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Chapter 0

Introduction

The main topics of Numerical Linear Algebra are the solution of di�erent classes of eigenvalue
problems and linear systems.
For the eigenvalue problem we discuss di�erent classes.

(a) The standard eigenvalue problem: For a real or complex matrix A 2 Cn;n, determine
x 2 Cn; � 2 C, such that

Ax = �x:

In many applications the coe�cient matrices have extra properties such as being real and
symmetric or complex Hermitian.
For linear systems:

Ax = b; x 2 Cn; b 2 Cm

with A 2 Cm;n we again may extra properties for the coe�cient matrices.
We will concentrate in this course on the numerical solution of standard and generalized
eigenvalue problems and the solution of linear systems.
Applications: Eigenvalue problems arise in

� the vibrational analysis of structures and vehicles (classical mechanics);

� the analysis of the spectra and energy levels of atoms and molecules (quantum mechan-
ics);

� model reduction techniques, where a large scale model is reduced to a small scale model
by leaving out weakly important parts;

� many other applications.

Linear systems arise in almost any area of science and engineering such as

(a) frequency response analysis for excited structures and vehicles;

(b) �nite element methods or �nite di�erence methods for ordinary and partial di�erential
equations;

(c) data mining, information retrieval;
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(d) and many others.

We will distinguish between small and medium class problems where the full matrices �t into
main memory, these are of today sizes n = 102 � 105 and large sparse problems, where the
coe�cient matrices are stored in sparse formats, and have sizes n = 106 and larger. We will
mainly discuss the case of complex matrices. Many results hold equally well in the real case,
but often the presentation becomes more clumsy. We will point out when the real case is
substantially di�erent.
We will discuss the following algorithms.

A small A large

EVP QR-Algorithm Lanczos, Arnoldi

LS CG, GMRES
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Chapter 1

Matrix theory

1.1 Basics

1.1.1 Eigenvalues and Eigenvectors

Let A 2 Cn;n, then v 2 Cn n f0g and � 2 C that satisfy

Av = �v

are called eigenvector and eigenvalue of A.

The set

� (A) := f� 2 Cj � eigenvalue of Ag

is called spectrum of A.

1.1.2 Matrix norms

Let A 2 Cm;n, then

jjAjjp := sup
x 6=0

jjAxjjp
jjxjjp

is the matrix p-norm, p 2 N [ f1g and for invertible matrices A

�p (A) := jjAjjp � jjA�1jjp

is called the p-norm condition number of A.

Special cases:

(a) p = 1; the column-sum norm:

jjAjj1 = max
j

mX
i=1

jaij j
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(b) p =1; the row-sum norm:

jjAjj1 = jjAT jj1

(c) p = 2; the spectral norm

jjAjj2 = square root of the largest eigenvalue of A�A

with A� = A
T
.

Convention:

jjAjj = jjAjj2; � (A) = �2 (A)

1.1.3 Isometric and unitary matrices

De�nition 1 Let U 2 Cm;n;m � n.

(a) U is called isometric if U�U = Ik;

(b) U is called unitary if U is isometric and n = k.

Theorem 2 Let U 2 Cn�k; k � n. Then the following are equivalent.

(a) U is isometric;

(b) the columns of U are orthonormal;

(c) hUx;Uyi = hx; yi for all x; y 2 Ck (h�; �i: standard real or complex scalar product);

(d) jjUxjj = jjxjj for all x 2 Ck;

For k = n, (a)-(d) are equivalent to

(e) UU� = In;

(f) U�1 = U�;

(g) the rows of U are orthonormal.

In this case, furthermore,

jjU jj = 1 = jjU�1jj = � (U) :
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1.1.4 Subspaces

De�nition 3 A space U � Cn is called subspace, if for all x; y 2 U ; � 2 C we have

x+ y 2 U ; �x 2 U :
Theorem 4 Let U � Cn be a subspace with basis (x1; : : : ; xm) and X = [x1; : : : ; xm], i.e.
Rank(X) = m.

(a) Then U = R (X) := fXyj y 2 Cmg (Range or column space of X).

(b) Let Y 2 Cn;m with Rank(Y ) = m, then

R (X) = R (Y ), X = Y B; B 2 Cm;m:

In particular then B is invertible and

XB�1 = Y:

(c) The Gram-Schmidt method for (x1; : : : ; xm) delivers an orthonormal basis (q1; : : : ; qm)
of U with

Span fq1; : : : ; qjg = Span fx1; : : : ; xjg
for j = 1; : : : ;m. This condition is equivalent to:

There exists an upper triangular matrix R 2 Cm;m with X = QR where Q = [q1; : : : ; qm].
(QR-decomposition)

1.1.5 Invariant subspaces

De�nition 5 Let A 2 Cn;n and U � Cn. Then U is called A-invariant, if

x 2 U ) Ax 2 U for all x 2 Cn:
Theorem 6 Let A 2 Cn;n; X 2 Cn;n and U = R (X). Then the following are equivalent:

(a) U is A-invariant;

(b) There exists B 2 Ck;k, such that:

AX = XB:

Furthermore, in this case for � 2 C and v 2 Ck:

Bv = �v ) AXv = �Xv;

i.e., every eigenvalue von B is also an eigenvalue von A.

