: Earliest ar-
rival flows with multiple sources, in Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, Berkeley, CA, 2006, pp. 399–408.

[7] G. N. Berlin, The use of directed routes for assessing escape potential, National Fire
Protection Association, Boston, MA, 1979.

[8] R. E. Burkard, K. Dlaska, and B. Klinz, The quickest flow problem, ZOR — Methods
and Models of Operations Research, 37 (1993), pp. 31–58.

[9] L. G. Chalmet, R. L. Francis, and P. B. Saunders, Network models for building
evacuation, Management Science, 28 (1982), pp. 86–105.

[10] L. Fleischer and M. Skutella, Minimum cost flows over time without intermediate
storage, in Proceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms,
Baltimore, MD, 2003, pp. 66–75.

[11] , Quickest flows over time, SIAM Journal on Computing, 36 (2007), pp. 1600–1630.

[12] L. K. Fleischer, Faster algorithms for the quickest transshipment problem, SIAM Journal
on Optimization, 12 (2001), pp. 18–35.

[13] L. K. Fleischer and E. Tardos, Efficient continuous-time dynamic network flow algo-
rithms, Operations Research Letters, 23 (1998), pp. 71–80.

[14] L. R. Ford and D. R. Fulkerson, Constructing maximal dynamic flows from static
flows, Operations Research, 6 (1958), pp. 419–433.

[15] , Flows in Networks, Princeton University Press, 1962.

[16] D. Gale, Transient flows in networks, Michigan Mathematical Journal, 6 (1959), pp. 59–
63.

[17] B. Hajek and R. G. Ogier, Optimal dynamic routing in communication networks with
continuous traffic, Networks, 14 (1984), pp. 457–487.

25



[18] A. Hall, S. Hippler, and M. Skutella, Multicommodity flows over time: Efficient
algorithms and complexity, Theoretical Computer Science, 379 (2007), pp. 387–404.

[19] H. W. Hamacher and S. Tufecki, On the use of lexicographic min cost flows in evacu-
ation modeling, Naval Research Logistics, 34 (1987), pp. 487–503.

[20] B. Hoppe, Efficient dynamic network flow algorithms, PhD thesis, Cornell University, 1995.

[21] B. Hoppe and E. Tardos, Polynomial time algorithms for some evacuation problems, in
Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms, Arlington,
VA, 1994, pp. 433–441.

[22] , The quickest transshipment problem, Mathematics of Operations Research, 25 (2000),
pp. 36–62.

[23] J. Jarvis and H. Ratliff, Some equivalent objectives for dynamic network flow problems,
Management Science, 28 (1982), pp. 106–108.

[24] B. Klinz and G. J. Woeginger, Minimum-cost dynamic flows: The series-parallel case,
Networks, 43 (2004), pp. 153–162.

[25] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer,
Berlin, 4th ed., 2008.

[26] B. Kotnyek, An annotated overview of dynamic network flows, Rapport de recherche
4936, INRIA Sophia Antipolis, 2003.

[27] S. E. Lovetskii and I. I. Melamed, Dynamic network flows, Automation and Remote
Control, 48 (1987), pp. 1417–1434. Translated from Avtomatika i Telemekhanika, 11 (1987),
pp. 7–29.

[28] M. Martens and M. Skutella, Length-bounded and dynamic k-splittable flows, in Op-
erations Research Proceedings 2005, H.-D. Haasis, H. Kopfer, and J. Schönberger, eds.,
Springer, 2006, pp. 297–302.

[29] N. Megiddo, Optimal flows in networks with multiple sources and sinks, Mathematical
Programming, 7 (1974), pp. 97–107.

[30] , Combinatorial optimization with rational objective functions, Mathematics of Oper-
ations Research, 4 (1979), pp. 414–424.

[31] E. Minieka, Maximal, lexicographic, and dynamic network flows, Operations Research, 21
(1973), pp. 517–527.

[32] A. B. Philpott, Continuous-time flows in networks, Mathematics of Operations Research,
15 (1990), pp. 640–661.

[33] W. B. Powell, P. Jaillet, and A. Odoni, Stochastic and dynamic networks and rout-
ing, in Network Routing, M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser,
eds., vol. 8 of Handbooks in Operations Research and Management Science, North–Holland,
Amsterdam, The Netherlands, 1995, ch. 3, pp. 141–295.

[34] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin,
2003.

26



[35] S. Tjandra, Dynamic Network Optimization with Application to the Evacuation Problem,
PhD thesis, Universität Kaiserslautern, Shaker Verlag, Aachen, 2003.

[36] W. L. Wilkinson, An algorithm for universal maximal dynamic flows in a network, Op-
erations Research, 19 (1971), pp. 1602–1612.

[37] N. Zadeh, A bad network problem for the simplex method and other minimum cost flow
algorithms, Mathematical Programming, 5 (1973), pp. 255–266.

27


	Basic Notions and Results on Static Network Flows
	Maximum Flows Over Time
	Earliest Arrival Flows
	Minimum Cost Flows Over Time
	Multi-Commodity Flows Over Time

