Numerische Mathematik II/ Numerical Analysis II 7. Assignment

Homework: HW7 (7-8.06.2011)

1. Check the existence and uniqueness of the solution of the following boundary value problems
(a) $y^{\prime \prime}+9 y=0, \quad y(0)=1, \quad y^{\prime}\left(\frac{\pi}{2}\right)=3$,
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=0, \quad y(0)-y^{\prime}(0)=1, \quad y^{\prime}(\pi)-y(\pi)=e^{-\pi}$.
2. Using the Gershgorin's Theorem
(a) locate the eigenvalues of the matrix

$$
M=\left[\begin{array}{cccc}
5 & 0 & 0 & -1 \\
1 & 0 & -1 & 1 \\
-1.5 & 1 & -2 & 1 \\
-1 & 1 & 3 & -3
\end{array}\right]
$$

Compare your results with those given by Matlab function eig.
(b) show that matrix $A=\left[a_{i, j}\right] \in \mathbb{C}^{n \times n}$ is invertible if it is strictly diagonally dominant. Is this also true for the diagonally dominant matrices? (Proof or give a counter example).
Note: Matrix $A=\left[a_{i, j}\right] \in \mathbb{C}^{n \times n}$ is

$$
\begin{aligned}
& \text { diagonally dominant } \Leftrightarrow\left|a_{i, i}\right| \geq \sum_{j=1, j \neq i}^{n}\left|a_{i, j}\right|, \\
& \text { strictly diagonally dominant } \Leftrightarrow\left|a_{i, i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i, j}\right| .
\end{aligned}
$$

3. Let the following matrices have appropriate sizes. Show that
(a) $0 \leq B_{1} \leq B_{2} \wedge 0 \leq D_{1} \leq D_{2} \Rightarrow B_{1} \cdot D_{1} \leq B_{2} \cdot D_{2}$,
(b) $|B \cdot D| \leq|B| \cdot|D|$.
4. Discretize the following boundary value problems using
(a) the 1 st and the 2 nd order central DQ

$$
y^{\prime \prime}(t)=-\frac{4}{t} y^{\prime}(t)+\frac{2}{t^{2}} y(t)-\frac{2}{t^{2}} \log (t), \quad y(1)=-\frac{1}{2}, y(2)=\log 2, t \in[1,2]
$$

(b) the 1st order forward DQ and 2nd order central DQ

$$
y^{\prime \prime}(t)+2 t y^{\prime}(t)+y(t)-t^{2}=0, \quad y(0)=0, y(1)=0
$$

and write the corresponding equations in the matrix form $\mathbf{A u}=\mathbf{b}$.

Write a program shooting.m which solves the boundary value problem $y^{\prime \prime}(t)=f\left(t, y(t), y^{\prime}(t)\right), y(a)=$ $y a, y(b)=y b$ using the single shooting method with Newton's method.

Program structure:

On the web page you will find the file shooting.m, the file runme.m and all necessary subprograms. Your task is to complete the shooting.m file. In the runme.m you will test your program for problems

1. $y^{\prime \prime}=1+\left(y^{\prime}\right)^{2}, y(0)=0, y\left(\frac{\pi}{4}\right)=1, \mathbb{I}=\left[0, \frac{\pi}{4}\right]$ (funct6)
2. $y^{\prime}=-\tan \left(\frac{1}{1.05-t}\right) \frac{y}{(1.05-t)^{2}}, y(0.98)=\cos \left(\frac{1}{(1.05-0.98)}\right)$ (funct9)

Choose tol $=10^{-2}, 10^{-4}, 10^{-6}$.
Submission: In addition to shooting.m file, please submit printouts of the files generated by runme.m.