Remark 7 If A;X;B satisfy AX = XB and if X has only one column x, then B is a scalar
� and we obtain the eigenvalue equation

Ax = x�;

i.e., X can be viewed as a generalization of the concept of eigenvector.
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1.2 Matrix decompositions

1.2.1 Schur decomposition

Theorem 8 (Schur, 1909)

Let A 2 Cn;n. Then there exists U 2 Cn;n unitary such that

T := U�1AU

is upper triangular.

Proof: By induction: n = 1 is trivial.
\n� 1) n": Let v 2 Cn be an eigenvector of A to the eigenvalue � 2 C. Let q1 := v

jjvjj and

complete q1 to an orthonormal basis (q1; : : : ; qn) of C
n. Then Q = [q1; : : : ; qm] is unitary and

Q�1AQ =

�
� A12

0 A22

�
By the inductive assumption there exists U22 unitary, such that T22 := U�22A22U22 is upper
triangular. Setting

U = Q

�
1 0

0 U22

�
;

then T = U�AU is upper triangular. 2

Remark 9 In the Schur decomposition U can be chosen such that the eigenvalues of A appear
in arbitrary order on the diagonal.

1.2.2 The singular value decomposition (SVD)

Theorem 10 (Singular value decomposition, SVD)

Let A 2 Cm;n with Rank (A) = r. Then there exist unitary matrices U 2 Cm;m and V 2 Cn;n
such that

A = U�V �; � =

2
6664

�1
. . .

�r

0

0 0

3
7775 2 Cm;n:

Furthermore, �1 = jjAjj2 and �1; : : : ; �r are uniquely determined.

Proof: See Golub/Van Loan, Matrix Computations. 2

De�nition 11 Let A;U = [u1; : : : ; um] ; V = [v1; : : : ; vn] ;� be as in the SVD and �k := 0 for
k = r + 1; : : : ;min fm;ng. Then
(a) �1; : : : ; �minfm;ng are called singular values of A.

(b) u1; : : : ; um are called left singular vectors of A.
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(c) v1; : : : ; vn are called right singular vectors of A.

Remark 12 (a) From the SVD one obtains

A�A = V ��U�U�V � = V ���V � = V

2
6664
�21

. . . 0
�2r

0 0

3
7775V �

and

AA� = U�V �V ��U� = U���U� = U

2
6664
�21

. . . 0
�2r

0 0

3
7775U�;

i.e. �21; : : : ; �
2
r are the nonzero eigenvalues of AA� and A�A, respectively.

(b) Since AV = U� one has Kernel (A) = Span fvr+1; : : : ; vng and Image (A) = R (A) =
Span fu1; : : : ; urg.

(c) The SVD allows optimal low-rank approximation of A, since

A = U�V �

= U

0
BBB@
2
6664
�1

0
. . .

0

3
7775+ : : :+

2
6664

0
. . .

0
�n

3
7775
1
CCCAV �

=
rX

j=1

�jujv
�
j :

Here ujv
�
j is a rank one matrix of size m� n. For 0 � � � r the matrix

A� :=
�X
i=1

�iujv
�
i

is the best rank � approximation to A in the sense that

jjA�A� jj = inf
B2Cm;n

Rank (B)��

jjA�Bjj = ��+1;

where �r+1 := 0.

(d) If A is real, then also U and V can be chosen real.
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1.3 Perturbation theory

In the analysis of numerical methods, we will have to study the eigenvalues, eigenvectors,
and invariant subspaces under small perturbations. For example, if we compute an invariant
subspace numerically, then we introduce roundo� errors and the computed subspace will only
be an approximation to the invariant subspace. How good is this approximation?

1.3.1 Canonical angles and vectors

Question: let U ;V � Cn be subspaces of dimension k. How 'near' are U and V?
Strategy: Compute successively the angles between U and V beginning with the smallest.
Choose normalized vectors x 2 U and y 2 V, such that

j hx; yi j !
= max :

Without loss of generality we can choose x and y such that their scalar product is real and
nonnegative. Otherwise we can take z 2 C with jzj = 1, so that hx; zyi = z hx; yi is real and
nonnegative. Then j hx; yi j = j hx; zyi j.

(a) Choose x1 2 U and y1 2 V with jjx1jj = jjy1jj = 1 such that

hx1; y1i = max fRe hx; yi j x 2 U ; y 2 V; jjxjj = jjyjj = 1g

Then hx1; y1i is real, #1 = arccos hx1; y2i is called �rst canonical angle and x1; y1 are
called �rst canonical vectors.

(b) Suppose that we have determined j � 1 canonical angles and vectors, i.e.,

x1; : : : ; xj�1 2 U ; y1; : : : ; yj�1 2 V

are determined with (x1; : : : ; xj�1) and (y1; : : : ; yj�1) orthonormal.

