Numerische Mathematik II/ Numerical Analysis II

 2. Assignment

 2. Assignment}

Homework: HW2 (Due 04.05.2011)

1. Construct the adjoint of Heun's method.
2. Show that the implicit trapezoidal rule

$$
u_{i+1}=u_{i}+\frac{h}{2}\left(f\left(t_{i}, u_{i}\right)+f\left(t_{i+1}, u_{i+1}\right)\right)
$$

is symmetric.
3. Show that the adjoint method has exactly the same asymptotic expansion for the global error as the original method, with h replaced by $-h$.
4. Show that the symmetric method of order p possess an h^{2}-expansion of the global error of the form

$$
e(t, h)=y(t)-u_{h}(t)=e_{2 q}(t) h^{2 q}+e_{2 q+2}(t) h^{2 q+2}+\ldots
$$

with $e_{2 j}\left(t_{0}\right)=0$ and $q=\left\lceil\frac{p}{2}\right\rceil$.

Programming assignment: PA2 (Due 09.05.2011/10.05.2011)

1. Write a program that solves the $\operatorname{ODE} y^{\prime}(t)=f(t, y), y\left(t_{0}\right)=y_{0}$ using Gragg's method without and with extrapolation (GBS-method) on the interval $\left[t_{0}, t_{0}+a\right]$.
(a) For Gragg's method without extrapolation compute $S_{0}=y_{0}, S_{1}, S_{2}, \ldots, S_{N}$ where

$$
\begin{aligned}
u_{0} & =y_{0} \\
u_{1} & =u_{0}+h f\left(t_{0}, y_{0}\right) \\
u_{i+1} & =u_{i-1}+2 h f\left(t_{i}, u_{i}\right), \quad i=1,2, \ldots, N \\
S_{i} & =\frac{1}{4}\left(u_{i-1}+2 u_{i}+u_{i+1}\right), \quad i=1,2, \ldots, N .
\end{aligned}
$$

Compare Gragg's method with Runge-Kutta method from the previous programming assignment for $N(i)=10,20,40,80,160,320,640,1280,2560,5120$.
(b) For Gragg's method with extrapolation use the Neville-Aitken method introduced in the lecture with $H=\frac{a}{N(1)}$. Compare the results for $h_{l}=\frac{H}{2^{i}}, l=0,1,2, \ldots$ and $h_{l}=\frac{H}{2 l}, l=$ $1,2,3, \ldots$, where l is the number of extrapolation steps. Extrapolate the solution in points $t_{0}+H, t_{0}+2 H, t_{0}+3 H, \ldots$

Test your program for the problems from Exercise 1 Assignment 1 with $a=1$. For steps $t_{0}, t_{0}+$ $\frac{1}{5} a, t_{0}+\frac{2}{5} a, \ldots$ plot the numerical solution against the exact solution and the corresponding error $\mathbf{e}_{i}=\left\|y\left(t_{i}\right)-\mathbf{u}_{i}\right\|_{\infty}$. Summarize the numerical results in a table.

Hint:

$$
[\mathrm{h}, \mathrm{t}, \mathrm{u}]=\operatorname{gragg}(\mathrm{f}, \mathrm{tO}, \mathrm{y} 0, \mathrm{~N}, \mathrm{a}, \mathrm{l})
$$

where $\mathrm{t} 0=t_{0}$ is the beginning of the interval, $\mathrm{y} 0=y_{0}$ the initial value, $\mathrm{N}=N$ total number of steps and $\mathrm{a}=a$ the interval length, 1 the number of extrapolation points ($1=0$ no extrapolation). The output are $\mathrm{h}=h=a / N$ the step size, $\mathbf{u}=\mathbf{u}=\left[u_{1}, \ldots, u_{n}\right]$ the numerical approximation of $y(t)$ at points $\mathrm{t}=\left[t_{0}, \ldots, t_{N}\right]$.
For Gragg's method with extrapolation your program may call subroutines graggstep and extrapol. Subroutine graggstep may determine the approximate solutions $u_{h_{i}}\left(t_{0}+H\right)$ using local step sizes h_{i}.

