Dr. Britta Peis
Dr. Sebastian Stiller
Jannik Matuschke

Assignment 1

Exercise 1

Formulate the following combinatorial problems as integer linear programs.
a) Partition: Given n numbers $a_{1}, \ldots, a_{n} \in \mathbb{N}$ determine whether there exists a subset $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} a_{i}=\sum_{i \in\{1, \ldots, n\} \backslash S} a_{i}$.
b) Satisfiability: Given m clauses C_{1}, \ldots, C_{m} over n boolean variables x_{1}, \ldots, x_{n}, find a truth assignment to the variables that satisfies all clauses. (A clause is a disjunction of literals, e.g. $C_{3}=x_{2} \vee \neg x_{5} \vee x_{13}$.)
c) Integral Max Flow: Given an s - t-network with capacities $u: E \rightarrow \mathbb{Z}$, find an integral s - t-flow of maximum value.

What complexity results can be derived from the above modelling?

Exercise 2

a) Let $A \in \mathbb{Q}^{m \times n}$. Show that the encoding size of $\operatorname{det}(A)$ is bounded by a polynomial in the encoding size of A.
b) Show that Linear Algebra has a good characterization, i.e. for each instance there either exists a certificate for the existence or for the non-existence of a solution $x \in \mathbb{Q}^{n}$ to $A x=b$ and the size of this certificate is bounded by a polynomial in the input size. Hint: You already learned about the certificates in the lecture. Use part a) to show that they are sized polynomially.

Reminder: The encoding size of a rational number $r=\frac{p}{q}$ with $p \in \mathbb{Z}, q \in \mathbb{N}$ coprime is

$$
\langle r\rangle:=1+\left\lceil\log _{2}(|p|+1)\right\rceil+\left\lceil\log _{2}(q+1)\right\rceil
$$

and the encoding size of a matrix $A \in \mathbb{Q}^{m \times n}$ is

$$
\langle A\rangle:=m n+\sum_{i \in[m]} \sum_{j \in[n]}\left\langle a_{i j}\right\rangle .
$$

Exercise 3

Draw the lattice that is generated by the columns of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 4 & 0 \\
5 & -1 & 3
\end{array}\right)
$$

Hint: It might be helpful to determine a basis of the lattice first.

Exercise 4

Determine an integral solution of the diophantine equation $15 x_{1}+51 x_{2}+18 x_{3}=b$ or show that none exists for
a) $b=17$.
b) $b=42$.

Exercise 5

Let

$$
A=\left(\begin{array}{cccc}
2 & 4 & 2 & -6 \\
3 & 10 & 7 & -13 \\
6 & 0 & -1 & -16
\end{array}\right)
$$

a) Determine a basis of the lattice spanned by the columns of A.
b) Determine all integral solutions of the system of diophantine equations $A x=b$ or show that none exists for
i) $b=\left(\begin{array}{l}4 \\ 2 \\ 9\end{array}\right)$.
ii) $b=\left(\begin{array}{l}2 \\ 4 \\ 9\end{array}\right)$.