Choose xj 2 U and yj 2 V with xj ? x1; : : : ; xj�1 and yj ?; y1; : : : ; yj�1 and jjxj jj =
jjyijj = 1, so that

hxj ; yji
has maximal real part. Then hxj ; yji is real,

#j := arccos hxj ; yji

is the j-th canonical angle, and xj ; yj are j-th canonical vectors. Proceeding inductively
we obtain k canonical angles 0 � #1 � : : : � #k � �

2 and orthonormal bases (x1; : : : ; xk)
and (y1; : : : ; yk) of U , V, respectively.

Lemma 13 For i; j = 1; : : : ; k and i 6= j the canonical vectors satisfy hxi; yji = 0.

Proof: Exercise. 2
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Corollary 14 Let X = [x1; : : : ; xk] and Y = [y1; : : : ; yk]. Then

X�Y = (hxi; yji) =

2
64 cos#1 0

. . .

0 cos#k

3
75

with cos#1 � : : : � cos#k � 0 and this is a SVD.

Practical computation of canonical angles and vectors

(a) Determine orthonormal bases of U and V, i.e., isometric matrices P;Q 2 Cn;k with

R (P ) = U ; R (Q) = V:

(b) Compute the SVD of P �Q

P �Q = U�V �

with the diagonal matrix
� = U�P �| {z }

X�

QV|{z}
Y

(c) Set U = [u1; : : : ; uk] and V = [v1; : : : ; vk]. Then

(a) #j = arccos�j ; j = 1; : : : ; k are the canonical angles and

(b) Puj ; Qvj ; j = 1; : : : ; k are the canonical vectors.

1.3.2 Distance between subspaces

De�nition 15 Let U ;V 2 Cn be subspaces of dimension k.

(a) For x 2 U we call
d (x;V) := min

y2V
jjx� yjj

the distance from x to V and

(b)
d (U ;V) := max

x2U

jjxjj=1

d (x;V)

the distance of U and V.

Theorem 16 Let U ;V � Cn be subspaces of dimension k with canonical angles #1 � : : : � #k,
then

d (U ;V) = sin#k:

Proof: See Stewart/Sun. Matrix perturbation theory. Boston, 1990. 2
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Chapter 2

Eigenvalue problems with dense

matrices

Situation: A 2 Cn;n, where n is small enough so that the matrix A can be fully stored and
that we can manipulate the whole matrix by similarity transformations.

2.1 The power method

Idea: Take an arbitrary q 2 Cnnf0g and form the sequence q; Aq;A2q; : : :. What will happen?

Assumption: A is diagonalizable. Let �1; : : : ; �n with j�1j � : : : � j�nj be the eigenvalues
of A and let (v1; : : : ; vn) be a basis of eigenvectors. Then there exist c1; : : : ; cn with

q = c1v1 + : : :+ cnvn:

Further assumption: c1 6= 0 (this happens with probability 1 if q is random). Then,

Aq = c1�1v1 + : : :+ cn�nvn;

Akq = c1�
k
1v1 + : : :+ cn�

k
nvn:

For j�1j > 1 the powers j�k1j will grow, so we scale as

1

�k1
Akq = c1v1 + c2

�
�2
�1

�k

v2 + : : :+ cn

�
�n
�1

�k

vn:

Third assumption: j�1j > j�2j � : : : � j�nj. Then,

 1

�k1
Akq � c1v1

 � jc2j
�����2�1

����k jjv2jj+ : : :+ jcnj
�����n�1

����k jjvnjj
�

�
jc2jjjv2jj+ : : :+ jcnjjjvnjj

� �����2�1
����k k!1�! 0;

and hence lim
k!1

1
�k
1

Akq = c1v1 and the convergence is linear with convergence rate r � j�2
�1
j.

12



De�nition 17 A sequence (xk) converges linearly to x, if there exists r with 0 < r < 1 such
that

lim
k!1

jjxk+1 � xjj
jjxk � xjj = r:

Then r is called the convergence rate of the sequence.
We say that the convergence (xk)! x is of order m � 2 if

lim
k!1

jjxk+1 � xjj
jjxk � xjjm = c 6= 0:

If m = 2 then we speak of quadratic convergence and if m = 3 of cubic convergence.

In practice we do not know 1=�k1, thus we normalize di�erently and divide by the largest (in
modulus) component of Akq.

Algorithm: (Power method)

Computes the dominant eigenvalue �1 and the associated eigenvector v1.

(a) Choose q0 2 Cn n f0g
(b) Iterate, for k = 1; 2; : : : to convergence

qk :=
1

�k
Aqk�1;

where �k is the largest (in modulus) component of Aqk�1.

The power method can also be used for large scale problem where only matrix vector multi-
plication is available. By the presented analysis we have proved the following theorem.

