TU BERLIN Institut für Mathematik Dr. Britta Peis Dr. Sebastian Stiller Jannik Matuschke

Assignment 5

Exercise 1

For $k \in \mathbb{N}$ let $A = \begin{pmatrix} 1 & 0 \\ 1 & k \end{pmatrix}$ and consider the polyhedron $P = \{x \in \mathbb{R}^2 \mid Ax \leq 0\}.$

- a) Compute a minimal Hilbert basis for the cone spanned by the rows of A.
- b) Show that any TDI system $A'x \leq 0$ that describes P has size exponential in the encoding size of A.

Exercise 2

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ such that the system $Ax \leq b$ is TDI. Show that for any $r \in \mathbb{N}$ the system $\frac{1}{r}Ax \leq b$ is also TDI.

Exercise 3

For $k \in \mathbb{N}$ let $P_k = \text{conv.hull}\{(0,0), (0,1), (k, \frac{1}{2})\}$. Show that $P_k^{(t)} \neq P_I$ for any t < k. Hint: Show that $(k-1, \frac{1}{2}) \in P'_k$.

Exercise 4

Let G = (V, E) be a graph. A stable set is a subset $S \subseteq V$ such that every edge $e \in E$ has at most one endpoint in S. Observe that for the polyhedron

$$P^{G} = \{ x \in \mathbb{R}^{V} \mid x_{v} + x_{w} \le 1 \; \forall \{v, w\} \in E, \; x \ge 0 \}$$

 P_I^G is the convex hull of all incidence vectors of stable sets in G. Let C_5 be the graph that consists of a cycle of five vertices and $P = P^{C_5}$. Determine

$$\max_{x \in P} \sum_{v \in V} x_v \text{ and } \max_{x \in P'} \sum_{v \in V} x_v.$$

Exercise 5

Show that the following problem is NP-hard: Given a finite set E and three Matroids $(E, \mathcal{F}_1), (E, \mathcal{F}_2), (E, \mathcal{F}_3)$ by an independency oracle, find a set $F \in \mathcal{F}_1 \cap \mathcal{F}_2 \cap \mathcal{F}_3$ of maximum cardinality. *Hint: Use a reduction from Hamiltonian Path.*