Dr. Britta Peis
Dr. Sebastian Stiller
Jannik Matuschke

## Assignment 2

## Exercise 1

Show that there are lattices that have no orthogonal basis.

## Exercise 2

We want to show that Lovász's basis reduction method runs in polynomial time. Therefore we define the potential

$$
\Phi\left(b_{1}, \ldots, b_{n}\right)=\prod_{i=1}^{n} \operatorname{det}\left(B_{i}^{T} D B_{i}\right)
$$

where $B_{i}=\left(b_{1}, \ldots, b_{i}\right)$.
a) Show that $\Phi\left(b_{1}, \ldots, b_{n}\right)$ does not change in steps (1) and (2) of the algorithm.
b) Show that $\operatorname{det}\left(B_{i}^{T} D B_{i}\right)=\prod_{j=1}^{i}\left\|b_{j}^{*}\right\|_{D}^{2}$, where $b_{1}^{*}, \ldots, b_{i}^{*}$ is the Gram-Schmidt orthogonalization of $b_{1}, \ldots, b_{i}$ with respect to $D$.
c) Suppose $b_{k}$ and $b_{k+1}$ are interchanged in step (3) for one $k$ (Reminder: This is the case if $\left\|b_{k}^{*}\right\|_{D}^{2}>$ $\left.2\left\|b_{k+1}^{*}\right\|_{D}^{2}\right)$. Use b) to show that then $\operatorname{det}\left(\tilde{B}_{k}^{T} D \tilde{B}_{k}\right)<\frac{3}{4} \operatorname{det}\left(B_{k}^{T} D B_{k}\right)$, where $\tilde{B}_{k}$ arises from $B_{k}$ by replacing its $k$ th column with $b_{k+1}$.
d) Use c) to show that $\Phi\left(b_{1}, \ldots, b_{n}\right)$ decreases by a factor of $\frac{3}{4}$ after every execution of step (3).
e) Show that initially $\Phi\left(b_{1}, \ldots, b_{n}\right) \leq\left(n d_{\max }\right)^{n^{2}}$, where $d_{\max }:=\max _{i, j}\left|d_{i j}\right|$. Show that $\Phi\left(b_{1}, \ldots, b_{n}\right) \geq$ 0 throughout the algorithm.
f) Conclude that Lovász's basis reduction method runs in polynomial time.

## Exercise 3

Apply Lovász's basis reduction method to the lattice generated by the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$.

## Exercise 4

Show that Integer Linear Programming does not yield strong duality, i.e. find a matrix $A \in \mathbb{Q}^{m \times n}$ and vectors $c \in \mathbb{Q}^{n}, b \in \mathbb{Q}^{m}$ such that

$$
\begin{aligned}
\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Z}^{n}\right\} & <\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Q}^{n}\right\} \\
& =\min \left\{b^{T} y \mid A^{T} y=c, y \geq 0, y \in \mathbb{Q}^{m}\right\} \\
& <\min \left\{b^{T} y \mid A^{T} y=c, y \geq 0, y \in \mathbb{Z}^{m}\right\}
\end{aligned}
$$

What can you say about complementary slackness?