Theorem 18 Suppose that A 2 Cn;n has the eigenvalues �1; : : : ; �n with j�1j > j�2j � : : : �
j�nj. If q0 2 Cn n f0g has a component in the invariant subspace associated to �1, (i.e.,
\c1 6= 0"), then the sequence of subspaces span(qk), where qk is de�ned in the power method
converges to the invariant subspace associated with �1. The convergence is linear with rate
r � j�2

�1
j.

Remark 19 (a) This theorem also holds for non-diagonalizable matrices.

(b) Forming the full products Aqk costs 2n2 ops and the scaling O(n) ops. Hence m
iterations will cost 2n2m ops.

(c) If (as is very common) j�2
�1
j � 1 then the convergence is very slow.
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2.2 Shift-and-Invert and Rayleigh-Quotient-Iteration

Observations: Let A 2 Cn;n and (�; v) 2 C� Cn with Av = �v. Then

(a) A�1v = ��1v for A invertible, and

(b) (A� %I)v = (�� %)v for all % 2 C.
If �1; : : : ; �n are again the eigenvalues of A with j�1j � : : : � j�nj, then we can perform the
following iterations.

Inverse Iteration. This is the power method applied to A�1. If j�nj < j�n�1j, then the
inverse iteration converges to an eigenvector to �n with convergence rate j �n

�n�1
j (which is

small if j�nj � j�n�1j).

Shift and Invert Power Method. This is the power method applied to (A � %I)�1. Let
�j ; �k be the eigenvalues that are closest to %, and suppose that j�j � %j < j�k � %j. Then the
power method for (A� %I)�1 converges to an eigenvector associated with �j with rate�����j � %

�k � %

���� :
This is small if j�j � %j � j�k � %j and �j � % would be optimal.
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Where do we get good shifts % for the Shift and Invert Power Method? To answer this question
we need some results on residuals and backward errors.

De�nition 20 Let A 2 Cn;n and (�;w) 2 C � Cn. Then Aw � �w is called the residual of
(�;w) with respect to A.

Theorem 21 Let � 2 C; " > 0, A 2 Cn�n, and w 2 Cn with jjwjj = 1. If jjAw � �wjj = ",
then there exists a matrix ( the backward error matrix) E 2 Cn;n with jjEjj � " such that

(A+ E)w = �w:

Proof: Let r := Aw � �w and E = �rw�. Then

(A+ E)w = Aw � r w�w|{z}
=1

= �w

and jjEjj = jjrw�jj � jjrjjjjw�jj = jjrjj = ":

2

The idea to determine a good eigenvalue approximation (shift) from a given eigenvector
approximation is to minimize the residual jjAw � �wjj. Consider the over-determined linear
system

w� = Aw

with the n� 1-Matrix w, the unknown vector � and the right hand side Aw. We can use the
normal equations to solve jjAw � �wjj = min!, i.e., we use

w�w� = w�Aw respect. � =
w�Aw

w�w
:

De�nition 22 Let A 2 Cn;n and w 2 Cn n f0g. Then

r(w) :=
w�Aw

w�w

is called the Rayleigh-quotient of w with respect to A.

The following theorem gives an estimate for the distance of the Rayleigh-quotient from an
eigenvalue.

Theorem 23 Let A 2 Cn;n and (�; v) 2 C�Cn be an eigenvalue/eigenvector pair of A with
kvk = 1. Then for w 2 Cn with kwk = 1 the following estimate holds:

j�� r(w)j � 2kAk � kv � wk:

This gives an the idea for an iteration to iterate computing an approximate eigenvector and
from this a Rayleigh-quotient, i.e., the following algorithm:
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Algorithm: Rayleigh-Quotient-Iteration (RQI)

This algorithm computes an eigenvalue/eigenvector pair (�; v) 2 C � Cn of the matrix A 2
Cn;n.

(a) Start: Choose q0 2 Cn with jjq0jj = 1 and set �0 := q�0Aq0.

(b) Iterate for k = 1; 2; : : : until convergence

(a) Solve the linear system (A� �k�1I)x = qk�1 for x.

(b) qk :=
x

jjxjj
(c) �k := q�kAqk

Remark 24 (a) It is di�cult to analyze the convergence of this algorithm but one observes
practically that it almost always converges. The convergence rate is typically quadratic.
For Hermitian matrices A = A� there is more analysis and one can even show cubic
convergence.

(b) Costs: O(n3) ops per step if the linear system is solved with full Gaussian elimination.
The costs are O(n2) for Hessenberg matrices (see Chapter 2.4.2) and they can be even
smaller for banded or other sparse matrices.

2.3 Simultaneous subspace iteration

To compute several eigenvalues and the associated invariant subspace, we can generalize the
power method to the subspace iteration. Consider A 2 Cn;n with eigenvalues �1; : : : ; �n,
where j�1j � : : : � j�nj.
Idea: Instead of q0 2 Cn, consider a set of linearly independent vectors fw1; : : : ; wmg � Cn.
Set

W0 := [w1; : : : ; wm] 2 Cn�m;
and form the sequence W0; AW0; A

2W0; : : : via

Wk := AkW0 =
h
Akw1; : : : ; A

kwm

i
; k � 1:

In general, we expect R(Wk) to converge to the invariant subspace U associated with the m
eigenvalues �1; : : : ; �m. This iteration is called simultaneous subspace iteration.

