Numerische Mathematik II/ Numerical Analysis II
 8. Assignment

Homework: HW8 (21-22.06.2011)

1. Calculate the nodal FEM basis functions $\varrho_{1}, \ldots, \varrho_{5}$ which span the space of quartic polynomials. Use the nodes $-1,-\frac{1}{2}, 0, \frac{1}{2}, 1$.
(3 pts.)
2. Let the following boundary value problem be given

$$
-y^{\prime \prime}(x)+\pi^{2} y(x)=2 \pi^{2} \sin (\pi x), \quad y(0)=y(1)=0
$$

with the exact solution $y(x)=\sin (x)$.
(a) Use the Galerkin method to determine analytically the approximation of the solution in space S being the largest possible subspace of Π_{3}, i.e., the space of polynomials with degree at most three. Do not forget to include the boundary conditions. In order to do that determine the basis functions for S and write the corresponding linear system. Calculate the solution and write it in the form

$$
P(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} .
$$

Plot the solution and compare it with the exact solution.
Note: You may use symbolic packages like Matlab or Mathematica.
(b) What approximations you will get if you use the Galerkin method with space

$$
S_{n}=\{\sin (k \pi x) \mid k=1, \ldots, n\}
$$

$$
\text { for } n \leq 1 ?
$$

3. Let V be a real, in general not finite dimensional, vector space with th inner product $[\cdot, \cdot]$. Furthemore let

$$
\ell: V \rightarrow \mathbb{R}
$$

be a continous linear mapping $\left(\ell \in V^{*}\right)$.
Show that

$$
F(y)=[y, y]-2 \ell(y)
$$

takes its minimum for y if and only if

$$
[y, v]=\ell(v) \text { for all } v \in V
$$

Moreover, there is at most one minimum.
Hint: Use

$$
\varphi(\varepsilon)=F(y+\varepsilon v), \quad \varepsilon \in \mathbb{R}, v \in V .
$$

4. Consider the following boundary value problem

$$
\left.\begin{array}{rl}
-u^{\prime \prime}(x)+\beta u(x) & =f(x) \quad \text { in } \Omega:=(0,1) \subset \mathbb{R}, \tag{1}\\
u(0)=u(1) & =0
\end{array}\right\}
$$

with $\beta \in \mathbb{R}, \beta \geq 0$.
(a) Let $V=C_{0}^{1}(\bar{\Omega}):=\left\{v \in C^{1}(\bar{\Omega}) \mid v(0)=v(1)=0\right\}$. Determine the symmetric bilinear form $a: V \times V \rightarrow \mathbb{R}$ and the linear functional $\ell: V \rightarrow \mathbb{R}$ such that (1) can be written in the variational formulation

$$
\begin{equation*}
\text { Find } u \in V \text { mit } a(u, v)=\ell(v) \text { for all } v \in V \tag{3pts.}
\end{equation*}
$$

(b) Let $N \in \mathbb{N}$ and $0=x_{0}<x_{1}<\ldots<x_{N}<x_{N+1}=1$ be a grid (mesh) defined on $\bar{\Omega}$ with the grid-sizes (mesh-sizes) $h_{i}:=x_{i}-x_{i-1}$ for $i \in\{1, \ldots, N+1\}$. Consider elements $\bar{\Omega}_{i}:=\left[x_{i-1}, x_{i}\right]$ for $i \in\{1, \ldots, N+1\}$ and the finite element space

$$
V_{h}^{1}:=\left\{\varphi \in C^{0}(\bar{\Omega})|\varphi|_{\Omega_{i}} \text { is linear } \forall i \in\{1, \ldots, N+1\}, \varphi(0)=\varphi(1)=0\right\}
$$

with shape functions $\varrho_{i}, i=1, \ldots, N$ defined as

$$
\varrho_{i}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<x_{i-1} \\
\frac{x-x_{i-1}}{h_{i}} & \text { if } & x_{i-1} \leq x<x_{i} \\
\frac{x_{i+1}-x}{h_{i+1}} & \text { if } & x_{i} \leq x<x_{i+1} \\
0 & \text { if } & x_{i+1} \leq x
\end{array}\right.
$$

With a and ℓ defined before determine the matrix $A \in \mathbb{R}^{N \times N}$ (called stiffness matrix) and the vector $b \in \mathbb{R}^{N}$ (called load vector) for the Galerkin approximation $u_{h}=\sum_{i=1}^{N} c_{i} \varrho_{i} \in V_{h}^{1}$, where $c=\left(c_{1}, \ldots, c_{N}\right)^{\top}$ is a solution of the linear system $A c=b$. The entries of matrix A can be determined explicitely by calculating the appropriate integrals.

Programming assignment: PA8 (28-29.06.2011)

Using Exercise 4 write a program FEM1d.m which solves the boundary value problem (1) using the 1D finite element method.

1. The routine FEM1d.m should be of the following form

$$
[c, T, h]=\operatorname{FEM} 1 d(\text { beta }, f, T),
$$

where beta, f are the parameter and the right side function defining the boundary value problem, $\mathrm{T}=\left[x_{1}, \ldots, x_{N}\right]$ is the grid defined on $\bar{\Omega}, \mathrm{N}$ the number of grid points. Note that $\mathrm{T}=\left[x_{1}, \ldots, x_{N}\right]$ does not have to be an equidistant grid, so the size h_{i} of each element $\bar{\Omega}_{i}:=\left[x_{i-1}, x_{i}\right]$ may be different. The output will be a vector c , grid T and vector h with sizes of elements $\bar{\Omega}_{i}:=\left[x_{i-1}, x_{i}\right]$. For the equidistant grid T all the entries in vector h will be the same.
2. Since the program should work for every function f you should use the Trapezoidal rule to calculate the integrals needed to determine the load vector b. Please note that the basis functions have a small support, each of them is not zero only on two neighbouring elements.
3. Test your program for the following problems
(a) $\beta=0$ and $f(x)=1$. The exact solution is given by $u(x)=\frac{1}{2} x(1-x)$.
(b) $\beta=1$ and $f(x)=e^{x} 4 x$. The exact solution is given by $u(x)=e^{x}\left(x-x^{2}\right)$.
4. Write the Matlab script main.m (takes no input arguments) which presents the numerical results: grid point x_{i}, approximate solution c_{i}, the exact solution $u\left(x_{i}\right)$ in a table. In addition plot the error against the mesh size, i.e., $\|c-u\|_{\infty}$ for the approximations obtained on the equidistant grid with mesh sizes $h_{p}=\frac{1}{2^{p}+1}$, for $p=\{1, \ldots, 14\}$. Hint: Make these plots using loglog scale where on one axis you have different values of h_{p} and the error on the other.

