Prof. Dr. P. Wittbold

Martha Hubski

www.math.tu-berlin.de/Vorlesungen/SS09/FA1/

Funktionalanalysis I

Sommersemester 2009

5. Übungsblatt

Abgabe: 27.05.2009 vor Beginn der Übung

1. Aufgabe (7 Punkte)

Betrachte die Operatoren $L, L_n: (C^1[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$, gegeben durch

$$Lf(t) = f'(t)$$
 und $L_n f(t) = \frac{f(t) - f(t - \frac{1}{n})}{\frac{1}{n}}$ für $f \in C^1[0, 1], n \in \mathbb{N}$.

Beweise die folgenden Aussagen:

- a) L ist abgeschlossen, aber nicht stetig (d.h. unbeschränkt).
- b) L_n ist für alle $n \in \mathbb{N}$ beschränkt.
- c) L_n konvergiert stark gegen L.
- d) L_n konvergiert aber nicht gegen L bzgl. der Operatornorm.

2. Aufgabe (7 Punkte)

Für Banachräume X und Y betrachte die Menge

$$\mathcal{R}(X,Y) = \{A \in L(X,Y) \mid A \text{ ist injektiv und } \operatorname{ran}(A) \text{ ist abgeschlossen} \}$$

und beweise die folgenden Aussagen:

a) Für alle $A \in L(X, Y)$ gilt:

$$A \in \mathcal{R}(X,Y) \iff \exists C > 0: \|Ax\| \ge C\|x\| \text{ für alle } x \in X.$$

- b) $\mathcal{R}(X,Y)$ ist offen in L(X,Y).
- c) Ist dim $X < \infty$, so gilt für alle $A \in L(X, Y)$:

$$A \in \mathcal{R}(X,Y) \iff A \text{ injektiv.}$$

3. Aufgabe (6 Punkte)

Seien X, Y normierte Räume und $A: X \supseteq D \rightarrow Y.$

a) Sei $X=Y=\ell^2$ und A gegeben durch

$$A(x_k)_k = (kx_k)_k$$
 für $(x_k)_k \in D$.

Untersuche A auf Abgeschlossenheit für die beiden Fälle

- (i) $D = \{(x_k)_k \in \ell^2 \mid (kx_k)_k \in \ell^2\},$
- (ii) $D = c_{00} = \{(x_k)_k \in \ell^2 \mid \exists N \in \mathbb{N} : x_k = 0 \, \forall \, k \ge N \}.$
- b) Sei $D \subseteq X$ ein Unterraum und Ax = 0 für alle $x \in D$. Ist A abgeschlossen?
- c) Seien X, Y Banachräume und $D \subseteq X$ ein Unterraum. Zeige: Ist A linear, injektiv und abgeschlossen, so ist auch $A^{-1}: Y \supseteq \operatorname{ran}(A) \to X$ abgeschlossen.

(Gesamtpunktzahl: 20 Punkte)