Theorem 25 Let A 2 Cn;n with eigenvalues �1; : : : ; �n satisfy

j�1j � : : : � j�mj > j�m+1j � : : : � j�nj:

Let U ;V be the invariant subspaces associated with �1; : : : ; �m, and �m+1; : : : ; �n respectively.
Furthermore, let W 2 Cn�m with Rank (W ) = m and R(W ) \ V = f0g. Then for the

iteration W0 :=W , Wk+1 = AWk for k � 0 and for every % with
����m+1

�m

��� < % < 1, there exists

a constant c such that

d(R(Wk);U) � c � %k; k � 1:
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For the proof of the theorem, we need the following lemma:

Lemma 26 Let

U = R
��

Im
0

��
and Û = R

��
Im
X

��
;

with X 2 C(n�m)�m, m < n, be m-dimensional subspaces of Cn and let �1; : : : ; �m be the
canonical angles between U and Û . Then jjXjj = tan �m.

Proof: See Stewart/Sun. Matrix perturbation theory. Boston, 1990. 2

Proof: (of the theorem) We prove the theorem for the case that A is diagonalizable. We
perform a similarity transformation

Anew = S�1AoldS =

�
A1 0
0 A2

�
;

with A1 = diag (�1; : : : ; �m) and A2 = diag (�m+1; : : : ; �n). Then A1 is nonsingular, since
j�1j � : : : � j�mj > 0. Set

Unew = S�1Uold = R
��

Im
0

��

and

Vnew = S�1Vold = R
��

0
In�m

��
:

Furthermore, let

Wnew = S�1Wold =

�
Z1

Z2

�
for some Z1 2 Cm;m and Z2 2 Cn�m;m. Then

(a) d(R(Wnew);Unew) � �(S)d(R(Wold);Uold) (Exercise)

(Here �(S) = kSkkS�1k is the condition number of S with respect to inversion.)

(b) R(Wnew) \ Vnew = f0g , Z1 is nonsingular (Exercise)

In the following we drop the index 'new'. Then

W =

�
Z1

Z2

�
=

�
Im

Z2Z
�1
1

�
Z1 =

�
I
X0

�
Z1

with X0 = Z2Z
�1
1 , and hence

R(W ) = R
��

Im
X0

��
as well as

R(Wk) = R(AkW ) = R(Ak

�
I
X0

�
):
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Then it follows that

Ak

�
I
X0

�
=

�
Ak
1 0
0 Ak

2

� �
I
X0

�
=

�
Ak
1

Ak
2X0

�
=

2
64 Im
Ak
2X0A

�k
1| {z }

=:Xk

3
75Ak

1;

and thus,

R(Wk) = R
��

Im
Xk

��
:

It remains to show that

d(R(Wk);U)! 0:

Let �
(k)
m be the largest canonical angle between R(Wk) and U . Then

d(R(Wk);U) = sin�(k)
m � tan�(k)

m = jjXkjj � jjAk
2jjjjX0jjjjA�k1 jj

= j�km+1jjjX0jjj��km j;

which implies that

d(R(Wk);U) � ~c

�����m+1

�m

����k :
Undoing the similarity transformation we obtain the desired result. For the diagonalizable
case we do not need the bound %. This will be only needed in the non-diagonalizable case. 2

Remark 27 For W0 = [w1; : : : ; wm] we have

AkW0 =
h
Akw1; : : : ; A

kwm

i
;

i.e., we perform the iteration not only forW0 but simultaneously also for allW
(j)
0 = [w1; : : : ; wj ],

since

AkW
(j)
0 =

h
Akw1; : : : ; A

kwj

i
:

Under appropriate assumptions, we then have convergence of

Span
n
Akw1; : : : ; A

kwj

o
to the invariant subspace associated with �1; : : : ; �j for all j = 1; : : : ;m. For this reason one
speaks of 'simultaneous subspace iteration'.

Problems with subspace iteration in �nite precision arithmetic:

Theory: AkW0 =
�
Akw1; : : : ; A

kwm

�
in general has Rank m (for generic starting values).

Practice: Unfortunately, in �nite precision arithmetic rounding errors lead to linear depen-
dence in R(Wk) already after few iterations.

The basic idea to cope with this problem is to orthonormalize the columns in every step.
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Step 1: Factor W0 = [w1; : : : ; wm] = Q0R0 with Q0 2 Cn;m isometric and R0 2 Cm;m upper
triangular. Then R(W0) = R(Q0) and furthermore,

Span fw1; : : : ; wjg = Span
n
q
(0)
1 ; : : : ; q

(0)
j

o
; j = 1; : : : ;m;

where Q0 =
h
q
(0)
1 ; : : : ; q

(0)
m

i
. (This follows form the triangular form of R0.)

