Übung am 19.06.09

Seien $p, q \in K[t]$ zwei Polynome. Das Polynom p teilt q (Notation: p|q), falls der Rest von p nach Division durch q null ist.

Definition 1. Seien $p, q \in K[t]$ zwei Polynome. Der größte gemeinsame Teiler ggT(p,q) ist das eindeutige normierte Polynom das sowohl p als auch q teilt und ein Vielfaches jeden anderen Teilers ist, d.h.

- 1. ggT(p,q)|p und ggT(p,q)|q und
- 2. falls a|p und a|q, dann a|ggT(p,q).

Den ggT kann man mit dem euklidischen Algorithmus rekursiv berechnen. Sei deg $p > \deg q$ und nach Polynomdivision existieren dann Polynome $s, r \in K[t]$ mit $p = s \cdot q + r$ mit r = 0 oder deg $p < \deg q$ und es gilt:

$$\mathsf{ggT}(p,q) = \mathsf{ggT}(r,q) = \mathsf{ggT}(p-sq,q).$$

Iteriert man dieses Verfahren so erhält man schließlich ggT(p,q) = ggT(a,0) (der Grad wird immer kleiner) und a ist der a = ggT(p,q). Der größte gemeinsame Teiler einer Menge $\{p_1, \ldots, p_r\}$ wird rekursiv definiert, durch

$$ggT(p_1,\ldots,p_r) = ggT(p_1,ggT(p_1,\ldots,ggT(p_{r-1},p_r)\cdot)).$$

Die Polynome heißen teilerfremd, falls $ggT(p_1, \ldots, p_r) = 1$.

Lemma 2. Seien $p_1, \ldots, p_r \in K[t]$. Es existieren Polynome $a_1, \ldots, a_r \in K[t]$ mit

$$\sum_{i=1}^r a_i p_i = \mathsf{ggT}(p_1, \dots, p_r).$$

Beweis. euklidischer Algorithmus

Proposition 3 (Zerlegungssatz). Sei $V = K^n$ und $A \in K^{n \times n}$ eine Matrix. Seien $p_1, \ldots, p_r \in K[t]$ teilerfremde Polynome deren Produkt $\mu_A = p_1 \cdot p_2 \cdots p_r$ das Minimalpolynom von A ist. Dann gilt:

$$V = \bigoplus_{i=1}^{r} \ker p_i^*(A).$$

Beweis. Der Beweis funktioniert wie folgt:

- Definiere $h_i = \prod_{j \neq i} p_j$
- Zeige $V = \sum_{i=1}^r \ker p_i^*(A)$, wie folgt:
 - Da h_i teilerfremd, existieren nach Lemma a_i mit $\sum a_i h_i = 1$
 - Setzt man A ein so erhält man $E_n = \sum a_i^*(A)h_i^*(A)$, also $v = E_n v = \sum a_i^*(A)h_i^*(A)v$.
 - Da A mit A und E_n und Skalaren kommutiert, folgt $a_i^*(A)h_i^*(A)v \in \ker p_i^*(A)$.

- Also $v = \sum w_i$ mit $w_i = a_i^*(A)h_i^*(A)v \in \ker p_i^*(A)$.
- Zeige, dass die Summe direkt ist, d.h. $\ker p_i^*(A) \cap \bigcup_{j \neq i} \ker p_j^*(A) = \{0\}$ wie folgt
 - $-v \in \ker p_i^*(A), \text{ d.h. } p_i^*(A)v = 0$
 - $-v\in\bigcup_{j\neq i}\ker p_j^*(A),$ d.h. es existieren $v_j\in\ker p_j^*(A)$ mit $\sum v_j=v.$
 - DaAmit Aund E_n und Skalaren kommutiert und alle Abbildungen linear sind folgt $h_i^\ast(A)v=0$
 - Da h_i und p_i nach Konstruktion teilerfremd sind, existieren $b_1,b_2\in K[t]$ mit $b_1h_i+b_2p_i=1.$
 - Durch Einsetzen von A und Anwendung auf v folgt:

$$v = E_n v = b_1^*(A) \underbrace{h_i^*(A)v}_0 + b_2^*(A) \underbrace{p_i^*(A)v}_0 = 0$$

• Daraus folgt: $V = \bigoplus_{i=1}^r \ker p_i^*(A)$.

Satz 4. Sei $V = K^n$ und $A \in K^{n \times n}$ eine Matrix. Es gilt: A ist genau dann diagonalisierbar, wenn das Minimalpolynom μ_A in verschieden Linearfaktoren zerfällt.