Numerische Mathematik II/ Numerical Analysis II
 6. Assignment

Homework: HW6 (31.05-01.06.2011)

1. Find and sketch the regions of absolute stability of the given methods
(4 pts.)
(a) $u_{j+3}=u_{j+2}+\frac{h}{24}\left(9 f_{j+3}+19 f_{j+2}-5 f_{j+1}+f_{j}\right)$
(b) $u_{j+2}=u_{j+1}+\frac{h}{12}\left(5 f_{j+2}+8 f_{j+1}-f_{j}\right)$
(c) $u_{j+2}=u_{j}+2 h f_{j+1}$
(d) $u_{j+1}=u_{j}+\frac{h}{2}\left(f_{j}+f_{j+1}\right)$
2. Investigate the consistency, stability and convergence of the following methods
(a) $u_{j+2}=4 u_{j+1}-3 u_{j}-2 h f_{j}$
(b) $u_{j+1}=u_{j}+h f_{j+1}$
(c) $u_{j+2}=\frac{3}{2} u_{j+1}-\frac{1}{2} u_{j}+h f_{j+1}$
(d) $u_{j+2}=3 u_{j+1}-2 u_{j}+h\left(f_{j+2}-2 f_{j+1}\right)$
3. Consider the family of methods

$$
u_{j+1}=u_{j}+h\left(\theta f\left(t_{j}, u_{j}\right)+(1-\theta) f\left(t_{j+1}, u_{j+1}\right)\right), \quad \theta \in[0,1] .
$$

Determine the set of all θ, so that the associated method is A-stable.
4. Analogously to the $B D F$ method from the lecture construct the two-step method which satisfies

$$
P^{\prime}\left(t_{j+1}\right)=f\left(t_{j+1}, u_{j+1}\right)
$$

where P is a polynomial such that

$$
\begin{equation*}
P\left(t_{j}\right)=u_{j}, P\left(t_{j+1}\right)=u_{j+1}, P^{\prime}\left(t_{j}\right)=f\left(t_{j}, u_{j}\right) \tag{3pts.}
\end{equation*}
$$

Programming Assignment: PA5 (7-8.06.2011)
(10 pts.)
Write a program diffsolve.m which solves the boundary value problem

$$
u^{\prime \prime}(t)+\sin (t) u^{\prime}(t)+\cos (t) u(t)=0 \text { and } u\left(-\frac{\pi}{2}\right)=u\left(\frac{3 \pi}{2}\right)=1
$$

by using difference scheme on the interval $\mathbb{I}=\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$. Use the forward type 1 st order difference quotient and the 2 nd order central difference quotient.

Program structure:
The routine diffsolve.m should be of the following form

$$
[t, u]=\operatorname{diffsolve}(\mathbb{N}) .
$$

For a given number of steps \mathbb{N} the interval \mathbb{I} will be approximated with the equidistant mesh $\mathbb{I}_{h}=\left[-\frac{\pi}{2}=\right.$ $\left.t_{0}, t_{1}, \ldots, t_{N-1}, t_{N}=\frac{3 \pi}{2}\right]$. The solution of the boundary-value problem in those mesh points will be approximated by the mesh function $u_{j}=u\left(t_{j}\right), j=0,1, \ldots, N$. The resulting linear system may be solved with help of Matlab \backslash. Plot the solution for $N=2^{j}, j=3, \ldots, 10$ and the error in logarithmic scale. The exact solution of the problem is given by $u(t)=e^{\cos (t)}$. Interpret your results.