Situation after step k � 1: R(Wk�1) = R(Qk�1) with

Qk�1 =
h
q
(k�1)
1 ; : : : ; q(k�1)m

i
2 Cn;m

isometric and

Span
n
Ak�1w1; : : : ; A

k�1wj

o
= Span

n
q
(k�1)
1 ; : : : ; q

(k�1)
j

o
; j = 1; : : : ;m:

Step k: Let AQk�1 = QkRk be a QR decomposition with Qk 2 Cn;m isometric and Rk 2
Cm;m upper triangular. Then

R(Wk) = R(AWk�1) = R(AQk�1) = R(Qk);

and moreover

Span
n
Akw1; : : : ; A

kwj

o
= Span

n
q
(k)
1 ; : : : ; q

(k)
j

o
; j = 1; : : : ;m:

Algorithm: Unitary Subspace Iteration

(a) Start: Choose Q0 2 Cn;m isometric.

(b) Iterate. For k = 1; 2; : : : to convergence:

(a) Compute Zk = AQk�1

(b) Compute QR-decomposition Zk = QkRk.

Remark 28 Theoretically the convergence behavior of the unitary subspace iteration is as for
the subspace iteration but, fortunately, the described problems in �nite precision arithmetic
do not arise.
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2.4 The Francis QR Algorithm

2.4.1 Simple QR Algorithm Without Shifts

Let A 2 Cn;n have the eigenvalues �1; : : : ; �n where j�1j � : : : � j�nj.
Idea: Use the n-dimensional unitary subspace iteration, i.e., choose m = n and Q0 = In. If

Qk =
h
q
(k)
1 ; : : : ; q

(k)
n

i
, then for every 1 � m � n

Span
n
q
(k)
1 ; : : : ; q(k)m

o
converges to the invariant subspace associated with �1; : : : ; �m with a rate

����m+1

�m

��� provided
that j�m+1j < j�mj and one does not run into an exceptional situation.

To observe the convergence, we form Ak = Q�1k AQk. If Spanfq(k)1 ; : : : ; q
(k)
m g converges to an

invariant subspace, then we expect that in the matrix

Ak =

� m n�m

m A11 A12

n�m A21 A22

�

the block A21 converges to 0 for k ! 1. Since this happens for all m simultaneously, it
follows that Ak converges to block-upper triangular matrix.
Another question is whether we can directly move from Ak�1 to Ak? To see this, observe that

Ak�1 = Q�1k�1AQk�1

Ak = Q�1k AQk

and hence
Ak = Q�1k Qk�1Ak�1Q

�1
k�1Qk| {z }
=:Uk

= U�1k Ak�1Uk:

Thus we can reformulate the k-th step of the unitary subspace iteration

AQk�1 = QkRk

as
Ak�1 = Q�1k�1AQk�1 = Q�1k�1QkRk = UkRk:

This is a QR decomposition of Ak�1 and we have

Ak = U�1k Ak�1Uk = U�1k UkRkUk = RkUk:

Algorithm: (QR Algorithm)(Francis and Kublanovskaya 1961)
For a given matrix A 2 Cn;n this algorithm constructs a sequence (Ak) of similar matrices
that converges to block upper-triangular form.

(a) Start with A0 = A

(b) Iterate for k = 1; 2; : : : until convergence.
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(a) Compute a QR-decomposition of Ak�1: Ak�1 = UkRk

(b) Compute Ak via Ak = RkUk.

Theorem 29 (Convergence of the QR algorithm)

Let A 2 Cn;n have eigenvalues �1; : : : ; �n, where j�1j � : : : � j�mj > j�m+1j � : : : � j�nj. Let
V � Cn be the invariant subspace associated with �m+1; : : : ; �n, and let (Ak) be the sequence
generated by the QR Algorithm. If

Span fe1; : : : ; emg \ V = f0g

and

Ak =

" m n�m

m A
(k)
11 A

(k)
12

n�m A
(k)
21 A

(k)
22

#
;

then for every % with
����m+1

�m

��� < % < 1 there exists a constant ~c such that

jjA(k)
21 jj � ~c%k:

Proof: (Sketch) Let U be the invariant subspace associated with �1; : : : ; �m and

Uk = Span
n
q
(k)
1 ; : : : ; q(k)m

o
;

where

Qk =
h
q
(k)
1 ; : : : ; q(k)n

i
is the unitary matrix with Q�1k AQk = Ak from the unitary subspace iteration. One �rst
shows that

jjA(k)
21 jj � 2

p
2jjAjjd(U ;Uk)

Then using the convergence results for the subspace iteration there exists a constant c > 0
with

d(U ;Uk) � c%k:

Then choose ~c := 2
p
2jjAjjc. 2

In the special case that A is Hermitian, the sequence Ak converges to a diagonal matrix.

Remark 30 In the presented form the algorithm has two major disadvantages:

(a) It is expensive, since it costs O(n3) ops per iteration step.

