Numerische Mathematik II/ Numerical Analysis II
 10. Assignment

Homework: HW10 (07.07.2011)

1. (Distance between subspaces)

Let $\mathcal{S}, \mathcal{T} \subseteq \mathbb{C}^{n}$ be the nontrivial k-dimensional subspaces and let $V \in \mathbb{C}^{n \times n}$ be nonsingular. Show that

$$
d\left(V^{-1} \mathcal{S}, V^{-1} \mathcal{T}\right) \leq \kappa(V) d(\mathcal{S}, \mathcal{T})
$$

2. (Subspaces and matrix representations)

Let

$$
\mathcal{V}=\mathcal{R}\left(\left[\begin{array}{c}
0 \\
I_{n-m}
\end{array}\right]\right), \quad W=\left[\begin{array}{c}
Z_{1} \\
Z_{2}
\end{array}\right], \quad Z_{1} \in \mathbb{C}^{m \times m}, Z_{2} \in \mathbb{C}^{(n-m) \times m}
$$

where $\operatorname{rank}(W)=m$. Show that

$$
\mathcal{R}(W) \cap \mathcal{V}=\{0\} \quad \Longleftrightarrow \quad Z_{1} \text { is nonsingular. }
$$

(4 pts.)
3. Let the Rayleigh quotient $r(w)$ of the symmetric matrix $A \in \mathbb{R}^{n \times n}$ and vector $w \in \mathbb{R}^{n}$ be defined as

$$
r(w)=\frac{w^{T} A w}{w^{T} w}
$$

Show that

$$
\operatorname{grad} r(w)=\frac{2}{w^{T} w}(A w-r(w) w)
$$

Moreover, conclude that for $v \in \mathbb{R}^{n}$ being an eigenvector of A

$$
|r(w)-r(v)|=\mathcal{O}\left(\|w-v\|^{2}\right) \text { for } w \rightarrow v
$$

4. Let

$$
P=I-\beta v v^{T}, \quad \beta=\frac{2}{v^{T} v}, \quad v \in \mathbb{R}^{n}
$$

be the Householder transformation.
(a) Show that P is symmetric and orthogonal.
(b) Show that choosing $v=x+\alpha e_{1}$ leads to

$$
v=x \pm\|x\| e_{1} \quad \text { and } \quad P x=\mp\|x\| e_{1} .
$$

(c) Let $C=P B P \in \mathbb{R}^{n \times n}$, with symmetric matrix $B \in \mathbb{R}^{n \times n}$. Show that

$$
C=B-v q^{T}-q v^{T}
$$

where $p=\beta B v, \quad q=p-\frac{\beta\left(p^{T} v\right)}{2} v$.
(4 pts.)

Programming assignment: PA10 (12.07.2011)

1. Write the program which finds the eigenvalues of the given real matrix using the $Q R$ algorithm
(a) without shifts,
(b) with real shifts.

Test your program for matrices
(a)

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

without shift, with shift $\mu=0.1$, with Wilkinson shift $\mu= \pm 1$. What do you observe and why?
(b)

$$
B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

without shift, with shift $\mu=0.1$. What do you observe and why?
2. Write the program which reduces a given real matrix into the Hessenberg form using the Householder transformation. Compare your implementation with Matlab function hess. Test your program for

$$
A=\left[\begin{array}{ccc}
-149 & -50 & -154 \\
537 & 180 & 546 \\
-27 & -9 & -25
\end{array}\right] \quad \text { and } \quad B=\operatorname{magic}(7)
$$

