TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Prof. Michael Joswig Thilo Rörig Lineare Algebra II SoSe 2009

5. Übungsblatt

Abgabe 25.05. vor der Übung 14h15 im MA041

Aufgabe 13: Sei V ein euklidischer Vektorraum mit Skalarprodukt $\langle .,. \rangle$. Definiere für $a \in V \setminus \{0\}$ die Spiegelung s_a an der Hyperebene $\{a\}^{\perp}$ durch:

$$s_a(v) = v - 2 \frac{\langle v, a \rangle}{\langle a, a \rangle} a$$
 für alle $v \in V$.

Sei $F \in O(V) \setminus \{id\}$ und $u \in V$ mit $F(u) \neq u$. Setze $U = \{u\}^{\perp}$. Dann gilt:

- 1. $s_{F(u)-u}(F(u)) = u$ und
- 2. $s_{F(u)-u} \circ F|_U$ ist ein orthogonaler Endomorphismus auf U.
- 3. Jedes $G \in O(V) \setminus \{\mathsf{id}\}$ ist Hintereinanderausführung von höchstens $\dim(V)$ Spiegelungen.

6 Punkte

Aufgabe 14: Sei $C \subset \mathbb{R}^3$ ein dreidimensionaler Würfel gegeben durch die folgende Menge:

$$C = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid -1 \le x_i \le 1 \text{ für } i = 1, 2, 3 \right\}.$$

Bezeichne mit $\operatorname{vert}(C)$ die 8 Ecken des Würfels, die den 8 Vektoren in $\{\pm 1\}^3$ entsprechen. Sei $\operatorname{Sym}(C) = \{T \in O(\mathbbm N^3) \mid T(C) = C\}$ die Symmetriegruppe von C. Jede Transformation $T \in \operatorname{Sym}(C)$ bildet eine Permutation der Ecken $\operatorname{vert}(V)$. Daher kann man $\operatorname{Sym}(C)$ als Untergruppe der symmetrischen Gruppe $\operatorname{Sym}(\operatorname{vert}(C)) \cong \operatorname{Sym}(\{1,\dots,8\})$ ansehen. Gib deine Ergebnisse stets als Untergruppe der symmetrischen Gruppe an.

- 1. Finde eine Untergruppe H von $\mathrm{Sym}(C)$, die von Spiegelungen erzeugt wird und die scharf-eckentransitiv ist, d.h. für zwei Ecken $v,w\in\mathrm{vert}(C)$ existiert genau ein $T\in H$ mit T(v)=w. Wie viele Elemente hat diese Untergruppe.
- 2. Wähle eine Ecke $v_0 \in \text{vert}(C)$ des Würfels. Was ist der Stabilisator

$$stab(v_0) = \{ T \in Sym(C) \, | \, T(v_0) = v_0 \}$$

der Ecke v_0 ?

3. Benutze die bisherigen Teilergebnisse, um die Symmetriegruppe des Würfels anzugeben. Welche Kardinalität hat die Gruppe Sym(C)?

6 Punkte

Aufgabe 15: Sei V ein Vektorraum und $F:V\to V$ eine lineare Abbildung. Ein Untervektorraum $W\le V$ heisst F-invariant, wenn $F(W)\subset W$ ist. Definiere den von v erzeugten F-zyklischen Unterraum

$$U(F, v) = \lim\{v, F(v), F^2(v), \dots\}.$$

- 1. Zeige, dass U(F,v) der kleinste F-invariante Unterraum ist, der v enthält.
- 2. Betrachte nun den Spezialfall $V=\mathbb{R}^5$. Gib eine Abbildung F_A mittels ihrer darstellenden Matrix $A\in\mathbb{R}^{5\times 5}$ an, so dass $\mathbb{R}^5=V_1\oplus V_2$ und
 - V_1 und V_2 sind F_A -zyklisch,
 - $\dim V_1 = 3$, $\dim V_2 = 2$.

6 Punkte