(b) The convergence is slow (only linear).

A way to address the two problems is the Hessenberg reduction and the use of shifts.
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2.4.2 Hessenberg reduction

De�nition 31 A matrix A = [aij ] is called Hessenberg matrix or in Hessenberg form, if
aij = 0 for i > j + 1. A Hessenberg matrix A is called unreduced if ai+1;i 6= 0 for all
i = 1; : : : ; n� 1.

Householder transformations

The QR decomposition and other unitary transformations can be realized via Householder
transformations

P = I � 2

v�v
vv�

for v 2 Cn n f0g. Householder Transformations are Hermitian and unitary. (Exercise) Mul-
tiplication with Householder transformations is geometrically a reection of a vector x 2 Cn
at the hyperplane Span fvg?. (Exercise.)
A typical task: Reect x 2 Cn n f0g to a multiple of the �rst unit vector, i.e., determine v
and from this P such that

Px = �jjxjje1:
To determine such a v we make an ansatz v = x+ �e1 and obtain

v = x� jjxjje1 and Px = �jjxjje1: (Exercise)

For numerical reasons we take

v =

�
x+ jjxjje1; x1 � 0;
x� jjxjje1; x1 < 0:

Advantage: The multiplication with Householder transformations is cheap. For B 2 Cn;m
the computation of PB only needs � 4mn ops (instead of � 2n2m ops for classical ma-
trix/matrix multiplication).
Givens rotations

Another tool for unitary operations are Givens rotations

Gi;j(c; s) =

2
66666666666666666664

1
. . .

1
c s

1
. . .

1
��s �c

1
. . .

1

3
77777777777777777775

;

where jcj2+jsj2 = 1 and where the matrix di�ers from an identity only in positions (i; i); (i; j); (j; i); (j; j).
Multiplication of a matrix with a Givens rotation allows to zero an element in any position.
E.g. choose

Ĝ1;2(c; s) =

�
c s
��s �c

�

22



with jcj2 + jsj2 = 1 such ��sa11 + �ca21 = 0, then we have

Ĝ1;2(c; s)

�
a11 a12
a21 a22

�
=

� � �
0 �

�
:

(a) For a Hessenberg matrix H 2 Cn;n the QR decomposition can be performed in O(n2)
ops using Givens rotations.

(b) Hessenberg matrices are invariant under QR iterations.

2.4.3 The Francis QR Algorithm with Shifts

Deation: Let H 2 Cn;n be in Hessenberg form. If H is not unreduced, i.e., if hm+1;m = 0
for some m, then

H =

� m n�m

m H11 H12

n�m 0 H22

�
i.e., we can split our problem into two subproblems H11; H22.

Algorithm (QR Algorithm with Hessenberg reduction and shifts)

Given: A 2 Cn;n:
(a) Compute U0 unitary such that

H0 := U�0AU0

is in Hessenberg form. We may assume that H0 is unreduced, otherwise we can deate
right away.

(b) Iterate for k = 1; 2; : : : until deation happens, i.e.,

h
(k)
m+1;m = O(eps)(jhm;mj+ jhm+1;m+1j)

for some m and the machine precision eps.

(i) Choose shift �k 2 C.
(ii) Compute a QR decomposition Hk�1 � �kI = QkRk of Hk�1 � �kI.

(iii) Form Hk = RkQk + �kI.

Remark 32 (a) Steps (ii) and (iii) of this algorithm correspond to a QR iteration step for
H0 � �kI.

(b) The sub-diagonal entry h
(k)
m+1;m in Hk converges with rate

����m+1��k
�m��k

��� to 0.

(c) If h
(k)
m+1;m = 0 or h

(k)
m+1;m = O(eps), then we have deation and we can continue with

smaller problems.

(d) If �k is an eigenvalue then deation happens immediately after one step.

Shift strategies:
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(a) Rayleigh-quotient shift: For the special case that A is Hermitian, the sequence Ak

converges to a diagonal matrix. Then q
(k)
n is a good approximation to an eigenvector

and a good approximation to the eigenvalue is the Rayleigh-quotient

r(q(k)n ) = (q(k)n )�Aq(k)n

which is just the n-th diagonal entry a
(k)
n;n of Q�kAQk.

Heuristic: We expect in general a
(k)
n;n to be a good approximation to an eigenvalue and

therefore may choose
�k = a(k)n;n

With this choice h
(k)
n;n�1 typically converges quadratically to 0.

(b) Wilkinson-shift: Problems with the Rayleigh-quotient shift arise when the matrix is
real and has nonreal eigenvalues, e.g., for

A =

�
0 1
1 0

�
:

A QR iteration for A0 = A yields Q0 = A0; R0 = I and hence,

R0Q0 = IA0 = A0;

i.e., the algorithm stagnates. To avoid such situations, for A 2 Cn;n in the k-th step,
one considers the submatrix B in

Ak =

� n� 2 2

n� 2 � �
2 � B

�

and chooses the �k as shift that is nearest to a
(k)
nn .

(c) Another strategy, the double-shift will be discussed below.

(d) On the average 2-3 iterations are needed until a 1� 1 or 2� 2 block deates.

Remark 33 (a) The empirical costs for the computation of all eigenvalues of A are approx.
10n3 ops, If also the transformation matrixQ is needed then this leads to approximately
25n3 ops.

(b) The convergence analysis is di�cult, no global convergence proof is known.

Theorem 34 (Implicit Q Theorem) Let A 2 Cn;n and let Q = [q1; : : : ; qn] ; U = [u1; : : : ; un]
be unitary matrices such that

H = Q�1AQ = (hij) and G = U�1AU = [gij ]

are Hessenberg matrices. If q1 = u1 and H is unreduced, then

qi = ciui

for ci 2 C with jcij = 1 and jhi;i�1j = jgi;i�1j for i = 2; : : : ; n, i.e., Q is determined already
essentially uniquely by q1.

Proof: Exercise. 2
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2.4.4 Implicit Shifts and 'Bulge-Chasing'

Let H 2 Cn;n be a Hessenberg matrix and �1; : : : ; �l 2 C. Carry out l steps of the QR
Algorithm with shifts �1; : : : ; �l.

H � �1I = Q1R1

H1 = R1Q1 + �1I
...

Hl�1 � �lI = QlRl

Hl = RlQl + �lI:

Then
Hl = QH

l QlRlQl + �lQ
H
l Ql = QH

l (QlRl + �lI)Ql = QH
l Hl�1Ql

and thus per induction

Hl = QH
l : : : QH

1 H Q1 : : : Ql| {z }
=:Q

= QHHQ:

This opens the question whether we can compute Q directly without carrying out l QR-
iterations.

Lemma 35 M := (H � �lI) : : : (H � �1I) = Q1 : : : QlRl : : : R1| {z }
=:R

= QR:

Proof: By induction we show that

(H � �jI) : : : (H � �1I) = Q1 : : : QjRj : : : R1; j = 1; : : : ; l:

j = 1: This is just the �rst step of the QR algorithm.

j � 1! j:

Q1 : : : QjRj : : : R1

= Q1 : : : Qj�1(Hj�1 � �jI)Rj�1 : : : R1

= Q1 : : : Qj�1

�
QH
j�1 : : : Q

H
1 HQ1 : : : Qj�1 � �jI

�
Rj�1 : : : R1

= (H � �jI)Q1 : : : Qj�1Rj�1 : : : R1

I:A:
= (H � �jI)(H � �j�1I) : : : (H � �1I):

2

This leads to the idea to compute M and then the Householder QR decomposition of M , i.e.,
M = QR, and to set

~H = QHRQ = Hl:

This means that one just needs one QR decomposition instead of l QR decompositions in
each QR step. On the other hand we would have to compute M , i.e., l � 1 matrix-matrix
multiplications. But this can be avoided by computing ~H directly from H using the implicit
Q Theorem.

Implicit shift-strategy:
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(a) Compute
Me1 = (H � �lI) : : : (H � �1I)e1;

the �rst column of M . Then the �rst l+1 entries are in general nonzero. If l is not too
large, then this costs only O(1) ops.

(b) Determine a Householder matrix P0 such that P0(Me1) is a multiple of e1. Transform
H with P0 as

P0 =

� l + 1 n� l � 1

l + 1 � 0
n� l � 1 0 I

�

P0HP0 =

� l + 2 n� l � 2

l + 2 � �
n� l � 2 0 Ĥ

�

P0 changes only rows and columns 1; : : : ; l + 1 of H. This gives a Hessenberg matrix
with a bulge.

(c) Determine Householder matrices P1; : : : ; Pn�2 to restore the Hessenberg form. This is
called bulge chasing, since we chase the bulge the down the diagonal. This yields

~H := Pn�2 : : : P1P0HP0 : : : Pn�2

that is again in Hessenberg form and Pke1 = e1 for k = 1; : : : ; n� 2.

(d) P0 has the same �rst column as Q. As in the �rst step for P0 we have Pke1 = e1, then
also

P0P1 : : : Pn�2

has the same �rst column as P0 and Q, respectively. With the implicit Q Theorem then
also Q and P0 : : : ; Pn�2 and therefore also ~H and QHHQ are essentially equal, thus we
have computed ~H and Hl directly from H.

Algorithm (Francis QR algorithm with implicit double-shift strategy): (Francis
1961)
Given A 2 Cn;n:

(a) Determine U0 unitary so that H0 := UH
0 AU0 is in Hessenberg form.

(b) Iterate for k = 1; 2; : : : to convergence (deation):

(a) Compute the eigenvalues �1; �2 of the lower right 2� 2 submatrix of Hk�1.

(b) Compute (with the implicit shift strategy) for l = 2 the matrix ~Qk that one obtains
with 2 steps of the QR Algorithm with shifts �1; �2.

(c)
Hk := ~QH

k Hk�1
~Qk
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